


Requirements:
This is a coding book for programmers. At least one year of experience as a
developer with drupal or a related framework is required. You must be able to install
drupal on a local server.

Description
This course will teach you advanced concepts of drupal 9, Object-oriented PHP and
symphony components. After the course, you’ll be able to build robust and scalable
software solutions of many kinds.

In this hands-on course a drupal expert with 10 years experience with the software
will give you a deep-dive in the power that drupal core has to offer.

Advanced topics like custom entities, entity forms, access control, events, caching,
workflows and many more are discussed while building an actual software.

With +2400 lines of custom code, the author offers you powerful and ready-to-use
snippets for your next drupal projects.

Fun fact: you’ll not even be using nodes at all but only custom entities.

Let’s take a deep dive!

First edition: 05/05/2021
Modified edition: 24/06/2021
See changelog at https://stefvanlooveren.me/courses/drupal-9-framework#changelog

1



Foreword 4

Part 1: Drupal developer essentials 5
Composer 7

Basic composer commands 9
Comparing with drupal 7 and earlier 10
Patching with composer 11

Git best practices 13
CLI tools 15
Development & debug 20

Xdebug 22
Webprofiler 24

Configuration management 27
Basic configuration management 27
Creating custom configuration settings 31
Different configuration per environment 35

Scenario A: Install a module on development, but not on production. 36
Scenario B: disable caching on development, but not on production. 37
Scenario C: enable a module on both development and production, but ignore its
configuration. 38

Reading configuration objects in your code 40

Part 2: Project code and set-up 41
Seed data 41
Project set-up 45

Part 3: Custom entities 101, CRUD operations, workflow states and access 51
Content entities 52
Building our first content entity 53
Securing access of our entities 58
Adding the create/edit/delete forms (CRUD) 63
Views integration of our custom entity to add a listing 69
Getting up-to-speed: making the entity fieldable 75

Media field with library 82
Adding fields to the custom entity via the UI 87

Adding workflows and moderation to custom entities 92
Change entity access based on workflow states 95
Adding views plugins: custom fields and operation links 96
Adding a 105
custom controller for direct publishing 105
Building an overview page 109

Adding a custom views filter based on moderation state 114
Optimize the entity teaser with custom variables for twig 120

2



Adding css to views 123
Adding a user-friendly multistep form for entity creation 127

Add custom actions to the form 134
Conditional fields in the Form API 140

Updating our data seeds 142

Part 4: building the application. Storing, validating and rendering data 145
Add dynamic menu links with Menu plugins 145
Building the offer page with twig: theming a custom content entity 148
Adding a dynamic bidding form to our page with an advanced block plugin 150
Adding site-wide css and javascript 160
Adding a code-only bid entity 164
Saving the bid entities on form submission 168
Form validation based on highest bids 170
Add dynamic variables to our entity teaser 173
Validating the entity with constraints 176
Displaying all bids in a dynamically rendered table 179
Integrating the core revision system into the bidding process to raise a bid 185
Deleting a bid with a core dialog pop-up 191

Part 5: Transitions, Events, Caching and user registration 198
User notifications on transition events 198
Update entire view with custom ajax callback 201
OO in practice: deletion of bid and notification entities when an offer gets deleted 206
Caching in-depth 208

Caching of views pages 209
Caching of custom entity pages 210
Use of cache contexts and cache tags for caching custom blocks 212
Use of cacheable dependencies in render arrays 214
Invalidate cache of another entity after saving 218

Dispatch custom Events with an EventSubscriber to redirect users 220
Customize the user registration process with a RouteSubscriber 224
Finishing up the platform 233

3



Foreword

The history of drupal as a content management system has been interesting in many
ways. This open-source project hit an incredible 1 million powered websites
worldwide in 2014 because of its truly great CMS features for developers and
webmasters.

Since then, it has chosen an interesting path. While in 2014 the main competitors
were Wordpress and Joomla, the community took the radical decision of a complete
rewrite of the software to meet the challenges of the future. The result was the
release of drupal 8: an object-oriented framework with Symfony components. It
resulted in software that was ready to meet the high standards of the industry on
security, scalability, cost-effectiveness, and reliability.

In 2021, with Drupal 9, it has become an enterprise software for ambitious and
custom-tailored solutions that is comparable with Ruby on Rails and Django.
Especially for startups, it offers a quick-to-market solution.

I wrote this course because from my experience the speed of building
custom-tailored solutions with drupal 9 is stunning. A truly huge advantage is that
the security updates come for free. From the community, for the community. I really
like this slogan drupal has had for years: << Come for the code, stay for the
community >>.

I’ve been around in the drupal ecosystem for ten years and have supported in many
ways: code contributing, blogging, sharing solutions on DrupalAnswers, and
attending conferences. With this book, I share almost all of the knowledge I’ve built
up so far since using Drupal 8 and 9.

Allow me to say a few topics that do not get covered in this book. The ecosystem is
so big that I had to let out chapters about these:

● Unit testing (would need a separate book)
● Server set-up (but take a look at Lando!)
● JSON-API and webservices (would need a separate book)
● Drupal theming guide
● How to install drupal

In this hands-on course, we’ll be building a bidding software platform. While the
platform will not be 100% finished, the backbone and layers are ready to use for your
production websites. I hope you enjoy it as much as I did.

4

https://stefvanlooveren.me
https://drupal.stackexchange.com/users/71941/stef-van-looveren?tab=profile


Part 1: Drupal developer essentials

👉 You may understand that building larger platforms also requires a more
thorough development setup. In this section you will learn the  more advanced
developer tools real-life experts use to build their solutions.

First, we'll take a look at composer and how we’ll manage installation, versioning and
upgrades of the core and the modules.

After this we'll discuss Git. Interesting to know is that thanks to composer we do not
have to add our modules to version control.

Then I want you to get to know Xdebug, which we will need to intercept the software
at certain breakpoints to take a look at all the available data at that moment. I use
this all the time during PHP development.

Webprofiler is a tool for using while developing. It indicates the current route, the
load time of the controller and a lot of other stuff.

You might have heard of drush before, the cli for drupal developers. In this course,
we’ll get to know this drupal command-line language a bit better and use it more and
more while building custom modules.

Drupal is not meant for a simple blog anymore. The framework and CMS can be
pretty complex and needs to get updated regularly and without downtime.
We will develop the platform in a way that when other developers of our team run a
clean drupal install and import configuration, the platform is ready on-the-fly. But we
do not want an empty box every time, so we’ll provide some seed data like users,
offers, bids etc. that can be imported on installation.

We will develop the platform in a way that when you install, the platform is ready
on-the-fly, with real-world content filled in. No more empty boxes or production data!

In the drupal 7 days, going from staging to production was hard. Drupal 8 has made
a huge progression on this and even made it a strength. That’s why so many
enterprises are now interested in drupal: it got easy to roll in new features in it while

5



in production. Configuration management is a topic we’ll discuss more in depth at
the end of this chapter.

Drupal 8 has made a strength out of its previous weakness: configuration
management.

6



Composer

In this section we’ll talk about composer and how it manages versioning.

Composer is an application-level package manager for PHP. It
keeps track of the versions and dependencies of your core
drupal, modules, themes and libraries.

In short, this will make sure you don’t install something that is
not compatible. In addition to the core drupal installation, every
module or theme can add requirements and dependencies in
it’s .info file via a composer.json file.

Composer was added in drupal 8 and is mandatory. Make sure you have it installed
globally on your machine.

Take a look at a basic installation of drupal. Clone the files of the
drupal/recommended-project to the folder you would like to use as your
development environment.

Make sure you have composer installed, go to your terminal and type:

composer create-project drupal/recommended-project

Your terminal will go ahead and download all the required packages:

7

https://getcomposer.org
https://github.com/drupal/recommended-project


After this, run

composer update

to make sure you have the latest packages available.

Using this recommended repository as a starter point, we avoid dependency
problems by using only dependencies that have already been tested with your
version of Drupal.

The provided composer.json file contains the best practice way of structuring a
drupal project. It will automatically make sure your modules, themes and libraries get
downloaded in the right folder. The created composer.lock file keeps track of every
exact version you have installed.

You see a lot of symfony components go to your vendor map, but drupal also
requires quite a lot of other extra packages.

Now that installation is ready, take a look at the folder structure we now have:

8



● web is the webroot of the project where we can see a fresh new drupal 9
installation . This is the folder where your domain name will be pointed to

● vendor is the folder with all the dependencies

Notice that the composer.json file will always stay one level above our webroot, thus
in the same level as web and vendor.

It is nice to have the vendor packages separated from the drupal core. This makes it
cleaner in the long run. Also, dependencies are only accessible from the server
because they are a level higher than the web root.

Basic composer commands

Let’s move on with some basic composer commands:

composer require drupal/redirect

This will download the redirect module to modules/contrib and a reference to it gets
added to our composer.json and composer.lock file. If the module has dependencies
defined, they will get downloaded and put in the vendor map.

To remove it, we run:

9



composer remove drupal/redirect

This removes the module. Always make sure you disabled the module first in drupal.

It is also possible to be more specific:

composer require drupal/redirect:1.5

This will get us a specific version of the module, instead of the latest one.

For a theme, it works the same:

composer require drupal/bootstrap

Thanks to the scaffolding in the composer.json file the system knows which is the
theme directory, it gets placed in the right folder, which is themes/custom/bootstrap.

Comparing with drupal 7 and earlier

Why not just download the module from drupal.org, like we used to do?

10



Here’s the deal. If we want to be able to professionally use drupal as a software
platform, you really really have to get comfortable with composer.
You’ll definitely get yourself into trouble if you are ignoring this way of working
because mixing the wrong dependencies will get you bugs soon or late.
Second, by using composer you do not have to add all these modules to version
control which will dramatically decrease your git repository size. Because a server
can install everything that is in composer.json by himself. By this we keep everything
clean and in the long-term it is just the only option to keep the software healthy when
it gets bigger.

In addition: we can even self-host private modules in a repository of the company
and add them as packages. It’s not what we’ll do in this course, but handy to know
this is an option.

To update everything you run

composer update

To update one module only, go ahead and type

composer update drupal/redirect

Some extra helpful commands can be found at https://getcomposer.org. It is
powerful, stable and well maintained.

Patching with composer

Sometimes we need to patch a module. This is the workflow: first we need an
additional package for composer that makes patching possible. A side note here:
since drupal 8 and the use of composer and symfony we got access to a broad
ecosystem of php-contributors. This composer package, that wasn’t specifically built
for drupal, is an example.

In our terminal, we type:

composer require cweagans/composer-patches

Then add this to the composer.json file in the “extra” section:

11

https://getcomposer.org


"patches": {

"drupal/redirect": {

"Duplicate button in the node":

"https://www.drupal.org/files/issues/2020-12-15/remove-duplicate-b

utton.patch"

}

}

Now run

composer install

again. It will remove the module, reïnstall it and let you know if the patch was
correctly applied.

If you have created patches yourself, add a patch to a folder you name patches in
your root directory. Your patches section would look like this:

"patches": {

"drupal/redirect": {

"Fixing a PHP notice": "patches/redirect-php-notice-fix.patch"

}

}

12



Git best practices
Version control systems are software tools that help a software team manage
changes to source code over time. The current industry standard is Git.

This course will not be about best practices on git or how to organize your git
workflow in a team. But I’ll provide you some tips on how to keep our repository
small and clean.

This section will not give you a git introduction, I assume you know the very basics.

I would always recommend using version control when developing software. It is just
one of the things you’ll heavily use for the rest of your career as a software
developer.

In this section I’ll discuss what the best way of working with git and drupal is.

In the source code you’ll see there is a .gitignore file that was added to our code.
This file says to git which files need to be ignored. Below you see the typical drupal
folders we want to ignore.
The first section are all the directories that get generated by Composer. Like was
said in the previous section, composer helps us to dramatically reduce our repository
size:

# Ignore directories generated by Composer

/drush/contrib/

/vendor/

/web/core/

/web/modules/contrib/

/web/themes/contrib/

/web/profiles/contrib/

/web/libraries/

The second section contains all site specific data

# Site specific

/web/sites/*

The following are my IDE files, of course I do not want them in version control

13

https://git-scm.com/


# IDE specific

/.idea

Here are a few other typical things to ignore

# NPM packages & theming related

/node_modules/

*.css.map

I would like to emphasize on how composer and git are the two main ingredients for
creating a whole new way of working in comparison with the older drupal way.

Composer is key for downloading packages and avoiding conflicts when upgrading, git
is there for keeping track of history in changes of our custom modules, configuration
and theme code.

It’s time to move on to the next section.

14



CLI tools
Drush is a command line shell and Unix scripting interface for Drupal. It is the most
used cli, and although there is a second and similar one, called drupal console, drush
is the most popular by far.

You can start by adding drush  as a dependency in our composer.json by requiring
the package:

composer require drush/drush

A note here: if you are running your site in the sites folder, and not the standard
sites/default folder, or running a multi-site installation you have to go to the sites
folder of your installation.

If your website is inside web/sites/mysite, you would do

cd web/sites/mysite

This way, drush knows which site you’re talking about. To install a module

drush en views

While drush is the “standard”, drupal console is interesting in some cases as well.
Because it was introduced with the adoption of symfony, it is less opinionated about
drupal than drush. Console is both a building tool as a debug tool. There is a lot of
similar functionality, but I like to share this nice feature console has. You can get all
information of a route with a simple command.

First:

Composer require drupal/console

Debug a route like this:

drupal debug:router entity.user_role.edit_form

This will return:

Route           entity.user_role.edit_form

15

https://www.drush.org/latest/
https://drupalconsole.com/


Path            /admin/people/roles/manage/{user_role}

Defaults

_entity_form   user_role.default

_title         Edit role

Requirements

_entity_access user_role.update

Options

compiler_class Drupal\Core\Routing\RouteCompiler

utf8           1

parameters     user_role:

type: 'entity:user_role'

converter:

drupal.proxy_original_service.paramconverter.configentity_admin

_admin_route   1

_access_checks access_check.entity

This is great. With one command, all of the routes info gets returned.

Another example is debugging of services containers. Let’s lookup all the service
containers we can find for sessions:

drupal debug:container|grep session

This will return:

cache_context.session

Drupal\Core\Cache\Context\SessionCacheContext

cache_context.session.exists

Drupal\Core\Cache\Context\SessionExistsCacheContext

http_middleware.session

Drupal\Core\StackMiddleware\Session

session

Symfony\Component\HttpFoundation\Session\Session

session.flash_bag

Symfony\Component\HttpFoundation\Session\Flash\FlashBag

session_configuration

Drupal\Core\Session\SessionConfiguration

session_handler.storage

Drupal\Core\Session\SessionHandler

session_handler.write_safe

16



Drupal\Core\Session\WriteSafeSessionHandler

session_manager

Drupal\Core\Session\SessionManager

session_manager.metadata_bag

Drupal\Core\Session\MetadataBag

Almost all of the things come from drupal core, but also some are symfony
components. Interesting, right? Digging a little makes the layers more visible.

Apart from debugging, we can use console to generate custom modules, controllers,
… etc.
I’ll show this by generating a custom module called offer,, the name of our platform.
It will ask us a few things.

Fyi: the drupal console will always ask for a valid uri, like

drupal generate:module --uri=mysite.test

Let’s generate our first module:

bash$ drupal generate:module --uri=mysite.test

// Welcome to the Drupal module generator

Enter the new module name:

> Offer

Enter the module machine name [offer]:

>

Enter the module Path [sites/modules/custom]:

>

Enter module description [My Awesome Module]:

> Main module for the offer platform

Enter package name [Custom]:

> Offer

Enter Drupal Core version [9.x]:

17



> 9.x

Do you want to generate a .module file? (yes/no) [yes]:

>

Define module as feature (yes/no) [no]:

> no

Do you want to add a composer.json file to your module? (yes/no)

[yes]:

> no

Would you like to add module dependencies? (yes/no) [no]:

> no

Do you want to generate a unit test class? (yes/no) [yes]:

> no

Do you want to generate a themeable template? (yes/no) [yes]:

> no

Do you want to proceed with the operation? (yes/no) [yes]:

> yes

Generated or updated files

Generation path: /var/www/html/web

1 - /sites/modules/custom/offer/offer.info.yml

2 - /sites/modules/custom/offer/offer.module

Generated lines: 29

Some other commands you might find interesting:

Creation of nodes:

drupal create:nodes article \

--limit="5" \

--title-words="5" \

--time-range="1" \

--revision \

--language="und"

18



Exporting the configuration of a content type to a module

drupal config:export:entity node_type page \

--module="demo"

drupal config:export:entity node_type page \

--module="demo" \

--optional-config \

--remove-uuid \

--remove-config-hash

(more on configuration in a later chapter)

Generate a custom block:

drupal generate:plugin:block  \

--module="modulename" \

--class="DefaultBlock" \

--label="Default block" \

--plugin-id="default_block" \

--theme-region="header" \

--inputs='"name":"inputtext", "type":"text_format",

"label":"InputText", "options":"", "description":"Just an input

text", "maxlength":"", "size":"", "default_value":"",

"weight":"0", "fieldset":""'

In this course we will make a choice for drush. But we discussed some interesting
drupal console commands as well. Make sure you check the official docs for more
commands for console at https://drupalconsole.com/docs and for drush at
https://www.drush.org/latest

19

https://drupalconsole.com/docs
https://www.drush.org/latest


Development & debug
In this section we’ll talk about debugging techniques experts use while programming
in drupal. These tools help you to get real deep into the layers of the software, and
will accelerate quick development of custom modular development.

We’ll discuss Xcode and Webprofiler, but first some typical drupal development
setup tricks.

You enable “development mode” for a drupal site like this with console::

bash-5.0$ drupal site:mode dev --uri=mysite.test

Configuration name: system.performance

------------------------- ---------------- ----------------

Configuration key         Original Value   Override Value

------------------------- ---------------- ----------------

cache.page.use_internal false

css.preprocess false false

css.gzip true false

js.preprocess false false

js.gzip true false

response.gzip false

------------------------- ---------------- ----------------

Configuration name: views.settings

-------------------------------- ----------------

----------------

Configuration key                Original Value Override Value

-------------------------------- ----------------

----------------

ui.show.sql_query.enabled false true

ui.show.performance_statistics false true

-------------------------------- ----------------

----------------

Configuration name: system.logging

------------------- ---------------- ----------------

Configuration key   Original Value   Override Value

------------------- ---------------- ----------------

error_level         hide             all

20



------------------- ---------------- ----------------

Services files "/var/www/html/web/sites/mysite/services.yml" was

overwritten

New services settings

------------------------------------------ ------------- -------

Service                                    Parameter Value

------------------------------------------ ------------- -------

http.response.debug_cacheability_headers true

twig.config                                auto_reload true

twig.config                                cache false

twig.config                                debug true

------------------------------------------ ------------- -------

// cache:rebuild

Rebuilding cache(s), wait a moment please.

[OK] Done clearing cache(s).

Let’s take a look at the services.yml under sites/mysite:

parameters:

http.response.debug_cacheability_headers: true

twig.config: { debug: true, auto_reload: true, cache: false }

services:

cache.backend.null: { class:

Drupal\Core\Cache\NullBackendFactory }

This will disable all entity caching and twig caching so we do not have to bother
about it while developing.

To re-enable production mode:

drupal site:mode prod --uir=mysite.test

21



If you don’t want to use drupal console for this you can
● copy example.settings.local.php in sites/ folder to settings.local.php
● Put it in your sites/mysite/ folder.

After doing this, uncomment the following in settings.php:

if (file_exists($app_root . '/' . $site_path .

'/settings.local.php')) {

include $app_root . '/' . $site_path . '/settings.local.php';

}

And uncomment this:

$settings['container_yamls'][] = DRUPAL_ROOT .

'/sites/development.services.yml';

The end result is the same as running development mode in drupal console.

More info about development set-up on the official drupal.org website:
https://www.drupal.org/node/2598914

Xdebug

A real eye opener for me after a few years of programming with PHP was
intercepting code with Xdebug. Most IDE’s have integration with Xdebug.

I use IntelliJ and have Xdebug connected with the IDE. This way, I can put my
breakpoint anywhere in code and when I refresh the browser it intercepts the request
and it keeps hanging right at my breakpoint. From there, I can take a look at my
available variables, objects, etc.

22

https://www.drupal.org/node/2598914
https://www.jetbrains.com/idea/
https://xdebug.org/


The interceptor stops exactly where I set my breakpoint. In my dummy line $a = ‘b’; I
see that my $mail variable is correct. So I can proceed coding further.

This kind of debugging is not only great for variables or objects. It can also give you
a lot of knowledge about which stuff gets rendered in which order.

Some installation resources on debugging with Xdebug for php:
● Xdebug.org
● www.jetbrains.com/phpstorm/webhelp/configuring-xdebug.html
● https://7thzero.com/blog/configure-phpstorm-for-local-php-web-application-d

ebugging
● https://www.jetbrains.com/help/phpstorm/debugging-with-phpstorm-ultimate

-guide.html
● https://www.youtube.com/watch?v=rqDDJfG6ip4 (Advanced Debugging in

PhpStorm - PhpStorm Video Tutorial)

23

https://xdebug.org/
http://www.jetbrains.com/phpstorm/webhelp/configuring-xdebug.html
https://7thzero.com/blog/configure-phpstorm-for-local-php-web-application-debugging
https://7thzero.com/blog/configure-phpstorm-for-local-php-web-application-debugging
https://www.jetbrains.com/help/phpstorm/debugging-with-phpstorm-ultimate-guide.html
https://www.jetbrains.com/help/phpstorm/debugging-with-phpstorm-ultimate-guide.html
https://www.youtube.com/watch?v=rqDDJfG6ip4


Webprofiler

Drupal’s well known Devel module contains a toolbar especially for developers. Let’s
install the module and enable Webprofiler.

composer require drupal/devel

Once you have devel, install it via /admin/modules or with drush:

drush en devel webprofiler -y

After enabling the module, you’ll get a toolbar at the bottom of your page on every
request.

The  toolbar gives me a ton of information about the current request. The one I use a
lot is the Route name and Controller method used:

Take a look at the current controller. We can see what the current controller name is,
and which method is used.

The “Devel menu”, the second button in the row, offers a lot of options:

24



The “Routes info” page, for example, let’s you lookup any registered route for
debugging. This is the debug for the /admin/content page::

25



On the Configure page of this submodule
(/admin/config/development/devel/webprofiler) there is even more information to
display.

In the webprofiler toolbar you can check Events, Routing en Services. Click on an icon
and go to the profiler reports page. Click around to see all routes, events, etc. that are
registered.

26



Configuration management
Drupal 8 radically changed the way configuration is handled in comparison with the
previous versions. Because this is a rather important topic to get, we start with some
theoretical information on how drupal stores its configuration.

Basic configuration management

Drupal uses a standard format for all site configuration—whether configuration of
Drupal core components, or installed modules. This means that Drupal configuration
can be exported and imported as YAML, which allows for staging of configuration
changes, deploying configuration between sites, and easy version control.

Since drupal 8 configuration and content are separated. Configuration can be seen
as literally ALL the settings of your platform. Some examples:

● Site name and slogan
● Which modules are enabled
● The settings of each module
● Placement of your blocks, block settings
● All your views settings
● Your entity types and fields
● Your google TagManager code
● … and so on

A visualisation of the difference in storing configuration in drupal 8 + 9 in
comparison with earlier versions. Drupal moved from database-driven configuration
in drupal 7 and earlier to configuration-driven in drupal 8.

27



The configuration storage exists of an Active store and a Sync store. The Active
store is the current configuration that exists in your database. It can be different
from the Sync store, which are yaml-files in a directory. We use this to import and
export configuration between a development, staging and production version of
websites.

Configuration management is shipped with drupal core by the config module.
It provides import/export functionality for site configuration. Moreover it allows
to deploy configuration from one environment to another, provided they are the
same site.

We can export the configuration to yaml-files in a folder we choose. I prefer to keep
configuration in the root, so our root folder becomes:

We define the configuration folder in settings.php.. Look for the

$settings['config_sync_directory']

and set it to:

$settings['config_sync_directory'] = '../config/global';

Export all our current configuration with drush (drush cex is an alias for drush
config-export)::

drush cex

28



Your terminal will return an overview of all the differences between your active
storage (your database) and your sync storage (your config folder). Because your
config folder is currently empty, it will list every setting your website has.

Answer with ‘yes’ or hit Enter key.

[success] Configuration successfully exported to

../config/global.

Our config folder now contains all the configuration our website has. If we’d create a
clean drupal installation with the same composer file and config folder, run ‘composer
install’ and import our configuration we have a complete software platform with all
functionalities ready. Except for the content, but we will use a custom drush command
for that.

We use configuration management for bringing configuration from website staging
to website production. Below is a schematic representation of the configuration
management process:

29



The structure of a configuration file, for example system.site.yml, looks like this:

uuid: e4a14ea3-a3fc-4e6f-b11a-e14fe1d8xxx

name: Offer platform

mail: noreply@offerplatform.mysite

slogan: ''

page:

403: ''

404: ''

front: /user/login

Let’s change the slogan and see what happens. We can log in and fill it in at
/admin/config/system/site-information, but we can also do it in the terminal with
drush:

bash$ drush cset system.site slogan='Offer platform'

Note that this change only lives in the database (active store) for now. For every
change we make, we have to make sure that if you like to keep the change or move the
change to production you have to export the configuration to the config folder (sync
store).

drupal cex

In production we can then run:

drupal cim

30



Putting configuration in yaml files is a smart thing to do. By running a config import
command on production, all the new settings get imported and the site is updated. A
huge improvement with earlier drupal versions, where we would have to do pretty
advanced stuff for something simple as updating some settings.

This may look a very easy example, but it is an extremely scalable functionality.
Whether it is only a simple change like a site name, or multiple entities, fields and
module settings, configuration management will do the heavy lifting.

Creating custom configuration settings

Drupal core and (almost) every module come with configuration files. Most of these
have settings that can be edited in the /admin/config section of the site. Let’s add a
custom settings form for a Google Tagmanager code, a typical thing we would like to
have on a software platform. If you use drupal console you can do the following:

bash$ drupal generate:form:config --uri=mysite.local

First, add a module to custom/modules with the following structure:

31



● offer
○ offer.info.yml

In the offer.info.yml file, add:

name: offer

type: module

description: offer entity

core: 8.x

core_version_requirement: ^8 || ^9

Enable the module with drush:

bash$ drush en offer -y

[success] Successfully enabled: offer

We add a file offer/src/Form/CustomConfigForm.php to build the configform. I
started from a default extension of ConfigFormBase() and made sure the value gets
saved to the right configuration file key in the submitForm() function.

To the buildForm() method I add a section for saving a textarea with a snippet.

The final code of our form:

<?php

namespace Drupal\offer\Form;

use Drupal\Core\Form\ConfigFormBase;

use Drupal\Core\Form\FormStateInterface;

/**

* Class CustomConfigForm.

*/

class CustomConfigForm extends ConfigFormBase {

/**

* {@inheritdoc}

*/

protected function getEditableConfigNames() {

return [

'offer.customconfig',

];

32



}

/**

* {@inheritdoc}

*/

public function getFormId() {

return 'custom_config_form';

}

/**

* {@inheritdoc}

*/

public function buildForm(array $form, FormStateInterface $form_state)

{

$config = $this->config('offer.customconfig');

$form['analytics'] = array(

'#type' => 'details',

'#title' => $this->t('Marketing & analytics'),

'#open' => TRUE,

);

$form['analytics']['tagmanager'] = [

'#type' => 'textarea',

'#title' => $this->t('Tagmanager code'),

'#default_value' => $config->get('tagmanager'),

'#maxlength' => NULL,

];

return parent::buildForm($form, $form_state);

}

/**

* {@inheritdoc}

*/

public function submitForm(array &$form, FormStateInterface

$form_state) {

parent::submitForm($form, $form_state);

$this->config('offer.customconfig')

->set('tagmanager', $form_state->getValue('tagmanager'))

->save();

}

}

33



We now need to add offer.links.menu.yml to add the menu links in our back-end:

offer.config:

title: 'Offer global settings'

route_name: offer.config

description: 'Global settings for the offer platform'

parent: system.admin_config_system

weight: 99

Then add a offer.routing.yml file to register the controller and route to the form:

offer.config:

path: '/admin/config/offer/adminsettings'

defaults:

_form: '\Drupal\offer\Form\CustomConfigForm'

_title: 'Offer platform global settings'

requirements:

_permission: 'administer site configuration'

Clear caches and head over to /admin/config

We see our custom menu link appearing under the “system” section. When we click
we see our form:

34



When we save a value and export our configuration, we’ll see a file called
offer.customconfig.yml containing a key: ‘tagmanager’.

Note that we could add a config/install folder to the offer module. This way, we can
add a default setting for our tagmanager when enabling the module here. This is
optional.

Creating custom configuration gives good insight in the behavior of configuration. It
is possible to create modules with prepared configuration files shipped in its config
folder.

Different configuration per environment

Because configuration management is the backbone of a good deployment process
we need to dig a little deeper into the possibilities.

We talked about the Webprofiler module in an earlier section. This is typically
something we only want in a development environment.

But there are more use cases where difference between configuration matters. Here
are four examples. Note that in reality we would have a staging environment as well,
but let’s assume we only have development and production:

Functionality Environment: Environment: Solution

35



Development Production

A Devel + Webprofiler Enabled Disabled Settings.php (config
exclude)

B Caching Disabled Enabled developer.services.yml
file + settings.php
(settings override)

C Webform module and
webforms fields

Enabled, bit not
saved as
configuration

Enabled, but not
saved as
configuration

Config filter module

Scenario A: Install a module on development, but not on production.

Since drupal 8.8 there is a core setting to exclude a module without any contrib
modules.

The first step is to install devel and webprofiler module and make sure your sync
store is up-to-date by doing drush config-export -y.

Then add this to your settings.php file:

$settings['config_exclude_modules'] = ['devel', 'webprofiler'];

After you’ve setup the modules you would like to exclude from your configuration,
export your config again:

36



You see that all of the configuration that was added by devel and webprofiler gets
removed from the sync store. On a production site, there will be no devel and
webprofiler.

We could go further and also make sure there is no devel module in our modules
folder on production. For this, we would want to exclude it from our composer.json
file by using the --dev flag. We would do the following. Note that it is best to do this
while setting up your environments the first time:

$ composer require --dev drupal/devel

This results in those dependencies being added into the composer.json file under
require-dev:

"require-dev": {
"drupal/devel": "^4.0"

}

If you install the site without your dev modules you then would use:

$ composer install --no-dev

Scenario B: disable caching on development, but not on production.

You saw a lot of this in the development & debug chapter. Some can be solved by
adding a development.services.yml file. But the following can be done by overwriting
configuration on development. So in this case you enable all the caching
mechanisms in your configuration (sync store) but you overwrite them locally in your
settings.local.php:

$config['system.performance']['css']['preprocess'] = FALSE;

$config['system.performance']['js']['preprocess'] = FALSE;

Uncomment these lines to disable the render cache and disable dynamic page
cache:

$settings['cache']['bins']['render'] = 'cache.backend.null';

37



$settings['cache']['bins']['dynamic_page_cache'] =

'cache.backend.null';

$settings['cache']['bins']['page'] = 'cache.backend.null';

Disabling caching has some drawbacks. The whole site responds slower, and
rebuilding all caches takes a while too. Doing this a lot, and all those seconds waiting
for a response add up. For an approach to developing with the cache enabled, see
Drupal 8 development with caching on.

One bonus tip I can give you is to enable verbose error messaging on your local
development. By doing this you get rich error messages instead of the default
“something went wrong” message:

$config['system.logging']['error_level'] = 'verbose';

Scenario C: enable a module on both development and production, but ignore its
configuration.

A real-life scenario you will be confronted with is when webmasters have access to
modules that create configuration in your active store. An example is the webform
module. Every form, form field or setting a webmaster adds will create additional
configuration. The risk here is that when a developer deploys his development
changes, and this configuration, he risks removing a newly created form.

The solution for this scenario is the config filter module. With this module you can
tell both your development and production environment to ignore parts of your
configuration.

First, install and enable the module on both development and production.

Second, go to /admin/config/development/configuration/ignore. There is a textarea
where you can add the keys of the configuration you would like to ignore.

38

https://www.dx-experts.nl/blog/2017/drupal-8-development-caching/
https://www.drupal.org/project/webform
https://www.drupal.org/project/config_filter


Add webform.* to the textarea and save.

Third, export your configuration and import it on production. This is important: both
environments need to have the module installed before you can start ignoring certain
config.

Fourth, enable the webform module and start adding forms. If you now export your
content, it will still export your yaml files BUT your production will not read them
when you import them.

The config filter module is great, but you must get comfortable using it. Start with
easy configuration. I would also recommend either to ignore the entire module or not
ignoring it. Ignoring parts of configuration is possible, but can be dangerous.

39



Reading configuration objects in your code

We know that our active configuration resides in the database. Often we want to read
out configuration in our custom code. Below is a snippet on how to read out the
google tagmanager snippet we’ve created in our previous chapter about custom
configuration:

With this example snippet you make the variables available in your page.twig.html
file. You can use hook_preprocess_hook() in your mytheme.theme file or like below In
your mymodule.module file:

/**

* Implements hook_preprocess_html().

*/

function MYMODULE_preprocess_html(&$variables) {

$variables['tagmanager'] =

\Drupal::config('offer.customconfig')->get('tagmanager');

}

Now, in your html.html.twig file of your theme, just use the following in your <head>
section:

{{ tagmanager }}

Clear caches and the snippet will appear.

40



Part 2: Project code and set-up

Seed data
Before we start setting up the project, I would like to talk about so-called seed data.

Drupal now has become an option for platforms that were typically built with
tailor-made software solutions.

But one thing it lacks is seed data. Seed data is data that you populate the database
with at the time it is created. You use seeding to provide initial values for lookup lists,
for demo purposes, proof of concepts and of course for development.

We always want to achieve the following: a new developer comes into our team and
installs everything that is in the composer file. After this, he imports the configuration
(more on configuration later).

But then there is an empty software platform. Pretty annoying for debugging and
programming.

What we did in the earlier drupal days, was use a database with production data.
This is in many ways a bad practice:

● Privacy: when people put their data into a platform, they do not want their
data to be visible for every developer. We should avoid this.

● Security: what about sending out emails to production customers  by
accident. Ask 10 developers and 5 of them will tell you this happened some
time.

While there are some things we can do, console for example has a content
generation function, we’ll do this with a custom console command. I prefer realistic
seed data instead of Lorem ipsum. Let’s start by writing a class.

To modules\custom\offer\src we add a directory called SeedData. We add a file
called SeedDataGenerator.php to modules\custom\offer\src\SeedData.

The class will for now just create a dummy user. In the project files it has become a
large function to import all of our entity data with dummy users, offers and bids.

For now we’ll just add a test user. in This is what our class looks like:

41



<?php

namespace Drupal\offer\SeedData;

use Drupal\user\Entity\User;

/**

* Class SeedGenerator

* @package Drupal\offer

*/

Class SeedDataGenerator {

/**

* Function to create the Seed data

* @param string $entity

*  The type of entity that needs to be created.

* @return integer $count

*  The number of entities created.

*/

public function Generate($entity) {

$count = 0;

switch ($entity) {

case 'user':

// USER SEEDS

$user = User::create();

$user->setUsername('test');

$user->setPassword('test');

$user->setEmail('test@mail.com');

$user->activate();

$user->enforceIsNew();

if($user->save()) {

$count += 1;

return $count;

}

break;

}

return null;

42



}

}

Proceed with adding a drush command that will trigger the class:

Add custom/offer/src/Commands/SeedGeneratorCommand.php and configure
further. The final file looks like this:

<?php

namespace Drupal\offer\Commands;

use Drush\Commands\DrushCommands;

use Drupal\offer\SeedData\SeedDataGenerator;

use Drush\Drush;

/**

* Class SeedGeneratorCommand

* @package Drupal\offer\Commands

*/

class SeedGeneratorCommand extends DrushCommands {

/**

* Runs the OfferCreateSeeds command. Will create all data for

the Offer platform.

*

* @command offer-create-seeds

* @aliases offercs

* @usage drush offer-create-seeds

*  Display 'Seed data created'

*/

public function OfferCreateSeeds() {

$seed = new SeedDataGenerator();

$count = $seed->Generate('user');

Drush::output()->writeln($count . ' user(s) created');

}

}

One more thing. Add a file custom/offer/offer.services.yml and add:

43



services:

offer.commands:

class: \Drupal\offer\Commands\SeedGeneratorCommand

tags:

- { name: drush.command }

That’s it! Clear cache and see if our system has registered our command. Lookup all
available commands for our offer module like this:

bash$ drush list | grep 'offer'

offer-create-seeds (offercs)               Runs the

OfferCreateSeeds command. Will create all data for the Offer

platform.

This is nice. This way we can add commands for every module in our system.
Developers can “grep” for every name of the module and see all the commands it
has.
Let’s run the command. If everything goes well we would create a new user with the
command:

bash$ drush offer-create-seeds

1 user(s) created

We see we have imported the test user. We’re forever done with using production
databases. Extending the class after each entity we create won’t take long and we’ll
just add 2 to 5 items per entity type.

This will become easier with every project you’ll start. This way, we truly separated
configuration from content, a necessary step to advanced software development!.

With drush it is easy to start playing to create and delete content. If you have created
your user(s), you can easily delete them as well. Just type this in your terminal:

bash$ drush entity:delete <entityType>

44



Note that this will not delete the admin user, luckily!

Let’s move on with setting up the project files

Project set-up
This chapter is your installation guide on how to set up the project code. Look at the
last page of the book for the link to download the files.

The following steps are needed to set up the platform:

1. Past the project files into a directory. Make sure the web and drush folder are
in the root of the project.

2. Make sure your local domain is pointed to the web folder
3. Run composer install in the root of your installation. This will download all the

required packages for the platform, and add the map structure.
4. Fill in your database credentials via the UI and install your drupal site.
5. In your settings.php, as read in the configuration management chapter, at the

bottom add

$settings['config_sync_directory'] = '../config/global';

45



6. Run drush config-import -y to enable the required modules and import all
configuration that comes with them

7. Run drush offer-create-seeds to import all of your dummy content

46



Clear the caches. You now have the full platforms ready-to-go that should look like
this:

47



Go to /user/register to register and directly log in with user “test” and password
“test. Place a bid on an offer to see how it works.

48



Click on “My offers” to add your own offer via a multi-step interface.

In the following chapters we will be building the platform (modules, settings, …) from
scratch, step by step. You can use this course in two ways:

49



1. Learn by reading the chapters and looking into the final platform and code
2. Learn by doing: follow the course and create every file yourself. There are only

a few additional things that were added to the final code, which is discussed
at the end of this course. This second way is probably the most effective way
to learn!

💻 If you follow this course by doing you will now and then see a grey box like this
with additional info like when to enable a new module etc.

Having problems setting up the platform? Click the link below for some
troubleshooting and how to contact me:
https://stefvanlooveren.me/troubleshooting

50

https://stefvanlooveren.me/troubleshooting


Part 3: Custom entities 101, CRUD operations, workflow
states and access

👉 In this 3rd part of the course you will learn everything concerning custom
entities. At the end you will able to create your own entities, master how to add
functionality using annotations to add views support, make the entities
fieldable, add a workflow with transitions and importantly, detailed access
handling.

On a software point of view this teaches you how to add data entry points using
form modes and view modes. You will be able to create multistep forms for user
friendly user input (CRUD) using drupal’s typical field api and the core media
module for images.

With our setup ready and the theory covered, it is time to get up speed with our
platform. In this section we’ll dive into the main core concepts we’ll need to start
adding data into our software. We start with diving into a very interesting core
concept: entities.

A brief history: since drupal 7 the software contains generic data models that can be
extended for specific purposes. Some examples in core are:

● Nodes
● Blocks
● Comments
● Taxonomy
● Users

Drupal became famous because of its ‘fieldable’ functionality of these entities.
Whether it is a user or a comment, they can easily be extended by extra fields in the
same way:

● List items
● Textfield
● Entity references
● Media
● Link field
● …

Moreover these fields are translatable and can have multiple instances as well
(multifield).

51



I believe there is no other software that has such a strong fieldable model as drupal
9. This makes me prefer drupal over a solely Symfony or Django platform in the
majority of use cases. I hope I can show you why in this course.

Content entities

A content entity is a generic fieldable model that is defined in code. It inherits all
functionality from the base Entity model defined in drupal core.

Take a look at core/modules/user/src/Entity/User.php and click further on the
classes the current class you are in extends:

class User extends ContentEntityBase implements UserInterface
-> abstract class ContentEntityBase extends EntityBase

-> abstract class EntityBase implements EntityInterface

This Object-oriented way of data-modelling makes sense. All the classes that inherit
from EntityBase get a ton of functionality for free:

● Makes the entity fieldable if desired (start adding fields via the ui on-the-go)
● Makes the entity translatable, if desired
● Inherits various generic methods for obtaining data
● Can make use of the core workflow (for moderation status of the entities:

draft, published, expired, ...)
● Can make use of the powerful core revisioning system (keeps a history of the

entity on every change)
● Create, read, update, and delete (CRUD) functionality with the desired security.
● Views integration by default. Views is the core module for creating lists with

filtering, search etc.

The following generic methods for content entities are provided in core:

Entity::create()

Entity::load()

Entity::save()

Entity::id()

Entity::bundle()

Entity::isNew()

Entity::label()

An entity is purely defined in code, unless:

52

https://www.drupal.org/docs/8/core/modules/views


● We add bundles to the entity (f.e. Node entity has bundle ‘article’, ‘page’ in the
standard profile). This is not what we will do in this course.

● We add fieldable functionality to the entity (this is an option when creating
content entities) to add fields via the interface. We will do this in this course.

When one of the previous conditions is met, the extra configuration gets stored in the
database and comes with yaml files when exporting configuration.

Building our first content entity

👉 This section teaches you how to define a custom entity and create it in the
database. At the end you will be able to create your own custom entity with
custom tailored base fields and revisions support.

💻 If you follow this course by doing:
After you installed the recommended drupal 9 set-up like described in the
composer chapter, and added the custom configuration form in a custom
module (offer), install the following theme:

- drupal/gin
And the following modules:

- drupal/gin_admin_toolbar
- drupal/devel

Make gin the default theme (also the administration theme) via
admin/settings/appearance. Also in the theme settings, set the toolbar as
“horizontal, modern toolbar” and disable the “Users can override Gin settings”.

The first question that gets raised is why would we use custom content entities. Isn’t
the core node entity with it’s subtypes (bundles) enough?

53

https://www.drupal.org/docs/administering-a-drupal-site/node-revisions


If we’d have a simple website with just some blog posts and a portfolio, I’d always
recommend to use the core Node content entity. It is the de facto out-of-the-box
solution for this.

But our platform aims to have full control over all pages that create, edit and delete
content, as well as the overviews. Custom entities give us more power to define our
own access functions.

We build a platform that allows users to create offers as well as to make a bid on
offers. It would not make sense to use Nodes with bundles like this:

Entity Node
Bundle Offer
Bundle Bid

I’d have to add numerous access checks to make sure users only get access to their
own Offer entities and only their own Bids because they are from the same Entity.
Drupal’s node behaviour wasn’t really meant to separate access between these kind
of node types as well. No, instead we do:

Entity Offer
Entity Bid
...

Proper modelling of our data is crucial. The Entity API provides us all the tools
for doing this.

We start with creating a content entity ‘Offer’.

A file named Offer.php file inside modules/custom/offer/src/Entity will define our
entity. Copy this code to define the entity:

<?php

/**

* @file

* Contains \Drupal\offer\Entity\Offer.

*/

namespace Drupal\offer\Entity;

54



use Drupal\Core\Entity\EditorialContentEntityBase;

use Drupal\Core\Field\BaseFieldDefinition;

use Drupal\Core\Entity\EntityTypeInterface;

use Drupal\Core\Entity\ContentEntityInterface;

use Drupal\Core\Entity\EntityStorageInterface;

/**

* Defines the offer entity.

*

* @ingroup offer

*

* @ContentEntityType(

*   id = "offer",

*   label = @Translation("Offer"),

*   base_table = "offer",

*   data_table = "offer_field_data",

*   revision_table = "offer_revision",

*   revision_data_table = "offer_field_revision",

*   entity_keys = {

*     "id" = "id",

*     "uuid" = "uuid",

*     "label" = "title",

*     "revision" = "vid",

*     "status" = "status",

*     "published" = "status",

*     "uid" = "uid",

*     "owner" = "uid",

*   },

*   revision_metadata_keys = {

*     "revision_user" = "revision_uid",

*     "revision_created" = "revision_timestamp",

*     "revision_log_message" = "revision_log"

*   },

* )

*/

class Offer extends EditorialContentEntityBase {

public static function baseFieldDefinitions(EntityTypeInterface

$entity_type) {

$fields = parent::baseFieldDefinitions($entity_type); // provides id

and uuid fields

$fields['user_id'] = BaseFieldDefinition::create('entity_reference')

->setLabel(t('User'))

55



->setDescription(t('The user that created the offer.'))

->setSetting('target_type', 'user')

->setSetting('handler', 'default')

->setDisplayOptions('view', [

'label' => 'hidden',

'type' => 'author',

'weight' => 0,

])

->setDisplayOptions('form', [

'type' => 'entity_reference_autocomplete',

'weight' => 5,

'settings' => [

'match_operator' => 'CONTAINS',

'size' => '60',

'autocomplete_type' => 'tags',

'placeholder' => '',

],

])

->setDisplayConfigurable('form', TRUE)

->setDisplayConfigurable('view', TRUE);

$fields['title'] = BaseFieldDefinition::create('string')

->setLabel(t('Title'))

->setDescription(t('The title of the offer'))

->setSettings([

'max_length' => 150,

'text_processing' => 0,

])

->setDefaultValue('')

->setDisplayOptions('view', [

'label' => 'above',

'type' => 'string',

'weight' => -4,

])

->setDisplayOptions('form', [

'type' => 'string_textfield',

'weight' => -4,

])

->setDisplayConfigurable('form', TRUE)

->setDisplayConfigurable('view', TRUE);

$fields['message'] = BaseFieldDefinition::create('string_long')

->setLabel(t('Message'))

->setRequired(TRUE)

->setDisplayOptions('form', [

56



'type' => 'string_textarea',

'weight' => 4,

'settings' => [

'rows' => 12,

],

])

->setDisplayConfigurable('form', TRUE)

->setDisplayOptions('view', [

'type' => 'string',

'weight' => 0,

'label' => 'above',

])

->setDisplayConfigurable('view', TRUE);

$fields['status'] = BaseFieldDefinition::create('boolean')

->setLabel(t('Publishing status'))

->setDescription(t('A boolean indicating whether the Offer entity

is published.'))

->setDefaultValue(TRUE);

$fields['created'] = BaseFieldDefinition::create('created')

->setLabel(t('Created'))

->setDescription(t('The time that the entity was created.'));

$fields['changed'] = BaseFieldDefinition::create('changed')

->setLabel(t('Changed'))

->setDescription(t('The time that the entity was last edited.'));

return $fields;

}

}

After clearing cache our entity is created and two extra database tables were added:

57



Now let’s proceed with the CRUD operations. For every offer, we’d like to have an add,
edit and delete form. But first, we secure the access.

Securing access of our entities

👉 In this important section you will be taught how entity access works. At the end

58



of the section you will be able to create custom permissions for users and
translate it towards your entity. In the use case of this project it means that
authors can only see/edit/delete their own created entities.

There is something worth noticing about our entities. While the author of the entity
will be the owner (thanks to the PreCreate() function in our Offer entity) he has no
exclusive access towards viewing, or even editing and deleting the entity.

While drupal will typically provide separate “view”, “create”, “edit” and “delete” options
we will (for now) make this 1 single permission: administer own offers.

But we did not specify which access this means towards the entity itself. Let us
make sure that everyone with this access can create offers and more importantly
that they can only edit and delete their own offers and not those of others.

First, add a file modules/custom/offer/offer.permissions.yml with the following:

administer own offers:

title: 'Create/edit/delete own offers'

Second, add the following methods to the custom/offer/src/Offer class at the
bottom, these are two methods that are used quite a lot. The first one is to make
sure the user id gets stored as the author of the entity,  The other ones are typical
methods to quickly get info about the author of an entity:

/**

* {@inheritdoc}

*

* Makes the current user the owner of the entity

*/

public static function preCreate(EntityStorageInterface

$storage_controller, array &$values) {

parent::preCreate($storage_controller, $values);

$values += array(

'user_id' => \Drupal::currentUser()->id(),

);

}

/**

* {@inheritdoc}

*/

59



public function getOwner() {

return $this->get('user_id')->entity;

}

/**

* {@inheritdoc}

*/

public function getOwnerId() {

return $this->get('user_id')->target_id;

}

In the end we want full CRUD access for our authenticated users. When accessing an
entity in drupal, there are 4 operations that can be requested:

● view
● update
● edit
● delete

Add the following to the annotations of your entity inside the
modules/custom/offer/src/Entity/Offer.php file:

*   handlers = {

* "access" = "Drupal\offer\OfferAccessControlHandler",

*   }

This file will handle access towards our entity. Add a file called
OfferAccessControlHandler.php inside modules/custom/offer/src:

<?php

namespace Drupal\offer;

use Drupal\Core\Access\AccessResult;

use Drupal\Core\Entity\EntityAccessControlHandler;

use Drupal\Core\Entity\EntityInterface;

use Drupal\Core\Session\AccountInterface;

/**

* Access controller for the offer entity. Controls create/edit/delete

access for entity and fields.

*

* @see \Drupal\offer\Entity\Offer.

60

https://www.drupal.org/docs/8/api/entity-api/structure-of-an-entity-annotation


*/

class OfferAccessControlHandler extends EntityAccessControlHandler {

/**

* {@inheritdoc}

*

* Link the activities to the permissions. checkAccess is called with

the

* $operation as defined in the routing.yml file.

*/

protected function checkAccess(EntityInterface $entity, $operation,

AccountInterface $account) {

$access = AccessResult::forbidden();

switch ($operation) {

case 'view':

if ($account->hasPermission('administer own offers')) {

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

}

break;

case 'update': // Shows the edit buttons in operations

if ($account->hasPermission('administer own offers')) {

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

}

break;

case 'edit': // Lets me in on the edit-page of the entity

if ($account->hasPermission('administer own offers')) {

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

}

break;

case 'delete': // Shows the delete buttons + access to delete this

entity

if ($account->hasPermission('administer own offers')) {

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

}

break;

}

return $access;

}

61



/**

* {@inheritdoc}

*

* Separate from the checkAccess because the entity does not yet exist,

it

* will be created during the 'add' process.

*/

protected function checkCreateAccess(AccountInterface $account, array

$context, $entity_bundle = NULL) {

return AccessResult::allowedIfHasPermission($account, 'administer own

offers');

}

}

?>

This access controller gives us a variety of power towards our entity. We now have full
control in code on who can access different modes of our entity.

If you take a closer look, it is here that we integrate our permission (administer own
offers) with our view/edit/update/delete access. As an extra we add a check to make
sure there is only access to own entities.

💻 Add the newly created “administer own offers” permission to all authenticated
users via admin/people/permissions.

In a later stage of the software, we can create different user roles for which entire
access to the CRUD section can be granted with one click.

62



With our entity access completely nailed, we are about to use these access checks in
our routing and crud forms. Let’s move on to the next chapter!

Adding the create/edit/delete forms (CRUD)

👉 This section highlights the entity CRUD (create, read, edit, delete) process. At the
end you will have learnt the ins and outs of how to show a user an entity form
for creation, editing and deleting of a custom entity.

For our CRUD operations, the system needs to know where to put them. Let’s update
our modules/custom/offer/src/Entity/offer.php once again by adding the forms and
links:

*   handlers = {

* "access" = "Drupal\offer\OfferAccessControlHandler",

* "form" = {

* "add" = "Drupal\offer\Form\OfferForm",

* "edit" = "Drupal\offer\Form\OfferForm",

* "delete" = "Drupal\offer\Form\OfferDeleteForm",

*     },

*   },

*   links = {

* "canonical" = "/offers/{offer}",

* "delete-form" = "/offer/{offer}/delete",

* "edit-form" = "/offer/{offer}/edit",

* "create" = "/offer/create",

*   },

You may understand what we’re adding here. The links are the routes we want to use
for CRUD operations on our offer entity. Inside the handlers directory we placed the
add/edit and delete form statements.

These routes to not exist yet, so we define them in
modules/custom/offer/offer.routing.yml

offer.add:

path: '/offers/create'

defaults:

_entity_form: offer.add

_title: 'Add offer'

requirements:

63

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete


_entity_create_access: 'offer'

entity.offer.edit_form:

path: '/offers/{offer}/edit'

defaults:

_entity_form: offer.edit

_title: 'Edit offer'

requirements:

_entity_access: 'offer.edit'

entity.offer.delete_form:

path: '/offers/{offer}/delete'

defaults:

_entity_form: offer.delete

_title: 'Delete offer'

requirements:

_entity_access: 'offer.delete'

entity.offer.canonical:

path: '/offer/{offer}'

defaults:

_entity_view: 'offer'

_title: 'Offer'

requirements:

_entity_access: 'offer.view'

Check the _entity_access parameters. These will check the access conditions inside
OfferAccessControlHandler (checkAccess and checkCreateAccess). By this, we
control exactly who can access the /offers/create form for example.

Now we’ll add a generic form for adding and editing. It inherits from
ContentEntityForm: custom/offer/src/Form/OfferForm.php:

<?php

/**

* @file

* Contains Drupal\offer\Form\OfferForm.

*/

namespace Drupal\offer\Form;

use Drupal\Core\Entity\ContentEntityForm;

use Drupal\Core\Form\FormStateInterface;

64



/**

* Form controller for the offer entity edit forms.

*

* @ingroup content_entity_example

*/

class OfferForm extends ContentEntityForm {

/**

* {@inheritdoc}

*/

public function buildForm(array $form, FormStateInterface $form_state)

{

/* @var $entity \Drupal\offer\Entity\Offer */

$form = parent::buildForm($form, $form_state);

return $form;

}

/**

* {@inheritdoc}

*/

public function save(array $form, FormStateInterface $form_state) {

// Redirect to offer list after save.

$form_state->setRedirect('entity.offer.collection');

$entity = $this->getEntity();

$entity->save();

}

}

Clear cache and head to /offers/create. There it is! We’ve gotten ourselves access to
the create and edit mode of this entity.

65



💻 If you get an “Access denied”, make sure authenticated users have permission
to ‘administer own offers’ via admin/people/permissions.

Saving an entity will not work at the moment. We get this error:

This is not a readable error when developing. Add this to your settings.php:

66



$config['system.logging']['error_level'] = 'verbose';

Refresh the page to see the error:

This tells us the page we redirect to after saving does not exist yet, We will fix
this in the views integration chapter.

At /offers/1/edit you should see your created entity in an edit form with your
submitted values filled in.

Apart from the overview page, a missing step towards full CRUD operations is the
delete form. We’ve already added the definition in our entity and routing, so now add
custom/offer/src/Form/OfferDeleteForm.php:

<?php

/**

* @file

* Contains \Drupal\offer\Form\OfferDeleteForm.

*/

namespace Drupal\offer\Form;

use Drupal\Core\Entity\ContentEntityConfirmFormBase;

use Drupal\Core\Form\FormStateInterface;

use Drupal\Core\Url;

/**

* Provides a form for deleting a content_entity_example entity.

*

* @ingroup offer

*/

class OfferDeleteForm extends ContentEntityConfirmFormBase {

/**

* {@inheritdoc}

67



*/

public function getQuestion() {

return $this->t('Are you sure you want to delete %name?',

array('%name' => $this->entity->label()));

}

/**

* {@inheritdoc}

*

* If the delete command is canceled, return to the offer.

*/

public function getCancelUrl() {

return Url::fromRoute('entity.offer.edit_form', ['offer' =>

$this->entity->id()]);

}

/**

* {@inheritdoc}

*/

public function getConfirmText() {

return $this->t('Delete');

}

/**

* {@inheritdoc}

*

* Delete the entity

*/

public function submitForm(array &$form, FormStateInterface

$form_state) {

$entity = $this->getEntity();

$entity->delete();

$this->logger('offer')->notice('deleted %title.',

array(

'%title' => $this->entity->label(),

));

// Redirect to offer list after delete.

$form_state->setRedirect('entity.offer.collection');

}

}

68



We are now able to delete an offer with a confirmation form before deleting. If you
tried creating an entity via the create form, you will now be able to visit
offers/1/delete.

We get an error after deletion because again, we get redirected towards the
collection of this entity:

$form_state->setRedirect('entity.offer.collection');

The error happens because the entity has not defined a collection (“listing”) class
yet. Typically, drupal offers an entity listing functionality for entities that get defined
in a list builder. Personally I think there is a better option because the ux and
flexibility are not that great. Also, there is a much more powerful option for this. We
will use the core Views module to offer a listing of our entities in the next chapter to
fix the error and finalize our CRUD operations.

Views integration of our custom entity to add a listing

👉 In this section we go over the possibility of adding views support for custom
entities. At the end you will be able to create powerful listings with views in the
same way you can do with nodes.

bash-5.0$ drush en views views_ui
[success] Successfully enabled: views, views_ui

69

https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Entity%21EntityListBuilder.php/class/EntityListBuilder/8.2.x
https://drupal.org/project/views


💻 Enable the views and views_ui module.

bash$ drush en views views_ui

[success] Successfully enabled: views, views_ui

First, to ensure that our entities have integration with views we have to add an
annotation with a link to the class.

In our custom/offer/src/Entity/Offer.php we add the views integration in the
annotations like this:

*   handlers = {

* "access" = "Drupal\offer\OfferAccessControlHandler",

* "views_data" = "Drupal\offer\OfferViewsData",

* "form" = {

* "add" = "Drupal\offer\Form\OfferForm",

* "edit" = "Drupal\offer\Form\OfferForm",

* "delete" = "Drupal\offer\Form\OfferDeleteForm",

*     },

*   },

To the modules/custom/offer/src/OfferViewsData.php, add this code:

<?php

namespace Drupal\offer;

use Drupal\views\EntityViewsData;

/**

* Provides views data for Offer entities.

*

*/

class OfferViewsData extends EntityViewsData {

/**

* Returns the Views data for the entity.

*/

public function getViewsData() {

$data = parent::getViewsData();

70



return $data;

}

}

Clear caches and head to admin/structure/views/add. When adding a new view, we
can now select “offer” as an entity to make a listing. This is pretty powerful, we get
full access to all of views finest functionality:

● Quickly make (advanced) listings
● Search
● Filtering
● Pagination
● Bulk operations
● …

But for now, we make an easy listing of our entities.

71



We add title, edit and a delete button as fields.

72



Important

Views is an extremely powerful tool. But think about it as a querying interface and a
tool for building easy and advanced entity listings. If your entities are secured like we
did with the offers, this does not mean they can not appear in views listings for other
users.

For that, always make sure you only show entities that have the logged in user as
author (Advanced > Contextual filter > User > Provide default value > User id from logged
in user). Of course, if you make the users author of their own entities like we are doing.

Also, check for permissions on the listing. In this case, we gave permission to users
that have “administer own offers“ (Create/edit/delete own offers) permission.

We’ve got our listing! We will tweak it further in a later chapter, but this is the
functionality we want at this moment.

73



💻 Time to get our CRUD operations complete by adding our entity listing to as the
collection of this entity. To offer/offer.routing.yml, add:

entity.offer.collection:

path: '/offers'

requirements:

_permission: 'administer own offers'

Test by adding, editing and deleting an offer. But rebuild caches first!

Export your configuration now

drush cex -y

and look for views.view.offers.yml. Copy the file to
modules/custom/offer/config/install.
This will keep our view inside our offers module and on next installation, the
view will be installed.

To our offer.info.yml file, we add:

dependencies:

- drupal:views

We’ll disable the module and reïnstall to see if it all works. Delete our entities
first like this:

bash$ drush entity:delete offer

[success] Deleted offer entity Ids: 1, 2

bash$ drush pmu offer

[success] Successfully uninstalled: offer

bash$ drush en offer

[success] Successfully enabled: offer

We have now full CRUD operations up and working in a generic and reusable module.

To make our lives a bit more comfortable, we add a menu link to the toolbar for
direct access. To custom/modules/offer/offer.links.menu.yml add:

74



offer.toolbar.my_offers:

title: 'My offers'

route_name: entity.offer.collection

parent: system.admin

weight: 99

This shows a link to the “My offers” overview page in the toolbar.

💻 Give authenticated users access to the toolbar first (via permissions), but note
that this is only for the development phase of the platform.

Next, this listing needs a big “Add an offer” button. Drupal has a system for this. Add
offer.links.action.yml and add:

offer.add_offer:

route_name: offer.add

title: 'Add an offer'

appears_on:

- entity.offer.collection

Clear caches and we now have our action button:

Getting up-to-speed: making the entity fieldable

👉 This section is about making your custom entity fieldable. At the end you will be
able to connect you custom entity with the power of the drupal user-interface
for adding fields, form modes and view modes. At the end you will be able to
add fields to your entity via the UI and manage the display. The created fields will

75



be exportable as configuration.

As told earlier, the entity data structure in drupal made the software famous. We can
extend our custom entity with this dynamic and extremely feature-rich UI.

Advantages of working this way are:
● Definition and naming can be done in the UI. You get access to powerful

fields with features as autocomplete entity reference, multifield, private files,
...

● Create view modes of the entity via the UI (a teaser and full entity view for
example) and set the display of each field

● Manage form modes (configure the appearance of the add and edit form via
the UI)

With that UI, we can add the desired fields to our entity by just clicking:
● Images
● A PDF upload
● Description
● Short text
● Tags
● … There are hundreds of modules available that define all sorts of fields!

Note that we already have a description defined in our Offer.php entity structure.
We’re about to delete it. We’ll delete our entities first and uninstall again:

bash$ drush entity:delete offer

[success] Deleted offer entity Ids: 1, 2

bash$ drush pmu offer

[success] Successfully uninstalled: offer

Now remove the $fields['message'] from the BaseFieldDefinitions in your Offer.php
entity file.

💻 make sure the core field_ui module is enabled.

bash$ drush en field_ui

[success] Successfully enabled: field_ui

76

https://www.drupal.org/project/project_module?f%5B0%5D=&f%5B1%5D=&f%5B2%5D=im_vid_3%3A20224&f%5B3%5D=sm_core_compatibility%3A9&f%5B4%5D=sm_field_project_type%3Afull&f%5B5%5D=&f%5B6%5D=&text=&solrsort=iss_project_release_usage+desc&op=Search


To the annotations in modules/custom/offer/src/Entity/Offer.php add a
fiel_ui_base_route key:

* "create" = "/offer/c...

*   },

*   field_ui_base_route = "entity.offer.settings",

*   revision_me….

The route entity.offer.settings will be the landing page of the ui settings of our entity.
If we configure this route to /admin/structure/offer, the following routes will become
available automatically:

● admin/structure/offer/fields (fields ui)
● admin/structure/offer/form-display (add form display)
● admin/structure/offer/display (view modes display management)

The settings landing page is usually a settings form. While we will not use additional
settings in this form, let’s keep the good practice and add this route as a form.

To modules/custom/offer/routing.yml we add:

entity.offer.settings:

path: 'admin/structure/offer'

defaults:

_form: '\Drupal\offer\Form\OfferSettingsForm'

_title: 'Offer settings'

requirements:

_role: 'administer own offers'

To modules/custom/offer/src/Form/OfferSettingsForm:

<?php

/**

* @file

* Contains \Drupal\offer\Form\OfferSettingsForm.

*/

namespace Drupal\offer\Form;

use Drupal\Core\Form\FormBase;

use Drupal\Core\Form\FormStateInterface;

77



/**

* Class OfferSettingsForm.

*

* @package Drupal\offer\Form

*

* @ingroup offer

*/

class OfferSettingsForm extends FormBase {

/**

* Returns a unique string identifying the form.

*

* @return string

*   The unique string identifying the form.

*/

public function getFormId() {

return 'offer_settings';

}

/**

* {@inheritdoc}

*/

public function submitForm(array &$form, FormStateInterface

$form_state) {

// Empty implementation of the abstract submit class.

}

/**

* {@inheritdoc}

*/

public function buildForm(array $form, FormStateInterface $form_state)

{

$form['offer_settings']['#markup'] = 'Settings form for offer. We

don\'t need additional entity settings. Manage field settings with the

tabs above.';

return $form;

}

}

We want to do this clean, with adding a link on the admin/structure page to our offer
settings form. With the webprofiler toolbar (see developer tools) we check the route
name for admin/structure.

78



💻 Enable the weprofiler module, which is part of the devel module and re-nable the
offer module.

bash$ drush en webprofiler offer

[success] Successfully enabled: webprofiler, offer

We discovered the route name is system.admin.structure. We’ll use it next as a parent
for our settings link.

Next, we add a file named custom/offer/offer.links.menu.yml:

offer.admin.structure.settings:

title: Offer settings

description: 'Configure Offer entity'

route_name:  entity.offer.settings

parent: system.admin_structure

💻 Always clear the caches after adding/editing new routes, menu links or other
YAML config!

79



The link appeared in our structure tree, and the build-up is the same way as “content
types”, which we know from the Node entity.

💻 If you still see “Content types”, the time is here to uninstall the Node entity type:

bash$ drush pmu node

[success] Successfully uninstalled: node

If you export config, this will delete some default settings from the node entity
type as well.

80



Finally, we add a “local tasks”-link to the settings page. This will activate the tasks
tabs above to get the structure that is known when administering nodes. By this I
mean the “Edit”, “Manage fields”, “Manage form display” and “Manage display” tabs.
To modules/custom/offer/offer.links.task.yml, add:

# Activates the tabs on the entity admin pages

(/admin/structure/offer)

offer.settings_tab:

route_name: entity.offer.settings

title: 'Settings'

base_route: entity.offer.settings

81



We re-enable the module and see the desired entity ui extensions on
admin/structure/offer.

Cool! Time to get up to speed by adding some fields.

Media field with library

👉 This section shows how to add a media field to your entity, using the media
library, and to only show media items you have uploaded.

💻 Enable the core media module as well as the core media library module:

bash$ drush en media media_library

The following module(s) will be enabled: media, media_libraty,

image

Do you want to continue? (yes/no) [yes]:

> yes

[success] Successfully enabled: media, media_library, image

A real advantage of drupal is that time-consuming development practices like file
uploads and managing a file library are easily installed with some clicks.

82



💻 Define a media type at Structure > Media types > Add media Type and
choose this:

Name: Image
Media source: Image

After saving the media type, you’ll discover ‘Image’ is a bundle of entity media. It has
fields which are preconfigured at admin/structure/media/manage/image/fields. In
this case, the entity has an image field that is shipped with the media source: image.

We tweak the image field at
/admin/structure/media/manage/image/fields/media.image.field_media_image
with some settings, so resizing is automatically done when a file is too large.

83



84



💻 We’ll add a media field for our offer at /admin/structure/offer/fields > add
field

Add a new field (Media)
Add a label (Image)
Help text (Market your offer with a tremendous image!)
Reference type (Default)
Media Type (Image)
(save and continue)
Allowed number of values (1)
Required field (yes)

An additional step is giving our authenticated users the permissions to
add these media items. Because the core media module works like our
offer entity, it has its own permissions. Set them to make sure users can
create and edit media entities:

Save and head back to our offer create form (/offers/create) we now have a widget
with a media library that works for us out-of-the box!

85



💻 You’ll notice that when adding media items to your library, also media items of
others are visible. This is because the media library is using a view to display the
content. At /admin/structure/views/view/media_library add the same
contextual filter as we did with the offers view: contextual filters >
media:authored by > provide default value > User ID from logged in user.

Important! Do this for every display mode:
/admin/structure/views/view/media_library/edit/page
/admin/structure/views/view/media_library/edit/widget
/admin/structure/views/view/media_library/edit/widget_table

This will only make sure we don’t see media items from other users inside our library.
Media entities are not secured further in this course. If you would like more security,
you could overwrite the Media module AccesControlHandler() by adding a
offer_entity_access() hook to your modules/custom/offer/offer.module. You could
also use private files for uploads.

But we’ll leave this public, as this is not a feature that is needed.

86



Adding fields to the custom entity via the UI

👉 In this section, the author shows how to add a textarea with a rich-text editor
(CKEditor) so that users have a few options to optimize their content. Further, a
price field and an options field.

Drupal ships with a core CKEditor module, which is the industry standard for rich text
editing. We want to add a description field to our entity.

💻 Enable the ckeditor module:

bash$ drush en ckeditor -y

[success] Successfully enabled: ckeditor

For authenticated users to be able to use the editor, go to
/admin/config/content/formats > add text format:
Name (Html)
Roles (Authenticated users)
Text editor (CKeditor)

87



Now choose the rich text buttons you’d like to enable and save.

We’ll add a description field for our offer at /admin/structure/offer/fields > add field

Add a new field (Text, formatted, long)
Add a label (Description)
Description (Be as complete as possible about your offer)

Next, we want the users to choose between a minimum price or without a minimum
price.

💻 We enable the core options module for this:

bash$ drush en options

[success] Successfully enabled: options

Add a new field (Text, list)
Add a label (Offer type)
Allowed values list:

88



with_minimum|Set minimum price
no_minimum|No minimum price

Description (Set the type of offer)

If a user wants to ask for a minimum price, he needs a field to enter the price. We’ll
add a last field for this:

Add a new field (Number, decimal)
Add a label (Price)
Add a description (Your minimum price (in $))
Minimum (0)
Suffix ($)

89



The fields appear automatically in the entity creation form at /offers/create. Via
/admin/structure/offer/form-display we can manipulate order and display settings.

90



We have now added all fields to our offer entities. We learned that besides fields
defined in code, there is also a way to add them via the UI. For the first time, this will
create extra configuration via configuration management for our offer entity. Export it
with drush to see which files are created.

91



Adding workflows and moderation to custom entities

👉 This section teaches you the power of using workflows. We extend our custom
entity with a state of Draft, Published and Expired. Based on these states, the
published state (yes/no) is set..

After years of building, the workflows and content moderation modules were added
to core. These enormous powerful modules give us the chance to add workflow
states like “draft”, “review” and “published” to our entities. Additionally we can give
permissions to the different states or add actions when states change.

💻 We enable the core options module for this:

bash$ drush en workflows, content_moderation

[success] Successfully enabled: workflows,

content_moderation

In our project, we want to add the following moderation states:

92



Moderation state Is published? Description

Draft No only authors can view their own drafts

Published Yes accessible for everyone, bidding enabled

Expired Yes visible for everyone, bidding disabled

Further, we want to use Workflow for the following transitions:
● When an offer goes to an expired status, we want to send an email to all users

who have made a bid on the offer.

Via admin/config/workflow/workflows we add a workflow called ‘Offer workflow’.

Label (Offer workflow)
Content moderation (Worfklow type)

Under the states tab, draft and published are default shipped with the content
moderation module. We need to add ‘Expired’. Click ‘Add a new state’:

93



Under the transitions tab, we see “Create new draft” and “Publish” are already
enabled. We add “Make expired” by clicking the “Add a new transition” button.

💻 Use the machine name “expired” here. We will need this for our events later.

Finally, in the this workflow applies to - tab, select the offer entity. The default
moderation state should be set to Draft.

Via /admin/people/permissions set the permission for transitions to authenticated
users:

94



It will activate a transition button on the edit forms:

In this chapter we learned to add workflow and transition to our entity. Via the the UI
we can set up these pretty advanced workflows. In the rest of this course we’ll
discover what we can do with them in terms of access, visibility, etc.

Change entity access based on workflow states

👉 This short section aims to change the existing access on our custom entity to
an access based on workflow state of the entity.

At this moment, offer entities are only viewable for the owner (creator) of the offer.
Of course we want our offers to be visible for everyone once it is in a published state.

We head back over to custom/offer/src/Entity/OfferAccessControlHandler.php and
change the ‘view’ state from:

95



case 'view':

if ($account->hasPermission('administer own offers')) {

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

}

break;

to:

case 'view':

// owners of the offer can always view

if ($account->id() == $entity->getOwnerId()) {

$access =

AccessResult::allowed()->cachePerUser()->addCacheableDependency($entity)

;

} else {

// Other users only when published or expired

$allowed = ['published', 'expired'];

$access =

AccessResult::allowedIf(in_array($entity->get('moderation_state')->getSt

ring(), $allowed))->addCacheableDependency($entity);

}

break;

This will make my offer visible, even for anonymous visitors of our platform if the
offer is in the published or expired state. With a second check, we ensure authors
(owners) can see their offers anytime (in all states). This way, we secured the draft
(unpublished) state for outside viewers.

While permissions in drupal are often based on a permission level via
admin/permission, we extended it now with ownership and workflow of an entity. This
allows us very specific and advanced control.

Adding views plugins: custom fields and operation links

👉 This section is meant to teach you how to add custom fields to your views. At
the end you will be able to show custom output in views listings like tables.
More specifically you will master how to add your own operation links in a
dropbutton to add a direct publishing button, for example.

96



Our entity already has views access defined. We can now extend
custom/offer/src/OfferViewsData.php with custom fields. First we want to add a
nice badge to the table to show the moderation states:

<?php

namespace Drupal\offer;

use Drupal\views\EntityViewsData;

/**

* Provides views data for Offer entities.

*

*/

class OfferViewsData extends EntityViewsData {

/**

* Returns the Views data for the entity.

*/

public function getViewsData() {

$data = parent::getViewsData();

$data['offer']['offer_entity_moderation_state_views_field'] = [

'title' => t('Moderation status'),

'field' => array(

'title' => t('Moderation status'),

'help' => t('Shows the state of the offer entity.'),

'id' => 'offer_entity_moderation_state_views_field',

),

];

return $data;

}

}

For this to work, we need to add a views plugin. Add a file to
custom/offer/src/Plugin/views/field/OfferEntityModerationState.php. This provides
us many functions, for which we won’t go into detail. But take a look at what we did
at the render() function. There we load the value of the moderation state and return
it.

<?php

97



namespace Drupal\offer\Plugin\views\field;

use Drupal\views\Plugin\views\field\FieldPluginBase;

use Drupal\views\ResultRow;

use Drupal\views\Plugin\views\display\DisplayPluginBase;

use Drupal\views\ViewExecutable;

/**

* A handler to provide a field that is completely custom by the

administrator.

*

* @ingroup views_field_handlers

*

* @ViewsField("offer_entity_moderation_state_views_field")

*/

class OfferEntityModerationState extends FieldPluginBase {

/**

* The current display.

*

* @var string

*   The current display of the view.

*/

protected $currentDisplay;

/**

* {@inheritdoc}

*/

public function init(ViewExecutable $view, DisplayPluginBase

$display, array &$options = NULL) {

parent::init($view, $display, $options);

$this->currentDisplay = $view->current_display;

}

/**

* {@inheritdoc}

*/

public function usesGroupBy() {

return FALSE;

}

98



/**

* {@inheritdoc}

*/

public function query() {

// Do nothing -- to override the parent query.

}

/**

* {@inheritdoc}

*/

protected function defineOptions() {

$options = parent::defineOptions();

$options['hide_alter_empty'] = ['default' => FALSE];

return $options;

}

/**

* {@inheritdoc}

*/

public function render(ResultRow $values) {

$entity = $values->_entity;

$state = $entity->get('moderation_state')->getString();

return $state;

}

}

💻 Clear caches and add the moderation state to the offer views table. Also, make
sure you remove the “Published status = TRUE”-filter from the views filters so
draft offers also appear in the listing.

99



Now our listing shows the moderation status as well at /offers:

Let’s move on with a second field. What I always advise people when doing custom
applications with drupal, is to use the power of the core render arrays. There are so
many core things you can render, like dropdowns, tables, links, …

100

https://www.drupal.org/docs/drupal-apis/render-api/render-arrays#:~:text=%22Render%20Arrays%22%20or%20%22Renderable,integrated%20with%20the%20Theme%20API.


A render array is an associative array which conforms to the standards and data
structures used in Drupal's Render API. The Render API is also integrated with the
Theme API.

The advantage of using them is they stay consistent when upgrading. Plus when you
change your layout with a theme from the community, you are sure they will look nice
as well.

We want to make another custom views plugin field that shows a dropbutton for
editing and deleting. This makes our table a bit more compact. When an offer  is still
in draft mode, we also want a “Publish” option added to the dropbutton. We start by
extending the custom/offer/src/OfferViewsData.php getViewsData() function with a
new field:

$data['offer']['offer_dynamic_operation_links'] = [

'title' => t('Dynamic operations'),

'field' => array(

'title' => t('Dynamic operations'),

'help' => t('Shows a dropbutton with dynamic operations for

offers.'),

'id' => 'offer_dynamic_operation_links',

),

];

After this, we need to add a new views plugin:
custom/offer/src/Plugin/views/field/OfferDynamicOperationLinks.php.

<?php

namespace Drupal\offer\Plugin\views\field;

use Drupal\views\Plugin\views\field\FieldPluginBase;

use Drupal\views\ResultRow;

use Drupal\views\Plugin\views\display\DisplayPluginBase;

use Drupal\views\ViewExecutable;

use Drupal\core\Url;

/**

* A handler to provide a field that is completely custom by the

administrator.

101

https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Render!theme.api.php/group/theme_render/8


*

* @ingroup views_field_handlers

*

* @ViewsField("offer_dynamic_operation_links")

*/

class OfferDynamicOperationLinks extends FieldPluginBase

{

/**

* The current display.

*

* @var string

*   The current display of the view.

*/

protected $currentDisplay;

/**

* {@inheritdoc}

*/

public function init(ViewExecutable $view, DisplayPluginBase $display,

array &$options = NULL)

{

parent::init($view, $display, $options);

$this->currentDisplay = $view->current_display;

}

/**

* {@inheritdoc}

*/

public function usesGroupBy()

{

return FALSE;

}

/**

* {@inheritdoc}

*/

public function query()

{

// Do nothing -- to override the parent query.

}

/**

* {@inheritdoc}

*/

102



protected function defineOptions()

{

$options = parent::defineOptions();

$options['hide_alter_empty'] = ['default' => FALSE];

return $options;

}

/**

* {@inheritdoc}

*/

public function render(ResultRow $values)

{

$entity = $values->_entity;

$state = $entity->get('moderation_state')->getString();

switch ($state) {

case 'draft':

$operations['publish'] = [

'title' => $this->t('Publish'),

'url' => Url::fromRoute('entity.offer.edit_form', ['offer' =>

$entity->id()])

];

break;

}

$operations['edit'] = [

'title' => $this->t('Edit'),

'url' => Url::fromRoute('entity.offer.edit_form', ['offer' =>

$entity->id()])

];

$operations['delete'] = [

'title' => $this->t('Delete'),

'url' => Url::fromRoute('entity.offer.delete_form', ['offer' =>

$entity->id()])

];

$dropbutton = [

'#type' => 'dropbutton',

'#links' => $operations

];

return render($dropbutton);

}

103



}

💻 Now we add the field to the view. It is now available at
admin/structure/views/view/offers:

After we save, you see we’ve added dynamic dropdown buttons based on the entity
state. When an entity has the ‘draft’ state, a publish button is visible. At this moment,
the ‘Publish’ button is just linked to the edit page. In the next chapter we’ll add a
custom controller in order for this to work.

104



Adding a

💻 Now all our actions are in the Actions column, we can delete the Edit and Delete
column in views as well.

custom controller for direct publishing

👉 This section focuses on adding a custom controller. At the end you will master
the possibilities of routing in drupal, know how parameter upcasting works and
how to validate the slug.

The ‘publish’ button is pointed to the edit page. We would like to provide a direct
publish controller, with redirect to the published offer.

First, to custom/offer/offer.routing.yml we add:

offer.publish:

path: '/offers/publish/{offer}'

defaults:

_controller:

'\Drupal\offer\Controller\OfferPublishController::Render'

105



_title_callback: 'Publish offer'

requirements:

_custom_access:

'\Drupal\offer\Controller\OfferPublishController::Access'

options:

parameters:

offer:

type: entity:offer

Let’s go over the different keys of the snippet:

Key Explanation

offer.publish This is the uri that gets registered in drupal for this page.

path The url of this page. We add a slug with {id} to identify the id of
the offer we want to publish.

_controller The class that gets called when visiting the page.

_title callback The title of the page. We can add a string or a method inside the
class.

id We add a validator to the id slug. By saying ‘ \d+’, we mean that
id has to be numeric.

_custom_access That method can then check access and return an access result
object.
The advantage of this is that menu links that point to the
controller can automatically check access and decide to hide
the link when necessary.

parameters:
offer:
type: entity:offer

A route can have route parameters. In this case our slug is
{offer}. We tell the system these are of type entity:offer. This is
called route parameter upcasting.This way our routing is
automatically secured against wrong, non-numerical calls etc.
A bonus is that we can use the entity directly in our Render()
and Access() functions like this:
Render(Offer $offer) {}

Add a controller to custom/offer/src/Controller/OfferPublishController

<?php

106



namespace Drupal\offer\Controller;

use Drupal\Core\Access\AccessResult;

use Drupal\Core\Controller\ControllerBase;

use Drupal\Core\Entity\RevisionLogInterface;

use Drupal\Core\Url;

use Drupal\offer\Entity\Offer;

use Symfony\Component\HttpFoundation\RedirectResponse;

/**

* Class OfferPublishController

*/

class OfferPublishController extends ControllerBase {

public function Render(Offer $offer) {

// We set the moderation to published

$new_state = 'published';

$offer->set('moderation_state', $new_state);

if ($offer instanceof RevisionLogInterface) {

$offer->setRevisionLogMessage('Changed moderation state to

Published.');

$offer->setRevisionUserId($this->currentUser()->id());

}

$offer->save();

$publishedOffer = Url::fromRoute('entity.offer.canonical',

['offer' => $offer->id()]);

\Drupal::messenger()->addMessage($offer->label() . ' is

published.');

return new RedirectResponse($publishedOffer->toString());

}

public function Access(Offer $offer) {

// Securing no one is trying to publish other people's offers.

$access = AccessResult::allowedIf($offer->access('view'));

// Make sure state is draft

107



if($offer->get('moderation_state')->getString() != 'draft') {

$access = AccessResult::forbidden();

}

return $access;

}

}

In the Render() method, we programmatically set the moderation state to published
and redirect to the collection overview. Thanks to the Access() method, we secure
the page for abuse: we do an $offer->access() check that verifies the visitor (it goes
over the OfferAccessControlHandler.php) is the owner and we check if the
moderation state is draft.

💻 In the previous chapter we added a publish button in the view that was
linked to the edit page. Link it to the publish page at
custom/offer/src/Plugin/views/field/OfferDynamicOperationLinks.php
on line 71:

switch ($state) {

case 'draft':

$operations['publish'] = [

'title' => $this->t('Publish'),

'url' => Url::fromRoute('offer.publish', ['offer'

=> $entity->id()])

];

break;

}

Clear caches and publish a draft offer.

108



Building an overview page

👉 In this section you will be taught how to make entity listings with views using
view modes.

We need an overview page where all the offers are viewable for users that want to
bid. The core views module comes back into play.

But first, we want a teaser view mode for the offer entities. At
/admin/structure/display-modes/view/add/offer. we add a new one named teaser.

109

https://www.drupal.org/node/1577752


💻 Also, add a display mode called ‘full’, for later in the course.

Make sure you activate the view modes via /admin/structure/offer/display:

110



At /admin/structure/offer/display/teaser we add the fields we want to use in our
twig files for the teasers of offer entities. For the teaser, we need title, offer type,
price, and image.

Time to build our view. Go to admin/structure/views/add to add a view named “Offer
overview”

111



At the fields section, add “rendered entity”, choos display mode teaser.

112



We’ll take a look at what we have now:

113



(

There is a bit of a problem here. We only want the ones with moderation state
‘published’ in the overview. Not the ones with ‘expired’ status. For a solution for this,
head on to the next chapter.

Adding a custom views filter based on moderation state

👉 This section spotlights custom views filters. At the end you will be able to use a
self-defined filter in the user interface of views. More specifically an example
with a filter on certain moderation state (filter only on offers with moderation
state “Published”) is elaborated.

114



Moderation state is not an available filter in drupal core (yet?). But this is a good
opportunity to learn how to add a custom filter in views, based on a state of the
entity.

We extend our viewsData() function inside custom/offer/src/OfferViewsData.php
with a new field, this time a filter:

$data['offer']['offer_moderation_state_filter'] = [

'title' => t('Moderation state'),

'filter' => [

'title' => t('Moderation state'),

'help' => 'Filters on moderation state',

'field' => 'id',

'id' => 'offer_moderation_state_filter',

]

];

We add a file to custom/offer/src/Plugin/views/filter named
ModerationStateFilter.php:

<?php

namespace Drupal\offer\Plugin\views\filter;

use Drupal\Core\Database\Connection;

use Drupal\views\Plugin\views\filter\InOperator;

use Drupal\views\ViewExecutable;

use Drupal\views\Plugin\views\display\DisplayPluginBase;

use Symfony\Component\DependencyInjection\ContainerInterface;

/**

* Filter class which filters by the available ModerationStates.

*

* @ViewsFilter("offer_moderation_state_filter")

*/

class ModerationStateFilter extends InOperator {

/**

* @var \Drupal\Core\Database\Connection

*/

protected $database;

115



/**

* Constructs a Bundle object.

*

* @param array $configuration

*   A configuration array containing information about the plugin

instance.

* @param string $plugin_id

*   The plugin_id for the plugin instance.

* @param mixed $plugin_definition

*   The plugin implementation definition.

*/

public function __construct(array $configuration, $plugin_id,

$plugin_definition, Connection $database) {

parent::__construct($configuration, $plugin_id, $plugin_definition);

$this->database = $database;

}

/**

* {@inheritdoc}

*/

public static function create(ContainerInterface $container, array

$configuration, $plugin_id, $plugin_definition) {

return new static(

$configuration,

$plugin_id,

$plugin_definition,

$container->get('database')

);

}

/**

* Override the query so that no filtering takes place if the user

doesn't

* select any options.

*/

public function query() {

// Get the selected value first

$selected = $this->value;

// If 'all' is selected, do not filter. This would mean all offers

if(!in_array('all', $selected)) {

$configuration = [

'table' => 'content_moderation_state_field_data',

116



'field' => 'content_entity_id',

'left_table' => 'offer',

'left_field' => 'id',

'operator' => '='

];

$join =

\Drupal::service('plugin.manager.views.join')->createInstance('standard'

, $configuration);

$this->query->addRelationship('content_moderation_state_field_data',

$join, 'offer');

$this->query->addWhere('AND',

'content_moderation_state_field_data.moderation_state', $selected,

'IN');

}

}

/**

* {@inheritdoc}

*/

public function init(ViewExecutable $view, DisplayPluginBase $display,

array &$options = NULL) {

parent::init($view, $display, $options);

$this->valueTitle = t('Moderation state');

$this->definition['options callback'] = [$this,

'getModerationStates'];

}

/**

* Generates the list of ModerationStates that can be used in the

filter.

*/

public function getModerationStates() {

$result = [

'draft' => 'Draft',

'published' => 'Published',

'expired' => 'Expired'

];

return $result;

}

}

117



Inside getModerationStates(), we define the search options. We could dynamically
get the available moderation states on an offer entity, but this would take us too far.
For the sake of example, we offer the options in an hard-coded array.

Inside query(), we add a relationship to the moderation table and left join it on the
offer id.

💻 Add the filter at /admin/structure/views/view/offer_overview.

Select ‘published’:

118



One last thing we need to to before saving the view is add a file to
custom/modules/offer/config/schema named offer.schema.yml:

views.filter.offer_moderation_state_filter:

type: views.filter.in_operator

label: 'Filter for moderation state'

Views plugins all need to have their own configuration schema in order for them to
work.

119



Clear caches, save the view and you’ll see it works! If you check ‘Show SQL query’ at
admin/structure/views/settings you can see the actual query views does:

SELECT offer.id AS id

FROM

{offer} offer

LEFT JOIN {content_moderation_state_field_data}

content_moderation_state_field_data ON offer.id =

content_moderation_state_field_data.content_entity_id

WHERE content_moderation_state_field_data.moderation_state IN

('published')

LIMIT 11 OFFSET 0

Before drupal 8, we always used the ‘Published’ status which is a built-in boolean for
being published or not. Here we use states.

An overview of the moderation states vs published status of our offers:

Moderation state Offer is published?

Draft No

Published Yes

Expired Yes

So while the expired offers are published, we do not show them in our view. On a
software level we want to keep our expired offers online, for SEO and archiving.
Users will not be able to place a bid on expired offers anymore.

Optimize the entity teaser with custom variables for twig

👉 In this chapter we will learn how to optimize rendered output of an entity. You
will see how we prepare variables for output with twig. For example, if an offer
has no bids yet, show a message. Or show the amount of bids the offer has so
far.

First, we prepare some extra variables we want to show in our teasers:

120



Variable name Description

promo Adds a teasing message ‘Be the first!’ if the
offer has no bids yet.

price Based on the type of offer, show the
minimum price

We can make the variables available by using the template_preprocess_offer() hook
in modules/custom/offer/offer.module:

use Drupal\Core\Render\Element; // on top of file

/**

* Prepares variables for templates.

* implements hook_preprocess_HOOK()

*/

function template_preprocess_offer(array &$variables) {

foreach (Element::children($variables['elements']) as $key) {

$variables['content'][$key] = $variables['elements'][$key];

}

$offer = $variables['elements']['#offer'];

// The full offer object

$variables['offer'] = $offer;

// The current price: minimum or highest bid if available

switch($offer->get('field_offer_type')->getString()) {

case 'with_minimum':

$variables['price'] = 'Start bidding at '.

$offer->get('field_price')->getString() . '$';

break;

case 'no_minimum';

$variables['price'] = 'Start bidding at 0$';

break;

}

// a promo badge (we'll change this later)

$variables['promo'] = 'Be the first!';

}

We add a teaser template file custom/offer/templates/offer--teaser.html.twig:

121



<a href="{{ path('entity.offer.canonical', {'offer': offer.id()})

}}" {{ attributes.addClass('offer-teaser') }}>

{% if promo %}<div class="badge">{{promo }}</div>{% endif %}

<div class="product-tumb">

{{ content.field_image }}

</div>

<div class="product-details">

<h4>{{ offer.label() }}</h4>

<p>{{ bid_amount }} bids</p>

<div class="product-bottom-details">

<div class="product-price">{{ price }}</div>

</div>

</div>

</a>

For drupal to be able to recognize this template, extend the offer_theme() hook inside
custom/offer/offer.module, we add the offer__teaser key. We also add the default
offer key, and a offer__full for the offer page which we will use later:

/**

* Provides a theme definition for custom content entity offer

* {@inheritdoc}

*/

function offer_theme($existing, $type, $theme, $path) {

return [

'offer' => [

'render element' => 'elements',

],

'offer__full' => [

'base hook' => 'offer',

],

'offer__teaser' => [

'base hook' => 'offer'

]

];

}

Clear caches and take a view. Drupal now recognizes the teaser file and shows the
correct values in the teasers.

122



Head to the next chapter to add some styling to them.

Adding css to views

👉 In this chapter we will learn how to add a libraries.yml file with css to be
included when rendering a specific view. At the end you will be able to include
styles where a certain view is loaded.

I would recommend including the theming in a custom theme, but sometimes it is
needed to have custom javascript or css in a module to target only specific
components.

Add a file custom/offer/offer.libraries.yml file to include a library for the overview
page:

offer_overview_page:

css:

theme:

css/overview.css: {}

123



To add the css only when the view is showed, we can use the following hook that we
add to our custom/offer/offer.module file:

use Drupal\views\ViewExecutable; // on top of file

/**

* Implements hook_views_pre_render().

*/

function offer_views_pre_render(ViewExecutable $view) {

if (isset($view) && ($view->storage->id() == 'offer_overview')) {

$view->element['#attached']['library'][] =

'offer/offer_overview_page';

}

}

We use hook_views_pre_render() to tell the system to always attach the extra library
whenever this view is rendered.

We add some css to offer/css/overview.css and our teasers are ready!

.offer-teaser {

width: 90%;

position: relative;

box-shadow: 0 2px 7px #dfdfdf;

margin: 50px 0;

background: #fafafa;

display:block;

}

.offer-teaser * {

text-underline:none;

}

.badge {

position: absolute;

left: 0;

top: 20px;

text-transform: uppercase;

font-size: 13px;

font-weight: 700;

124



background: #C48904;

color: #fff;

padding: 3px 10px;

}

.product-tumb {

display: flex;

align-items: center;

justify-content: center;

height: auto;

width: 100%;

}

.product-tumb img {

max-width: 100%;

max-height: 100%;

}

.product-details {

padding: 30px;

}

.product-details h4 {

font-weight: 500;

display: block;

margin-bottom: 18px;

text-transform: uppercase;

color: #363636;

text-decoration: none;

transition: 0.3s;

}

.product-details p {

font-size: 15px;

line-height: 22px;

margin-bottom: 18px;

color: #999;

}

.product-bottom-details {

overflow: hidden;

125



border-top: 1px solid #eee;

padding-top: 20px;

}

.product-price {

font-size: 12px;

color: #C43218;

font-weight: 600;

}

Clear all caches and let’s have a look:

This looks nice and appealing. Later in this course we will make the variables more
dynamic. Let’s move forward!

Sidenote here: if the use case is to show the teasers on other pages also, it would be
better to attach the css to the teasers and not the overview. In general, you should
style your view modes in a way that they look the same everywhere on the platform.

126



Adding a user-friendly multistep form for entity creation

👉 In this chapter you will learn how to create form modes for your data entry
forms. More specifically we will show how to add a multistep form for creating
offers in a user-friendly way.

If we head over to offers/create we see the default form that can be configured under
admin/structure/offer/form-display.

But we want a more user-friendly creation form. This is the flow we want:

● Step 1: Add the title of the offer
● Step 2: Add a description and an image
● Step 3: Add the type of offer

That’s where Form Modes come into play. Go to
/admin/structure/display-modes/form and add a new one for Offer:

Add step_1 (Step 1), step_2 (Step 2), step_3 (Step 3):

127

https://www.drupal.org/docs/8/api/entity-api/display-modes-view-modes-and-form-modes#s-form-modes-and-form-operations


At /admin/structure/offer/form-display go to “Custom display settings” and enable
all three:

Next, we drag the desired fields to each of the steps. In the case of “Step 1”, this is
only the title field.

128



Do the same for step 2 and step 3.
We have our new form modes, but this will initially do nothing. First, we have to
“inform” our custom entity that there are three new form modes available. Let’s add
them to the offer entity right after our default form:

*   handlers = {

* "access" = "...",

* "views_data" = "...",

* "form" = {

* "default" = "Drupal\offer\Form\OfferForm",

* "step_1" = "Drupal\offer\Form\OfferAddFormStep1",

* "step_2" = "Drupal\offer\Form\OfferAddFormStep2",

* "step_3" = "Drupal\offer\Form\OfferAddFormStep3",

* "edit" = "Drupal\offer\Form\OfferForm",

Clear caches to see the result.

We’ve informed drupal that there are now new forms for our entity. Make sure your
keys in the annotations (“step_1”, “step_2”, …) are the same as the machine name of
your custom form modes.

129



Now copy the content entity form under Form\Offerform.php to
Form\OfferAddFormStep1, Form\OfferAddFormStep2.php, and
Form\OfferAddFormStep3.php. This way you copied the default entity form to the
steps. This way we can customize them later.

💻 When copying the Offerform.php to OfferAddFormStep1, make sure you also
change the Class name in the file itself!

Time to make new routes for our multi-step pages. To
custom/offer/offer.routing.yml:

offer.add:

path: '/offers/create'

defaults:

_entity_form: offer.step_1

_title: 'Step 1: set your title'

requirements:

_entity_create_access: 'offer'

offer.step1:

path: '/offers/create/{offer}'

defaults:

_entity_form: offer.step_1

_title: 'Step 1: set your title'

requirements:

_entity_create_access: 'offer'

offer.step2:

path: '/offers/create/step2/{offer}'

defaults:

_entity_form: offer.step_2

_title: 'Step 2: add a description and image'

requirements:

_entity_access: 'offer.edit'

offer.step3:

path: '/offers/create/step3/{offer}'

defaults:

_entity_form: offer.step_3

_title: 'Step 3: choose the type of offer'

requirements:

130



_entity_access: 'offer.edit'

The entity forms remain basically the same (although they have different form
modes), but the difference is in the Save() function. We change it in
src\Form\OfferAddFormStep1.php like this:

public function save(array $form, FormStateInterface $form_state) {

// Redirect to step 2.

$entity = $this->getEntity();

$entity->save();

$id = $entity->id();

$form_state->setRedirect('offer.step2', ['offer' => $id]);

}

Step 1 is where the entity gets saved on submission. We use it to redirect to step 2
via entity parameter upcasting.

We do the same in step 2, to redirect to step 3. Change it in
src\Form\OfferAddFormStep2.php to this:

public function save(array $form, FormStateInterface $form_state) {

// Redirect step 3 after save.

$entity = $this->getEntity();

$entity->save();

$id = $entity->id();

$form_state->setRedirect('offer.step3', ['offer' => $id]);

}

In our final step, src\Form\OfferAddFormStep3.php, we add redirect to the overview
and add a message:

/**

* {@inheritdoc}

*/

public function save(array $form, FormStateInterface $form_state) {

// Redirect to offer overview after save.

$form_state->setRedirect('entity.offer.collection');

\Drupal::messenger()->addMessage('Your offer was created. Click the

publish button to start earning.');

$entity = $this->getEntity();

$entity->save();

}

131



In the buildForm() function of each of the forms, you can tweak some more. I
changed the submit button text like this:

public function buildForm(array $form, FormStateInterface

$form_state) {

/* @var $entity \Drupal\offer\Entity\Offer */

$form = parent::buildForm($form, $form_state);

$form['actions']['submit']['#value'] = t('Save and proceed');

return $form;

}

We’re done! We’ve created an advanced multi-step form, which saves our entity on
each step. Let’s enhance the process a bit for further user experience.

💻 Best way to test is to create a test user at admin/people who is just an
authenticated user. This way you can check better if all permissions are set
correctly.

Go to offers/create and have a look:

132



If we click Save and proceed we go to the next step:

133



💻 There is still a field “Revision log” visible. This is because the entity is
revisionable. But we do not want to use it here. We make it invisible with this
snippet. Clear caches and you’ll see it is gone.

use Drupal\Core\Form\FormStateInterface; // on top of file

/**

* Implements hook_form_alter().

*/

function offer_form_alter(array &$form, FormStateInterface

$form_state, $form_id) {

$forms = ['offer_step_1_form', 'offer_step_2_form',

'offer_step_3_form', 'offer_edit_form'];

if (in_array($form_id, $forms)) {

// Prevent revision log box access

$form['revision_log']['#access'] = FALSE;

}

}

Add custom actions to the form

👉 In this chapter you will learn how to add additional form buttons (actions) like a
cancel button or a “Go back to step 1” redirect on entity forms.

Actions are the typical buttons drupal groups below a form. Because we use multiple
steps we want to add functionality to be able to navigate inside the form as well.

In our first step, we’d like to provide a ‘Cancel’ button next to the ‘Save and proceed’
button. Also, remove the ‘delete’ button.

To src\Form\OfferAddFormStep1.php we add:

protected function actions(array $form, FormStateInterface $form_state)

{

$actions = parent::actions($form, $form_state);

$actions['cancel'] = [

'#type' => 'submit',

134



'#value' => $this->t('Cancel'),

'#submit' => ['::cancelSubmit'],

'#weight' => 90,

'#limit_validation_errors' => []

];

if (array_key_exists('delete', $actions)) {

unset($actions['delete']);

}

$actions['#prefix'] = '<i>Step 1 of 3</i>';

return $actions;

}

public function cancelSubmit(array $form, FormStateInterface

$form_state) {

$form_state->setRedirect('entity.offer.collection');

}

This is Object Oriented code in practice. The actions method allows us to extend and
add an extra action. In the callback we specify a redirect to cancel the operation.

This is what step 1 now looks like:

135



To src\Form\OfferAddFormStep2.php we add:

protected function actions(array $form, FormStateInterface

$form_state) {

$actions = parent::actions($form, $form_state);

$actions['go_back'] = [

'#type' => 'submit',

'#value' => $this->t('Back to step 1'),

'#submit' => ['::goBack'],

'#weight' => 90,

'#limit_validation_errors' => []

];

if (array_key_exists('delete', $actions)) {

unset($actions['delete']);

}

$actions['#prefix'] = '<i>Step 2 of 3</i>';

return $actions;

}

136



public function goBack(array $form, FormStateInterface

$form_state) {

$entity = $this->getEntity();

$id = $entity->id();

$form_state->setRedirect('offer.step1', ['offer' => $id]);

}

You’ll understand what I did here. The goBack() function will get called when clicking
the button ‘Back to step 1’. We’ll get redirected to /offer/create/{offer}.

This is what the actions in step 2 now look like:

Finally, we optimize our step three in the same way. To
src\Form\OfferAddFormStep3.php we add:

protected function actions(array $form, FormStateInterface $form_state)

{

$actions = parent::actions($form, $form_state);

$actions['go_back'] = [

'#type' => 'submit',

'#value' => $this->t('Back to step 2'),

'#submit' => ['::goBack'],

'#weight' => 90,

'#limit_validation_errors' => []

];

if (array_key_exists('delete', $actions)) {

unset($actions['delete']);

}

$actions['#prefix'] = '<i>Step 3 of 3</i>';

return $actions;

}

public function goBack(array $form, FormStateInterface $form_state) {

$entity = $this->getEntity();

137



$id = $entity->id();

$form_state->setRedirect('offer.step2', ['offer' => $id]);

}

Because this is the last step in the form, we redirect to our overview and add a
message via the Messenger API Drupal provides us:

public function save(array $form, FormStateInterface $form_state)

{

// Redirect to offer overview after save.

$form_state->setRedirect('entity.offer.collection');

\Drupal::messenger()->addMessage('Your offer was created. Click

the publish button to start earning.');

$entity = $this->getEntity();

$entity->save();

}

Step three looks like this now:

138

https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Messenger%21Messenger.php/class/Messenger/8.5.x


After we finished our offer, we get redirected to the My offers page:

139



The last step (step 3) is not yet how we want it. We want to show the Price field only if
the Offer type is set to ‘Set minimum price’ and hidden when the Offer type is set to ‘No
minimum price’. We’ll do this in the next chapter.

Conditional fields in the Form API

👉 In this chapter we show how to use conditional fields with the core form API. By
the end of this chapter you will know how to show/hide fields based on user
input on another field.

While there were quite a lot of new things introduced last year, one of the most stable
things is the Form API. It grew out to be one of the best API’s drupal has. In our step
3, we want to have our price field only visible when users select ‘Set minimum price’.

In src\Form\OfferAddFormStep3.php tweak the buildForm function so that it
becomes this:

public function buildForm(array $form, FormStateInterface $form_state) {

/* @var $entity \Drupal\offer\Entity\Offer */

$form = parent::buildForm($form, $form_state);

$form['actions']['submit']['#value'] = t('Save and proceed');

unset($form['actions']['delete']);

$form['field_price']['#states'] = [

'visible' => [

['select[name="field_offer_type"]' => ['value' => 'with_minimum']],

]

];

return $form;

}

This is actually quite readable. WHEN the offer type has the selection
‘with_minimum’ (this is the key of ‘Set minimum price’) selected, THEN make the
price field visible.

In action:

140



When selecting ‘Set a minimum price’:

141



This is it! Our multi step form is completely done.

Updating our data seeds
Remember from the first part of this course that we created some seed data. This
was meant for using real dummy data on our platform. Now that our offer entity is
ready, we can extend our import with offers.

To offer/src/SeedData/SeedDataGenerator.php we add a function with an array of
offers. We’ll add one below for example:

public function getOfferList() {

$data = [

[

'title' => 'Gq2019 Mens Mountain Trail Bike,11 Speed

Mountain Bike Aluminum',

'field_description' => '

<ul>

<li>Photochromic mountain bike, the use of aluminum

alloy frame, hydraulic disc brake system, wheel diameter size:

27.5 inches ...</li>

</ul>

',

'field_price' => 1500,

'field_offer_type' => 'with_minimum',

'field_image' =>

'https://images-na.ssl-images-amazon.com/images/I/61-HR1eqFuL._AC_

SL1001_.jpg',

'moderation_state' => 'published',

'user_id' => 1

],

];

return $data;

}

We’ll use this to loop over our offer entities to create. We add this to the switch
statement under ‘user’ in de generate() method:

case 'offer':

142



$offers = $this->getOfferList();

foreach($offers as $offerListItem) {

$offer = Offer::create();

$offer->set('title', $offerListItem['title']);

$offer->set('field_description', ['value' =>

$offerListItem['field_description'], 'format' => 'html']);

$offer->set('field_offer_type',

$offerListItem['field_offer_type']);

$offer->set('field_price', $offerListItem['field_price']);

$directory = 'public://';

$url = $offerListItem['field_image'];

$file = system_retrieve_file($url, $directory, true);

$drupalMedia = Media::create([

'bundle' => 'image',

'uid' => '0',

'field_media_image' => [

'target_id' => $file->id(),

],

]);

$drupalMedia->setPublished(TRUE)

->save();

$offer->set('field_image', ['target_id' =>

$drupalMedia->id()]);

$offer->set('user_id', 1);

$offer->set('moderation_state',

$offerListItem['moderation_state']);

if($offer->save()) {

$count += 1;

}

}

return $count;

break;

Then, we add the following lines to our OfferCreateSeeds() method in
custom/offer/src/Commands/SeedGeneratorCommand.php:

$count = $seed->Generate('offer');

Drush::output()->writeln($count . ' offer(s) created');

143



In the final project code, you’ll see I’ve ended up with multiple offers that get
created this way. Now developers who install the platform locally can work with
real-life offers instead of an empty installation.

144



Part 4: building the application. Storing, validating and
rendering data

Add dynamic menu links with Menu plugins

👉 In this chapter we go over custom menu links defined in code. At the end you
will be able to create dynamic menu links with counters such as “My offers (2)”.

If we log in with a user who is not the administrator we lack navigation. Drupal has a
built-in menu system which content managers can use to add content to menus. But
because this is more a framework course than a CMS course we want to add these
in code. A nice advantage is that you can cache these items individually and cleverly.
More about this in the chapter about caching. A second advantage is you can add
variable data such as counters.

To modules/custom/offer/offer.links.menu.yml, we add:

offer.account.my_offers:

route_name: entity.offer.collection

menu_name: main

class: Drupal\offer\Plugin\Menu\MyOffers

weight: -50

We need to add a Menu Plugin to our module so the Menu module can detect our
menu link. Add modules/custom/offer/Plugin/Menu/MyOffers.php:

<?php

namespace Drupal\offer\Plugin\Menu;

use Drupal\Core\Menu\MenuLinkDefault;

/**

* displays number of offers.

*/

class MyOffers extends MenuLinkDefault {

/**

* {@inheritdoc}

145



*/

public function getTitle() {

$count = 0;

if(\Drupal::currentUser()->isAuthenticated()) {

$offers = \Drupal::entityTypeManager()

->getStorage('offer')

->loadByProperties(['user_id' => \Drupal::currentUser()->id()]);

$count = count($offers);

return $this->t('My offers (<span

class="count-badge">(@count)</span>)', ['@count' => $count]);

} else {

return null;

}

}

/**

* {@inheritdoc}

*/

public function getCacheMaxAge() {

return 0;

}

}

💻 Add the main navigation block to the ‘breadcrumb’ region at
/admin/structure/blocks, we see our dynamic link to the offers page, with a
number counter to show the amount of offers we’ve created so far.

If we clear the caches, we see the ‘My offers’ menu link appearing on top.

146



The link is not cached as it needs to show an updated value after adding a new offer.
See the chapter about caching for details on how to provide custom caching
mechanisms for this. We will style this main menu in a further chapter.

Next, we add a link to the overview page (to the main menu) and the notifications (to
the account menu):

To custom/offer/offer.links.menu.yml

offer.overview:

title: 'Offers'

route_name: view.offer_overview.page_1

menu_name: main

weight: 5

The second link is visible after a cache clear:

147



Building the offer page with twig: theming a custom content
entity
Now it's time for us to start building the offer page. We’ll use twig files, because this
is the standard in drupal 9. I would recommend not to install contributed modules for
styling as they may cause troubles in the long run (upgrading?).

If you followed this course, thanks to the instruction in the rendering a teaser the full
template should already be registered in our custom/offer/offer.module:

/**

* Provides a theme definition for custom content entity offer

* {@inheritdoc}

*/

function offer_theme($existing, $type, $theme, $path) {

return [

'offer' => [

'render element' => 'elements',

],

'offer__full' => [

'base hook' => 'offer',

],

'offer__teaser' => [

'base hook' => 'offer'

]

];

}

First, we want to theme the full view, for that we clear caches and add a file to
custom/offer/templates named offer--full.html.twig. To the file, add:

{{ content }}

💻 In the ‘fields’-section of your offers view, at /admin/structure/views/view/offers,
make sure you’ve clicked the “Link to Offer” checkbox. This way you will be able
to visit your entity detail page from the /offers page.

148



Clear caches to make sure this template is rendered. Add some dummy sentence
before the content statement to test it.

149



We can play along with the fields at admin/structure/offer/display/full to change the
order of the fields and hiding or showing the label. But I prefer to be more specific
when using twig, so I edit my offer--full.html.twig like this:

{{ content.field_image }}

{{ content.field_description }}

This will only show the image and the description.

Adding a dynamic bidding form to our page with an advanced
block plugin
We want a nice and dynamic bidding form on our offer pages. We’ll start by adding a
form to custom/modules/offer/src/Form named OfferBiddingForm.php:

<?php

namespace Drupal\offer\Form;

use Drupal\Core\Form\FormBase;

use Drupal\Core\Form\FormStateInterface;

use Drupal\offer\Entity\Offer;

150



class OfferBiddingForm extends FormBase {

/**

* @return string

*   The unique string identifying the form.

*/

public function getFormId() {

return 'offer_bid_form';

}

/**

* Form constructor.

*

* @param array $form

*   An associative array containing the structure of the form.

* @param \Drupal\Core\Form\FormStateInterface $form_state

*   The current state of the form.

* @param \Drupal\offer\Entity\Offer $offer

*   The offer entity we're viewing

*

* @return array

*   The form structure.

*/

public function buildForm(array $form, FormStateInterface $form_state,

$offer = NULL) {

$form['bid'] = [

'#type' => 'textfield',

'#attributes' => array(

' type' => 'number', // this validates it as a number in

front-end

),

'#title' => $this->t('Your bid'),

'#description' => $this->t('Prices in $.'),

'#required' => TRUE,

];

// Group submit handlers in an actions element with a key of

"actions".

$form['actions'] = [

'#type' => 'actions',

];

// Add a submit button that handles the submission of the form.

151



$form['actions']['submit'] = [

'#type' => 'submit',

'#value' => $this->t('Submit'),

];

return $form;

}

}

We add the validateForm() and submitForm() functions but keep them empty for now:

public function validateForm(array &$form, FormStateInterface

$form_state) {

parent::validateForm($form, $form_state);

}

public function submitForm(array &$form, FormStateInterface $form_state)

{

}

How do we show the form on the entity page? This is an important architectural
decision. Our entities are cached as a whole, so we need to keep this out of our entity.
A block plugin is the wisest decision here.

We’ll use an advanced technique here. Because the form in the block needs to be
dependent on the current offer, we will use the RequestStack service.

Add a file called OfferBiddingFormBlock.php to custom/offer/src/Plugin/Block:

<?php

namespace Drupal\offer\Plugin\Block;

use Drupal\Core\Block\BlockBase;

use Symfony\Component\DependencyInjection\ContainerInterface;

use Drupal\Core\Plugin\ContainerFactoryPluginInterface;

use Symfony\Component\HttpFoundation\RequestStack;

use Drupal\Core\Entity\EntityStorageInterface;

use Drupal\Core\Session\AccountProxyInterface;

152

https://api.drupal.org/api/drupal/core!lib!Drupal.php/function/Drupal%3A%3ArequestStack/8.2.x


/**

* @Block(

*   id = "offer_bidding_block",

*   admin_label = @Translation("Offer bid block"),

*   category = @Translation("Shows the bidding block to an offer"),

* )

*/

class OfferBiddingFormBlock extends BlockBase implements

ContainerFactoryPluginInterface {

/**

* @var $account \Drupal\Core\Session\AccountProxyInterface

*/

protected $account;

/**

* The request object.

*

* @var \Symfony\Component\HttpFoundation\RequestStack

*/

protected $requestStack;

/**

* The entity storage.

*

* @var \Drupal\Core\Entity\EntityStorageInterface

*/

protected $entityStorage;

/**

* Constructs a new OfferBiddingBlock instance.

*

* @param string $plugin_id

*   The plugin_id for the plugin instance.

* @param mixed $plugin_definition

*   The plugin implementation definition.

* @param \Symfony\Component\HttpFoundation\RequestStack $request_stack

*   The request stack object.

* @param \Drupal\Core\Entity\EntityStorageInterface $entity_storage

*   The entity storage.

*/

public function __construct(array $configuration, $plugin_id,

$plugin_definition, RequestStack $request_stack, EntityStorageInterface

153



$entity_storage, AccountProxyInterface $account) {

parent::__construct($configuration, $plugin_id, $plugin_definition);

$this->requestStack = $request_stack;

$this->entityStorage = $entity_storage;

$this->account = $account;

}

/**

* {@inheritdoc}

*/

public static function create(ContainerInterface $container, array

$configuration, $plugin_id, $plugin_definition) {

return new static(

$configuration,

$plugin_id,

$plugin_definition,

$container->get('request_stack'),

$container->get('entity_type.manager')->getStorage('offer'),

$container->get('current_user')

);

}

/**

* {@inheritdoc}

*/

public function build() {

// Make sure this is an offer page

$offer = $this->requestStack->getCurrentRequest()->get('offer');

if(!$offer) {

return null;

}

// Make sure the current user is not owner of the offer

if($this->account->id() == $offer->getOwnerId()) {

return null;

}

$form =

\Drupal::formBuilder()->getForm('\Drupal\offer\Form\OfferBiddingForm',

$offer);

return $form;

}

/**

* A form for authenticated users never gets cached.

154



*/

public function getCacheMaxAge() {

return 0;

}

}

A lot happens here. This is actually the best practice way to get the current entity
loaded in your block. A fine piece of Object oriented programming. The more you dive
in it, the more comfortable you will be with it. One advantage of it is that via the
create(), construct() and build() methods you will receive objects from memory and not
need to load again objects with some direct functions like:

$offerId = \Drupal::routeMatch()->getParameter('offer');

$offer = Offer::load($offerId);

We pass the full offer entity object as a parameter to the form, it gets picked up by our
buildForm method inside this piece:

public function buildForm(array $form, FormStateInterface

$form_state, $offer = NULL)

Also check out the getCacheMaxAge() which is set to 0. This means the block will
never be cached. More about this in the chapter about caching.

💻 Clear caches and add the block to the content region (below the main content)
at admin/structure/blocks.

Make sure you check this block will be only available for authenticated users:

155



And restrict it to these pages only: /offer/*. This means the block will only be
visible when we are on an offer page.

156



Clear caches and take a look.

Looks good!

157



💻 Of course you are not able to place a bid on your own offers. Make sure you test
it on an offer of a different user.

Remember from the adding fields chapter there were two options in field_offer_type:
● with_minimum|Set minimum price
● no_minimum|No minimum price

We integrate it in our form in two ways:
● 1) If the form has a minimum price, display it.
● 2) if the form has a minimum price, validate the form and check for the

inputted price

To our buildForm() function we add this before $form[‘description’]:

switch($offer->get('field_offer_type')->getString()) {

case 'with_minimum':

$price = $offer->get('field_price')->getString();

break;

case 'no_minimum';

$price = '0';

break;

}

$form['price'] = [

'#markup' => '<h2>' . $this->t('Start bidding at @price$', ['@price' =>

$price]) . '</h2>',

];

158



Now we extend the bid textfield with two HTML5 attributes, for a minimum price and
for a numeric field. This will offer front-end validation in the browser.

switch($offer->get('field_offer_type')->getString()) {

case 'with_minimum':

$price = $offer->get('field_price')->getString();

break;

case 'no_minimum';

$price = '0';

break;

}

$form['price'] = [

'#children' => '<h2>' . $this->t('Start bidding at @price$', ['@price'

=> $price]) . '</h2>',

];

$form['bid'] = [

'#type' => 'textfield',

'#attributes' => [

' type' => 'number', // note the space before attribute key

' min' => $price

],

'#title' => $this->t('Your bid'),

'#description' => $this->t('Prices in $.'),

'#required' => TRUE,

];

159



Be careful. Front-end validation is not enough. We validate the input on server-side as
well with the ValidateForm() method. For now we’ll validate for integers. Further
along we’ll check to make sure the bid exceeds the highest bid so far.:

public function validateForm(array &$form, FormStateInterface

$form_state) {

parent::validateForm($form, $form_state);

// Server side validation for numeric

if (!is_numeric($form_state->getValue('bid'))) {

$form_state->setErrorByName('bid', t('Bid input needs to be

numeric.'));

}

}

We need to submit the form in the submitForm() method. For now, we just submit
without saving anything. In a further chapter,  we’ll save the bid.

Adding site-wide css and javascript

👉 In this chapter you will learn how to add libraries containing css and load it on
all pages At the end you will have discovered how to apply global styling to your
project.

While in this course we will not focus (at all) on drupal theming we need to define a
css file that gets used site-wide in order to do some small tweaks to make the
bidding page look good. In order to add css or javascript to pages we need to define
libraries. We will define this inside custom/offer/offer.libraries.yml:

platform:

css:

theme:

css/platform.css: {}

Now we need to tell the system when to include the library. There are ways to add
them specifically to:

● Controllers

160



● Forms
● Blocks
● Views

But in this case, we always want it. For this we can use hook_page_attachments() in
custom/offer/offer.module:

/**

* Implements hook_page_attachments().

*/

function offer_page_attachments(array &$attachments) {

$attachments['#attached']['library'][] = 'offer/platform';

}

Below this, we add an extra body class to the offer detail page using
hook_preprocess_html:

/**

* Add a "offer-detail-page" class to the body on a offer detail page

*/

function offer_preprocess_html(&$variables) {

$offer = \Drupal::routeMatch()->getParameter('offer');

if($offer) {

$variables['attributes']['class'][] = 'offer-detail-page';

}

}

We add custom/offer/css/platform.css:

.offer-detail-page .block-system-main-block {

width: 55%;

float:left;

}

.offer-detail-page #block-bid-block {

width: 30%;

float:right;

}

Clear caches, and you’ll see the blocks showing more nicely next to each other.

161



💻 Add the user account menu as well to the breadcrumbs region (choose
“hide title”).

This puts the bidding block next to the offer:

Add some extra css in platform.css for the menus:

/** Main menu + user menu **/

.navigation.menu--main ul, .navigation.menu--account ul {

list-style:none;

height: 50px;

162



}

.navigation.menu--account {

float:right;

}

.navigation.menu--main {

float:left;

}

.navigation.menu--main ul li, .navigation.menu--account ul li {

float:left;

list-style:none;

}

.navigation.menu--main .menu, .navigation.menu--account .menu {

margin: 0;

}

.navigation.menu--main ul li a, .navigation.menu--account ul li a

{

color: #0444C4;

padding: 20px;

text-decoration:none;

font-size: 0.8125rem;

}

.navigation.menu--main ul li a.is-active, .navigation.menu--main

ul li a:hover, .navigation.menu--account ul li a.is-active,

.navigation.menu--account ul li a:hover {

background: #E5EDFD;

color:black;

}

/** breadcrumbs **/

.block-system-breadcrumb-block {

clear:both;

margin-left: min(5vw,48px);

margin-right: min(5vw,48px);

}

.count-badge {

color: red;

font-weight: 600;

}

We now have a more attractive menu system.

163



Note again that for professional platforms we would do a more advanced theming
(tailwind, bootstrap, …), with a primary focus on mobile experience. But this is not the
purpose of this course.

For more about libraries, visit this page on drupal.org.

Adding a code-only bid entity

👉 This chapter teaches you how to define an entity that will only live in our
database and is not visible in our UI. After this chapter you will be able to create
custom entities with fields like entity reference.

For storing our bids, we need a second entity which will have a minimum of code. We
start a new module adding the following files:

● bid.info.yml
● src/Entity/Bid.php

We start with custom/bid/bid.info.yml:

name: bid

type: module

description: bid entity

core: 8.x

core_version_requirement: ^8 || ^9

Next, our bid entity. We’ll add the following database fields:

164

https://www.drupal.org/docs/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-module


● user_id (entity_reference): the owner of the bid
● offer_id (entity_reference): the offer the bid is for
● bid (decimal): the amount of the bid
● created (created): the time the bid was done
● changed (changed): the updated time of the bid

Once again, we include the revisioning system which allows us to show a history (e.g.
“Person x has raised his bid with 4$”).

To custom/bid/src/Entity/Bid.php:

<?php

/**

* @file

* Contains \Drupal\bid\Entity\bid.

*/

namespace Drupal\bid\Entity;

use Drupal\Core\Entity\EditorialContentEntityBase;

use Drupal\Core\Field\BaseFieldDefinition;

use Drupal\Core\Entity\EntityTypeInterface;

/**

* Defines the bid entity.

*

* @ingroup bid

*

* @ContentEntityType(

*   id = "bid",

*   label = @Translation("bid"),

*   base_table = "bid",

*   data_table = "bid_field_data",

*   fieldable = TRUE,

*   revision_table = "bid_revision",

*   revision_data_table = "bid_field_revision",

*   entity_keys = {

*     "id" = "id",

*     "uuid" = "uuid",

*     "label" = "title",

*     "owner" = "uid",

*     "revision" = "vid",

*     "published" = "status",

165



*     "uid" = "uid",

*     "owner" = "uid",

*   },

*   handlers = {

*     "access" = "Drupal\bid\BidAccessControlHandler",

*   },

*   revision_metadata_keys = {

*     "revision_user" = "revision_uid",

*     "revision_created" = "revision_timestamp",

*     "revision_log_message" = "revision_log"

*   }

* )

*/

class Bid extends EditorialContentEntityBase {

public static function baseFieldDefinitions(EntityTypeInterface

$entity_type) {

$fields = parent::baseFieldDefinitions($entity_type); // provides id

and uuid fields

$fields['user_id'] = BaseFieldDefinition::create('entity_reference')

->setLabel(t('User'))

->setDescription(t('The user that created the bid.'))

->setSetting('target_type', 'user')

->setSetting('handler', 'default');

$fields['offer_id'] =

BaseFieldDefinition::create('entity_reference')

->setLabel(t('Offer'))

->setDescription(t('The offer the bid is for.'))

->setSetting('target_type', 'offer')

->setSetting('handler', 'default');

$fields['bid'] = BaseFieldDefinition::create('float')

->setLabel(t('Bid amount'))

->setRevisionable(TRUE)

->setDescription(t('The bid amount in $.'));

$fields['created'] = BaseFieldDefinition::create('created')

->setLabel(t('Created'))

->setDescription(t('The time that the entity was created.'));

$fields['changed'] = BaseFieldDefinition::create('changed')

->setLabel(t('Changed'))

166



->setDescription(t('The time that the entity was last edited.'));

return $fields;

}

/**

* {@inheritdoc}

*/

public function getOwner() {

return $this->get('user_id')->entity;

}

/**

* {@inheritdoc}

*/

public function getOwnerId() {

return $this->get('user_id')->target_id;

}

}

Time to enable the module.

bash$ drush en bid

[success] Successfully enabled: bid

When double checking our database, we see our columns correctly created:

167



We’ve created our bid entity. This entity will only live in our database. It is fully
powered by the drupal entity API. But because we don’t make it “fieldable”.

Saving the bid entities on form submission

👉 This chapter will teach you how to save custom entity values on a form
submission. This is a very common use case for saving data from a custom
form. At the end you will be able to save values such as an entity reference and
integer values to an entity that only lives in our database.

We now have everything in place to start saving the bids of the users.

Let’s change the submitForm() function of
custom/offer/src/Form/OfferBidForm.php.
On top we now add:

168



use Drupal\bid\Entity\Bid;

One thing we’ll need for saving the bid is the current offer id. We’ll send it along in the
buildForm() function as a hidden and inaccessible field:

$form['offer_id'] = [

'#type' => 'hidden',

'#value' => $offer->id(),

'#access' => FALSE

];

In the submitForm() function we save the offer:

public function submitForm(array &$form, FormStateInterface $form_state)

{

$bid = Bid::create([

'bid' => $form_state->getValue('bid'),

'user_id' => ['target_id' => \Drupal::currentUser()->id()],

'offer_id' => ['target_id' => $form_state->getValue('offer_id')]

]);

$bid->save();

\Drupal::messenger()->addMessage($this->t('Your bid was successfully

submitted.'));

}

Time to test the bidding form.

169



After submission, we get a success message.

We now have successfully saved our bid to the custom entity. But let us build in
some security so our database stays clean.

Form validation based on highest bids

👉 In this chapter we will add custom methods to our entity. More specifically
these are functions to validate input on our bidding form server-side.

170



There are still things left undone. The form needs to anticipate the latest bid so now
offer lower or equal than the highest bid gets accepted.

To custom/offer/src/Entity/Offer.php we add a method for receiving the highest bids
of a given offer.

On top of the file, add:

use Drupal\bid\Entity\Bid;

To the Offer() class:

/**

* Returns the highest bid on an offer

* @return integer $price

*  The price

*/

public function getOfferHighestBid() {

$bids = [];

$id = $this->id();

$query = \Drupal::entityQuery('bid')

->condition('offer_id', $id)

->sort('bid', 'ASC')

->range(NULL, 1);

$bidIds = $query->execute();

$price = null;

foreach($bidIds as $id) {

$bid = Bid::load($id);

$price = $bid->get('bid')->getString();

}

return $price;

}

Also, add a second function loading all the bids of a given offer:

/**

* Returns all bids of an offer

* @return array $bids

*  Array of bid entities

*/

public function getOfferBids() {

171



$bids = [];

$id = $this->id();

$query = \Drupal::entityQuery('bid')

->condition('offer_id', $id)

->sort('bid', 'DESC');

$bidIds = $query->execute();

foreach($bidIds as $id) {

$bid = Bid::load($id);

$bids[] = $bid;

}

return $bids;

}

Inside custom/offer/src/Form/OfferBiddingForm.php we change our buildForm()
function to the following:

...// switch statement

$price = '0';

break;

}

$OfferHasBid = $offer->getOfferHighestBid();

if($OfferHasBid) {

$price = $OfferHasBid + 1;

}

$form['price'] = [

'#children' => '<h2>' . $this->t('Start bidding at @price$', ['@price'

=> $price]) . '</h2>',

];

This will change the minimum price for both our title and our front-end validation. To
definitely make sure we’re not accepting lower bids than our highest bid, we validate
server-side too in our validateForm() function. Always remember to do this, because
front-end validation can be skipped easily.

To the top of OfferBiddingForm.php:

use Drupal\offer\Entity\Offer;

Inside our validateForm():

172



// Load the offer and make sure no higher bid was done in the meantime

$offer_id = $form_state->getValue('offer_id');

$offer = Offer::load($offer_id);

$OfferHasBid = $offer->getOfferHighestBid();

switch($offer->get('field_offer_type')->getString()) {

case 'with_minimum':

$minium_price = isset($OfferHasBid) ? $OfferHasBid :

$offer->get('field_price')->getString();

break;

case 'no_minimum';

$minium_price = isset($OfferHasBid) ? $OfferHasBid : 0;

break;

}

if($minium_price >= $form_state->getValue('bid')) {

$form_state->setErrorByName('bid', t('Minimum bid needs to be @price',

['@price' => (@$minium_price + 1) . '$' ]));;

}

We now validate server-side that no bid can pass that is lower than the current
highest bid.

Add dynamic variables to our entity teaser

👉 In this chapter we will add dynamic variables such as the current amount of bids
to our teaser overview. At the end you will be able to call custom entity methods
and process them into variable output of your teasers in twig.

We can now update our offer--teaser.html template_preprocess_offer() function
inside custom/offer/offer.module with the following variables:

Variable name Description

bid_amount Shows the amount of bids so far

promo Shows a “Be the first”-badge if there is no bid
on the offer yet.

The function now integrates the getOfferBids() and getOfferHighestBids() methods:

/**

173



* Prepares variables for templates.

* implements hook_preprocess_HOOK()

*/

function template_preprocess_offer(array &$variables) {

foreach (Element::children($variables['elements']) as $key) {

$variables['content'][$key] = $variables['elements'][$key];

}

$offer = $variables['elements']['#offer'];

// The full offer object

$variables['offer'] = $offer;

// The current price: minimum or highest bid if available

switch($offer->get('field_offer_type')->getString()) {

case 'with_minimum':

$price = 'Start bidding at '.

$offer->get('field_price')->getString() . '$';

break;

case 'no_minimum';

$price = 'Start bidding at 0$';

break;

}

$OfferHasBid = $offer->getOfferHighestBid();

if($OfferHasBid) {

$price = 'Highest bid currently ' . $OfferHasBid . '$';

$variables['price'] = $price;

} else {

$variables['price'] = 'No bids yet. Grab your chance!';

}

// The amount of bids

$bid_amount = count($offer->getOfferBids());

$variables['bid_amount'] = $bid_amount;

// a promo badge

if(($bid_amount == 0) && (\Drupal::currentUser()->id() !=

$offer->getOwnerId())) {

$variables['promo'] = 'Be the first!';

}

}

The final offer--teaser.html file:

<a href="{{ path('entity.offer.canonical', {'offer': offer.id()}) }}" {{

174



attributes.addClass('offer-teaser') }}>

{% if promo %}<div class="badge">{{promo }}</div>{% endif %}

<div class="product-tumb">

{{ content.field_image }}

</div>

<div class="product-details">

<h4>{{ offer.label() }}</h4>

<p>{{ bid_amount }} bids</p>

<div class="product-bottom-details">

<div class="product-price">{{ price }}</div>

<div class="product-user-profile">{{ user_profile }}</div>

</div>

</div>

</a>

Clear caches and take a look at /offer:

We now have more dynamic teasers, showing the current amount of bids, the highest
bid so far, and a promo badge if there are no bids yet.

175



You might stumble upon the fact that this overview not always get updated when
bidding, we’ll fix this in the chapter about caching.

Validating the entity with constraints

👉 In this chapter we explore the Entity Validation API. With this API we set
constraints on saving entities to keep our database clean at all times.

What if something goes wrong and a bid gets saved with incorrect values?

The Entity Validation API ensures that all entities pass the validation criteria. We can
add validation on an entity level, or on a field level. For our bids we will first validate
to make sure all values are set and are not empty.
We could choose to do these checks in our submitForm() function, but using
constraints is more a good practice way because this way other classes or modules
can use the same validators.

We make a new map structure: custom/bid/src/Plugin/Validation/Constraint. First
file we add is AllFieldsRequiredConstraint.php:

namespace Drupal\bid\Plugin\Validation\Constraint;

use Symfony\Component\Validator\Constraint;

use Symfony\Component\Validator\Exception\MissingOptionsException;

/**

* Requires an offer entity to have all fields required to save as an

object.

*

* @Constraint(

*   id = "AllFieldsRequired",

*   label = @Translation("All fields required.", context =

"Validation"),

*   type = "entity:bid"

* )

*/

class AllFieldsRequiredConstraint extends Constraint {

176

https://www.drupal.org/docs/drupal-apis/entity-api/entity-validation-api


public $message = 'At least one field was empty and prevented saving

the bid.';

}

This file registers the constraint on the bid entity. It would be used to give feedback
in an entity form. This means it will go over this constraint if we ask to validate input
for an entire entity. This is also possible for one field only.

But when validating on custom forms, we have to make sure the constraint is also
set in custom/bid/src/Entity/Bid.php. To the annotations, add the following:

*   constraints = {

* "AllFieldsRequired" = {}

*   }

Next file will do the actual validation:

AllFieldsRequiredConstraintValidator.php:

<?php

namespace Drupal\bid\Plugin\Validation\Constraint;

use Symfony\Component\Validator\Constraint;

use Symfony\Component\Validator\ConstraintValidator;

/**

* Validates the AllFieldsRequired constraint.

*/

class AllFieldsRequiredConstraintValidator extends ConstraintValidator {

/**

* {@inheritdoc}

*/

public function validate($entity, Constraint $constraint) {

if ($entity->get('user_id')->isEmpty()) {

$this->context->addViolation($constraint->message);

}

if ($entity->get('bid')->isEmpty()) {

$this->context->addViolation($constraint->message);

}

if ($entity->get('offer_id')->isEmpty()) {

177



$this->context->addViolation($constraint->message);

}

}

}

The code itself is quite readable. If one of the fields ‘bid’, ‘offer_id’, ‘user_id’ is empty,
it will not validate.

A final step is to clear the caches so the constraint gets picked up.

We change the creation of bids in the submitForm() function of the
custom/offer/src/Form/OfferBiddingForm.php to integrate the constraint:

public function submitForm(array &$form, FormStateInterface

$form_state) {

$bid = Bid::create([

'bid' => $form_state->getValue('bid'),

'user_id' => ['target_id' => \Drupal::currentUser()->id()],

'offer_id' => ['target_id' =>

$form_state->getValue('offer_id')]

]);

$violations = $bid->validate();

$validation = $violations->count();

if($validation === 0) {

$bid->save();

\Drupal::messenger()->addMessage($this->t('Your bid was

successfully submitted.'));

} else {

\Drupal::messenger()->addWarning($violations[0]->getMessage());

}

}

This is pretty neat. We made sure our entities will be complete on save with custom
constraint validators.

💻 You can check if the constraints works like expected if you comment out the
validateForm() and the ‘#attributes’ and ‘#required’ key in $form[‘bid’] inside the

178



OfferBiddingForm.php

In a way, this is adding extra security towards malicious input on your database. In
addition to server-side validation in our form, we added constraints to saving our entity.
The Entity validation API can also be used to do all kinds of other checks. For example
to check if the offer is still published when the form gets submitted.

For more, check out the Entity validation API on drupal.org:
https://www.drupal.org/docs/drupal-apis/entity-api/entity-validation-api

Displaying all bids in a dynamically rendered table

👉 This chapter will teach you how to use render arrays for displaying processed
data. At the end you will know how to add tables or other ways to display items
to a block. By using the RequestStack service, you will be able to receive data of
the current entity in your block.

179

https://www.drupal.org/docs/drupal-apis/entity-api/entity-validation-api


We need an overview of previously done bids to the offer. In this section we’ll be
rendering a drupal table render array. The advantage of using these render arrays is
that their layout will be consistent over all themes. Therefore, I like using them.

Because we’ll be doing quite some preprocessing on the bids, I add an extra class for
properly returning my data. This way we keep things a bit more readable.

Add this file custom/offer/src/OfferPreprocess/OfferPreprocess.php. To the file,
add:

<?php

namespace Drupal\offer\OfferPreprocess;

use Drupal\bid\Entity\Bid;

use Drupal\offer\Entity\Offer;

class OfferPreprocess {

/**

* Returns rendered table below an offer

* @param entity $offer

*  The offer entity

* @return array $table

*  Drupal table render array

*/

public static function offerTable(Offer $offer) {

$bids = $offer->getOfferBids();

$rows = [];

foreach($bids as $bid) {

$price = $bid->get('bid')->getString();

$owner = $bid->getOwner();

$ownerName = $owner->getDisplayName();

$time =

\Drupal::service('date.formatter')->formatTimeDiffSince($bid->created->v

alue);

$row = [

$ownerName . ' - ' . $time . ' ago', $price . '$'

];

$rows[] = $row;

}

180

https://www.drupal.org/docs/drupal-apis/render-api/render-arrays


$build['table'] = [

'#type' => 'table',

'#rows' => $rows,

'#empty' => t('This offer has no bids yet. Grab your chance!'),

];

return [

'#type' => '#markup',

'#markup' => render($build)

];

}

}

Next, in order to show our table with the latest offers we add it to a new block inside
custom/offer/src/Plugin/Block/OfferBiddingTableBlock.php:

<?php

namespace Drupal\offer\Plugin\Block;

use Drupal\Core\Block\BlockBase;

use Symfony\Component\DependencyInjection\ContainerInterface;

use Drupal\Core\Plugin\ContainerFactoryPluginInterface;

use Symfony\Component\HttpFoundation\RequestStack;

use Drupal\Core\Entity\EntityStorageInterface;

use Drupal\offer\OfferPreprocess\OfferPreprocess;

/**

* @Block(

*   id = "offer_bidding_table_block",

*   admin_label = @Translation("Bidding table block"),

*   category = @Translation("Shows the bidding table to an offer"),

* )

*/

class OfferBiddingTableBlock extends BlockBase implements

ContainerFactoryPluginInterface {

/**

* The request object.

*

* @var \Symfony\Component\HttpFoundation\RequestStack

*/

protected $requestStack;

181



/**

* The entity storage.

*

* @var \Drupal\Core\Entity\EntityStorageInterface

*/

protected $entityStorage;

/**

* Constructs a new OfferBiddingTableBlock instance.

*

* @param string $plugin_id

*   The plugin_id for the plugin instance.

* @param mixed $plugin_definition

*   The plugin implementation definition.

* @param \Symfony\Component\HttpFoundation\RequestStack $request_stack

*   The request stack object.

* @param \Drupal\Core\Entity\EntityStorageInterface $entity_storage

*   The entity storage.

*/

public function __construct(array $configuration, $plugin_id,

$plugin_definition, RequestStack $request_stack, EntityStorageInterface

$entity_storage) {

parent::__construct($configuration, $plugin_id, $plugin_definition);

$this->requestStack = $request_stack;

$this->entityStorage = $entity_storage;

}

/**

* {@inheritdoc}

*/

public static function create(ContainerInterface $container, array

$configuration, $plugin_id, $plugin_definition) {

return new static(

$configuration,

$plugin_id,

$plugin_definition,

$container->get('request_stack'),

$container->get('entity_type.manager')->getStorage('offer')

);

}

/**

* {@inheritdoc}

182



*/

public function build() {

$offer = $this->requestStack->getCurrentRequest()->get('offer');

if(!$offer) {

return null;

}

$bid_table = OfferPreprocess::offerTable($offer);

return $bid_table;

}

/**

* Never cache this block (for now)

*/

public function getCacheMaxAge() {

return 0;

}

}

We get the table from our OfferPreprocess class and render it in the same way we
did with our form: by making use of the request stack services to get the current
offer.

💻 Clear caches and add the block to the bottom of the content region at
/admin/structure/blocks. Restrict for authenticated users and set page
visibility only at /offer/* like we did for the bidding form.

183



Update the custom/offer/css/platform.css file to give the block a width:

.offer-detail-page #block-bids, .offer-detail-page

#biddingtableblock {

float:left;

clear:both;

width: 55%;

}

184



You’ll now see a nicely rendered table with the bids. We will add a nice looking profile
picture and some layout later on.

Integrating the core revision system into the bidding process to
raise a bid

👉 In this important chapter we integrate the core revisioning system into our
platform. This allows us to modify our entities while keeping a history of
changes.

When a user raises his bid we will not save this as a new entity but as a revision of
his current bid.
This allows us to nicely show a “user x raised his bid with 4$” message to the table.
It also adds a variety of options when our software platforms grows larger. Because
ultimately, a raising of a bid is a revision of a current bid and not a new bid.

First, we need a new method to check if the offer the user is looking at already has
bids from him/her. To custom/modules/offer/src/Entity/Offer.php we add a method
for it:

/**

* Checks if the current user has bids on the current offer

* @return bool

*  True if it has, false if it doesn't

*/

public function CurrentUserHasBids() {

$user_id = \Drupal::currentUser()->id();

$id = $this->id();

185



$query = \Drupal::entityQuery('bid')

->condition('offer_id', $id)

->condition('user_id', $user_id);

$count = $query->count()->execute();

if($count > 0) {

return true;

} else {

return false;

}

}

Now, in our form we change the label of the submit button dependent on the
previous function to from “Submit” to “Raise my bid”

Inside custom/offer/src/Form/OfferBiddingForm, to the buildForm() method we add
above $form[‘actions’]:

// Group submit handlers in an actions element with a key of

"actions"

$currentUserHasBid = $offer->CurrentUserHasBids();

$callToAction = $currentUserHasBid ? $this->t('Raise my bid') :

$this->t('Submit');

// Add a submit button that handles the submission of the form.

$form['actions']['submit'] = [

'#type' => 'submit',

'#value' => $callToAction,

];

Now in our submitForm() function, dependent on the currentUserHasBids() result we
save the offer as a revision instead of a new entity.

Once again we need a helper method on the offer entity to get the bid entity from the
current user. To custom/modules/offer/src/Entity/Offer.php we add:

/**

* Returns the current users bid on the offer

* @return Drupal\bid\Entity\Bid Bid

*  The offer entity

*/

function currentUserBid() {

$user_id = \Drupal::currentUser()->id();

$id = $this->id();

186



$query = \Drupal::entityQuery('bid')

->condition('offer_id', $id)

->condition('user_id', $user_id);

$result = $query->execute();

$bidId = reset($result);

$bid = Bid::load($bidId);

return $bid;

}

In our submitForm() function, before our validation we integrate our revisions. We
save as a new revision if the user raises his bid, we save it as a new bid if he hasn’t
done any bids yet:

// Save as new revision of existing bid if user already has bids

// Save as new bid if not

$offer = Offer::load($form_state->getValue('offer_id'));

if($offer->currentUserHasBids()) {

$bid = $offer->currentUserBid();

$bid->set('bid', $form_state->getValue('bid'));

$bid->set('user_id', ['target_id' => \Drupal::currentUser()->id()]);

$bid->set('offer_id', ['target_id' =>

$form_state->getValue('offer_id')]);

$bid->setNewRevision();

$bid->setRe/**

* Checks if the bid has revisions

* @return bool

*  True if it has, false if it does not

*/

public function hasRevisions() {

$id = $this->id();

$query = \Drupal::entityQuery('bid')

->condition('id', $id);

$count = $query->allRevisions()->count()->execute();

if($count > 1) {

return true;

} else {

return false;

}

}

/**

* Returns list of revision entity ids of the bid. Key is the revision

ID.

* @return array

187



*/

public function getRevisionsList() {

$id = $this->id();

$query = \Drupal::entityQuery('bid')

->condition('id', $id);

$revisions = $query->allRevisions()->execute();

return $revisions;

}

Drupal cores revision system does a great deal of the heavy lifting. We will now add a
‘raise’ icon to our bid table when a bid has been raised. Another possible feature, for
example, is to add actions like sending emails to all other bidders based on this.

To include revision information to our bid table, we’ll add some helper methods to
our entities first. To our custom/bid/src/Entity/Bid.php, we add two methods. The
first is to track if a bid has revisions, the second is a list of all the revision ids:

/**

* Checks if the bid has revisions

* @return bool

*  True if it has, false if it does not

*/

public function hasRevisions() {

$id = $this->id();

$query = \Drupal::entityQuery('bid')

->condition('id', $id);

$count = $query->allRevisions()->count()->execute();

if($count > 1) {

return true;

} else {

return false;

}

}

/**

* Returns list of revision entity ids of the bid. Key is the revision

ID.

* @return array

*/

public function getRevisionsList() {

$id = $this->id();

$query = \Drupal::entityQuery('bid')

->condition('id', $id);

$revisions = $query->allRevisions()->execute();

188



return $revisions;

}

We’ll include these two methods in the
custom/offer/src/OfferPreprocess/OfferPreprocess.php offerTable() method.

💻 use Drupal\Core\Render\Markup; // on top of file

/**

* Returns rendered table below an offer

* @param entity $offer

*  The offer entity

* @return array $table

*  Drupal table render array

*/

public static function offerTable(Offer $offer) {

$bids = $offer->getOfferBids();

$rows = [];

foreach($bids as $bid) {

$price = $bid->get('bid')->getString();

$owner = $bid->getOwner();

$ownerName = $owner->getDisplayName();

$time =

\Drupal::service('date.formatter')->formatTimeDiffSince($bid->created->v

alue);

$updates = '';

$link = '';

if($bid->hasRevisions()) {

$revisions = $bid->getRevisionsList();

// We now have the list of revisions.

// Let's compare the latest bid with the last revision

$current_revision_id = $bid->getLoadedRevisionId();

// We now know the current, we want the one before the current

// We remove the current from the revisions list

unset($revisions[$current_revision_id]);

// And take the last one from the revisions list

$last_revision_id = max(array_keys($revisions));

$revisionBid = \Drupal::entityTypeManager()

->getStorage('bid')

189



->loadRevision($last_revision_id);

$revisionAmount = $revisionBid->get('bid')->getString();

$priceDifference = $price - $revisionAmount;

$updates = '<svg width="24px" height="18px" viewBox="0 0 24 24"

fill="#61f70a" xmlns="http://www.w3.org/2000/svg">

<path d="M6.1018 16.9814C5.02785 16.9814 4.45387 15.7165 5.16108

14.9083L10.6829 8.59762C11.3801 7.80079 12.6197 7.80079 13.3169

8.59762L18.8388 14.9083C19.5459 15.7165 18.972 16.9814 17.898

16.9814H6.1018Z" fill="#61f70a"/>

</svg><small style="color:#0444C4">Last raise was ' .

$priceDifference .'$</small>';

}

$row = [

Markup::create($ownerName . ' - ' . $time . ' ago'),

Markup::create($price . '$' . $updates)

];

$rows[] = $row;

}

$build['table'] = [

'#type' => 'table',

'#rows' => $rows,

'#empty' => t('This offer has no bids yet. Grab your chance!'),

];

return [

'#type' => '#markup',

'#markup' => render($build)

];

}

The result of all this is that in the bid table a notice appears that indicates that the
bid was raised.

190



Revisions are complete entities stored aside from our bid entities. We now took
advantage of this quite complex system to store differences, like a raise of a bid.

Think about the possibilities of this. You could show a detailed table overview or
graphic of the bidding history.

Deleting a bid with a core dialog pop-up

👉 In this chapter we explore the drupal API system further. First, we will create a
delete form to make it possible to delete your own bids. Second, we will open
the form with a core dialog pop-up, to make sure you stay on the page.

Users need to have the possibility to delete a bid when they want to. Again, we use
the standard entity behaviours for the deletion. To custom/bid/src/Entity/bid.php, we
add a delete link:

*   handlers = {

* "access" = "Drupal\bid\BidAccessControlHandler",

* "form" = {

* "delete" = "Drupal\bid\Form\BidDeleteForm",

*     },

*   },

*   links = {

* "delete-form" = "/bid/{bid}/delete",

*   },

We add a route inside custom/bid/bid.routing.yml:

entity.bid.delete_form:

path: '/bid/{bid}/delete'

defaults:

_entity_form: bid.delete

_title: 'Delete bid'

requirements:

_entity_access: 'bid.delete'

We add the delete form itself to custom/bid/src/Form/BidDeleteForm.php:

191



<?php

/**

* @file

* Contains \Drupal\bid\Form\BidDeleteForm.

*/

namespace Drupal\bid\Form;

use Drupal\Core\Entity\ContentEntityConfirmFormBase;

use Drupal\Core\Form\FormStateInterface;

use Drupal\Core\Url;

use Drupal\offer\Entity\Offer;

/**

* Provides a form for deleting a content_entity_example entity.

*

* @ingroup bid

*/

class BidDeleteForm extends ContentEntityConfirmFormBase {

/**

* {@inheritdoc}

*/

public function getQuestion() {

return $this->t('Are you sure you want to delete your bid of

%price$?', array('%price' => $this->entity->get('bid')->getString()));

}

/**

* {@inheritdoc}

*

* If the delete command is canceled, return to the bid list.

*/

public function getCancelUrl() {

$offer_id = $this->entity->get('offer_id')->getString();

$url = new Url('entity.offer.canonical', ['offer' => $offer_id]);

return $url;

}

/**

* {@inheritdoc}

*/

public function getConfirmText() {

return $this->t('Delete');

192



}

/**

* {@inheritdoc}

*

* Delete the entity and log the event. logger() replaces the watchdog.

*/

public function submitForm(array &$form, FormStateInterface

$form_state) {

// Redirect to offer after delete.

$offer_id = $this->entity->get('offer_id')->getString();

$entity = $this->getEntity();

$entity->delete();

$this->logger('bid')->notice('deleted bid %id.',

array(

'%title' => $this->entity->id(),

));

$form_state->setRedirect('entity.offer.canonical', ['offer' =>

$offer_id]);

}

}

This is a standard entity delete form with the exception of the getCancelUrl() and
SubmitForm() methods. There we needed to get the offer ID from the bid to generate
a url to redirect to after deletion or cancel action.

To do this properly, we need again to add an AccessControlHandler. To
custom/bid/src/BidAccessControlHandler.php, add

<?php

namespace Drupal\bid;

use Drupal\Core\Access\AccessResult;

use Drupal\Core\Entity\EntityAccessControlHandler;

use Drupal\Core\Entity\EntityInterface;

use Drupal\Core\Session\AccountInterface;

/**

* Access controller for the bid entity. Controls create/edit/delete

access for entity and fields.

193



*

* @see \Drupal\bid\Entity\Bid.

*/

class BidAccessControlHandler extends EntityAccessControlHandler {

protected function checkAccess(EntityInterface $entity, $operation,

AccountInterface $account) {

$access = AccessResult::forbidden();

switch ($operation) {

case 'view':

$access = AccessResult::allowed;

break;

case 'update':

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

break;

case 'edit':

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

break;

case 'delete':

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

break;

}

return $access;

}

}

?>

This code determines if I am the owner of the bid. This is an important security check!

The final part of this section is to provide a delete link to the bid when a user is the
owner of the bid.

To the custom/offer/src/OfferPreprocess/OfferPreprocess.php OfferTable() we can
now add a delete link:

use Drupal\Core\Link; // on top of file

194



if($bid->access('delete')) {

$url = $bid->toUrl('delete-form');

$link = Link::fromTextAndUrl('Remove bid', $url)->toString();

}

$row = [

Markup::create($ownerName), Markup::create($time.' ago'),

Markup::create($price . '$' . $updates), Markup::create($link)

];

$rows[] = $row;

We clear caches and now we have a delete link on our own bids:

When we click the link, we get redirected to a delete form with cancel and delete link.
We took advantage of the core entity delete form to do this. No need to to access
checks on the form, Drupal core provides us these by default thanks to the Entity API!

195



The confirm page is quite nice. But I prefer to stay on the same page when deleting a
bid. Drupal core offers a nice option to do this: an ajax dialog to render the very same
form in. Let’s see how this works.

We only need to add extra attributes to the delete link. Therefore we’ll use a link
render array. We’ve already used drupal core’s render arrays for tables and drop
buttons. The link render array offers possibilities to add attributes we’ll need to
ajaxify dialogs. We change the offerTable() part where we define the delete link:

if($bid->access('delete')) {

$url = $bid->toUrl('delete-form');

$deleteLink = [

'#type' => 'link',

'#title' => 'Remove bid',

'#url' => $url,

'#attributes' => [

'class' => ['use-ajax', 'button', 'button--small',

'button--danger'],

'data-dialog-type' => 'modal',

'data-dialog-options' =>

\Drupal\Component\Serialization\Json::encode(['title' => t('Remove

bid?'), 'width' => 800,]),

],

];

$link = render($deleteLink);

}

One last thing is that we need to make sure the core drupal ajax wrappers are loaded
as well. To offer/offer.libraries.yml we must add the following dependencies to our
platform library:

platform:

css:

theme:

css/platform.css: {}

dependencies:

- core/drupal.ajax

- core/jquery

- core/drupal

Now clear caches..When we now click ‘Remove bid’, we stay on the same page and
get this very nicely looking dialog:

196



Again a nice example of where drupal does the heavy lifting for us. The dialogs
underlying architecture can change in the future, but will still work because we make
use of the API.

197



Part 5: Transitions, Events, Caching and user
registration

👉 Now that we’ve built the main parts of our software we have the chance to start
with automated tasks like sending emails and the expiration of a bid. But we’ll
also discuss caching and how to handle user registration.

User notifications on transition events
Drupal 8 has significantly decreased the number of hooks it uses. For a number of
events it will use the Event system with Event Subscribers (more about them in the
next sections).

Unfortunately there is no “Event” to subscribe to when an entity switches its state.
Therefore we have to use a hook for notifying when an offer switches from
“published” to “expired”.

I’ve quickly added a third code-only entity named “notification” in a new module. It
stores these values:

Key Description

offer_id The offer the notification is about

user_id The user that has a bid on an offer

type The type of notification (f.e. “expired”)

I’ve also added a handler for access and for views. This way we can add a views
page at url /notifications, to show the notifications for this user.

💻 If you are following along, copy the notification module into your project and
install. Building an entity is something that was covered already!

bash$ drush en notification

[success] Successfully enabled: notification

198

https://www.drupal.org/docs/creating-custom-modules/understanding-hooks
https://www.drupal.org/docs/creating-custom-modules/subscribe-to-and-dispatch-events


We add a hook_entityType_update() function to custom/offer/offer.module:

use Drupal\notification\Entity\Notification;

/**

* Implements hook_ENTITY_TYPE_update().

*/

function offer_offer_update(Drupal\Core\Entity\EntityInterface

$entity) {

// Current Moderation state

$currentState = $entity->get('moderation_state')->getString();

// Original Moderation state

$originalState =

$entity->original->get('moderation_state')->getString();

// Check if transition equals "published" -> "expired"

// Save a notification for all bidders

if(($originalState == 'published') && ($currentState ==

'expired')) {

$bids = $entity->getOfferBids();

foreach($bids as $bid) {

Notification::create([

'type' => 'expired',

'user_id' => ['target_id' => $bid->getOwnerId()],

'offer_id' => ['target_id' => $entity->id()]

])->save();

}

}

}

What this snippet does is the following: it checks if the offer goes from a ‘published’
to a ‘expired’ state. Then it will loop over all the bids on the offer, and create
notification entities for every bidder.

Next I’ve added view support for notification entities, just like we did for our offer
entities.

I’ve added a view and a menu-link for the /notifications page, which will show the
notifications, filtered on the current user.

199



💻 If you have installed the module from the full project code, the view should be
created on install. This is because the config of this view was added via
custom/notification/config/install/views.view.notifications.yml

In a custom views field in
custom/notification/src/Plugin/views/field/NotificationMessage.php the
render(ResultRow $values) function looks like this:

// on top:

use Drupal\offer\Entity\Offer;

use Drupal\Core\Url;

use Drupal\Core\Link;

public function render(ResultRow $values) {

$entity = $values->_entity;

$type = $entity->get('type')->getString();

$offer_id = $entity->get('offer_id')->getString();

$offer = Offer::load($offer_id);

if($type == 'expired') {

$url = Url::fromRoute('entity.offer.canonical', array('offer'

=> $offer->id()));

$link = Link::fromTextAndUrl($offer->label(),

$url)->toRenderable();

$text = 'Offer '. render($link) .' has expired.';

}

return [

'#children' => $text

];

}

This result in the following notification for the bids that I did:

200



We’ve now shown how to create notifications based on workflow states. It’s not hard
to imagine the following possible features with this:

● Send email when someone bids higher than your bid
● Send email to all bidders when offer has expired
● Send email when new offers are available
● ….

To custom/notification/notification.links.menu.yml this was added to get the link in
the user menu:

offer.account.notifications:

title: 'Notifications'

menu_name: account

route_name: view.notifications.page_1

weight: -40

Update entire view with custom ajax callback

👉 In this chapter you will learn how to update a view with a ajax callback. At the
end you will be able to delete/insert/update records, reload a view without
leaving your page.

Ajax is a great technology to refresh parts of a page without actually refreshing the
full page. In general this enhances user experience. The difference between just
using javascript is a server-side callback is included in the call where actual
database operations can be done.

201



For this project, we want to be able to delete notifications in the notifications view. To
start, we create a controller which will be used to delete a notification. This is a
regular controller, but instead of visiting it, only our ajax call will be visiting the class.

Create the routing file custom/notification/notification.routing.yml:

notification.delete:

path: '/notification/delete/{method}/{id}'

defaults:

_controller:

'\Drupal\notification\Controller\NotificationDeleteController::Render'

_title: 'Delete notification?'

requirements:

_access: 'TRUE'

id: '\d+'

method: 'nojs|ajax'

Check out the {method} slug. This can be either ‘nojs’ or ‘ajax’. In the actual link, we
will use ‘nojs’. Drupal will use ajax if it has detected javascript is enabled. This is
good for accessibility. Further, we use a regex for id to be sure it is numeric. Access
checks are done in the controller itself.

To custom/notification/src/Controller/NotificationDeleteController.php:

<?php

namespace Drupal\notification\Controller;

use Drupal\Core\Controller\ControllerBase;

use Drupal\notification\Ajax\DeleteNotificationCommand;

use Drupal\Core\Ajax\AjaxResponse;

use Drupal\notification\Entity\Notification;

use Drupal\Core\Access\AccessResult;

use Symfony\Component\HttpFoundation\RedirectResponse;

use Drupal\Core\Url;

/**

* Class NotificationDeleteController.php.

*/

class NotificationDeleteController extends ControllerBase {

public function Render($id, $method) {

// Load the notification

202



$notification = Notification::load($id);

// Send back users that do not have access

if(!$notification) {

return AccessResult::forbidden();

}

if(!$notification->access('delete')) {

return AccessResult::forbidden();

}

// Delete the notification

$notification->delete();

if($method == 'ajax') {

$response = new AjaxResponse();

$response->addCommand(new DeleteNotificationCommand());

} else {

// no javascript: send back to page

$path = Url::fromRoute('view.notifications.page_1');

$response = new RedirectResponse($path);

$response->send();

}

return $response;

}

}

What stands out is that in this controller the notification gets deleted (if owner) and
our response is an AjaxResponse(). In fact a “deleteNotificationCommand”, which is
a custom one. If javascript is disabled, it sends back a redirect to the view.

Now let’s register the AjaxResponse. To
custom/offer/src/Ajax/DeleteNotificationCommand.php:

<?php

namespace Drupal\notification\Ajax;

use Drupal\Core\Ajax\CommandInterface;

class DeleteNotificationCommand implements CommandInterface {

// Implements Drupal\Core\Ajax\CommandInterface:render().

public function render() {

203



return array(

'command' => 'DeleteNotification',

'selector' => $this->selector,

);

}

}

With this Command, the system knows what to send to javascript. Not that it is also
possible to send data in an extra key. If we would need this, we would call New
DeleteNoficiationCommand($extra) in NotificationDeleteController.php. And then
add ‘extra’ next to ‘command’ and ‘selector’ in our DeleteNotificationCommand. In
the javascript file we’re about to add, the ‘extra’ would be available in the response
argument. But we’ll do another handy trick: refreshing the view after deletion.

To custom/notification/notification.libraries.yml we add a new library for our
notification javascript file:

notification:

js:

js/notification.js: {}

dependencies:

- core/drupal.ajax

- core/jquery

- core/drupal

- views/views.ajax

We add the javascript file custom/notification/js/notification.js:

( function ($) {

// Command to replace element.

Drupal.AjaxCommands.prototype.DeleteNotification = function(ajax,

response, status) {

if(status === 'success') {

$('.view-id-notifications').trigger('RefreshView');

}

}

})(jQuery);

This was the final bit. The DeleteNotification javascript function gets called in the
front-end to make a visible change to the users page. Here, after a successful

204



deletion call, we refresh the view using a built-in trigger. Make sure the ‘use ajax’
option is set to ‘ON’ in your view settings.

To start using it, we extend the
custom/offer/src/Plugin/views/field/NotificationMessage.php render() function
with a “Remove” link:

/**

* {@inheritdoc}

*/

public function render(ResultRow $values) {

$entity = $values->_entity;

$type = $entity->get('type')->getString();

$offer_id = $entity->get('offer_id')->getString();

$offer = Offer::load($offer_id);

if($type == 'expired') {

$url = Url::fromRoute('entity.offer.canonical', array('offer' =>

$offer->id()));

$link = Link::fromTextAndUrl($offer->label(), $url)->toRenderable();

$text = 'Offer '. render($link) .' has expired.';

// Add delete link for removing notifications

$deleteUrl = Url::fromRoute('notification.delete', ['method' =>

'nojs', 'id' => $entity->id()]);

$deleteLink = Link::fromTextAndUrl('Remove',

$deleteUrl)->toRenderable();

$deleteLink['#attributes'] = ['class' => 'use-ajax'];

$deleteText = render($deleteLink);

$output = $text . ' ' . $deleteText;

}

return [

'#children' => $output

];

}

Note we just have to add the ‘use-ajax’ class to trigger the ajax call. We’re done!

205



If we now remove a notification, our view gets updated automatically while staying in
the page.

OO in practice: deletion of bid and notification entities when an
offer gets deleted

👉 In this chapter we will teach how you can remove entities that are linked to other
entities using the preDelete() functions on the entity.

We should think through all of the necessary use-cases of our software: what
happens to bids when somebody deletes his offer? This is a relevant question. The
following entities rely on an offer:

● The bids to the offer
● The notifications about the offer

We must make sure these are deleted as well, when deleting an offer.

Remember the following line in custom/offer/src/Entity/Offer.php:

class Offer extends EditorialContentEntityBase

Let’s drill down how the inheritance goes:
● EditorialContentEntityBase extends ContentEntityBase
● ContentEntityBase extends EntityBase

In Core/Entity/EntityBase.php on line 401 we see this line:

/**

* {@inheritdoc}

*/

public function delete() {

if (!$this->isNew()) {

$this->entityTypeManager()->getStorage($this->entityTypeId)->delete([$th

is->id() => $this]);

}

}

Thanks to these lines, we are able to use $offer->delete() to delete an offer.

206



On line 463 we find this function:

/**

* {@inheritdoc}

*/

public static function preDelete(EntityStorageInterface $storage, array

$entities) {

}

An empty function that gets called right before deletion of an entity. This is the guy
we need! Let’s add this one to our custom/offer/src/Entity/Offer.php, below the
preCreate() function:

/**

* {@inheritdoc}

*/

public static function preDelete(EntityStorageInterface $storage, array

$entities) {

parent::preDelete($storage, $entities);

// Delete all bids and notifications of the offer that will be deleted

foreach ($entities as $entity) {

$entity->deleteAllLinkedBids();

$entity->deleteAllLinkedNotifications();

}

}

/**

* Deletes all bids linked to the offer.

* @param bool $delete

* @throws \Drupal\Core\Entity\EntityStorageException

*/

public function deleteAllLinkedBids($delete = FALSE) {

$id = $this->id();

$query = \Drupal::entityQuery('bid')

->condition('offer_id', $id);

$bidIds = $query->execute();

foreach($bidIds as $id) {

$bid = Bid::load($id);

$bid->delete();

}

}

207



/**

* Deletes all notifications linked to the offer.

* @param bool $delete

* @throws \Drupal\Core\Entity\EntityStorageException

*/

public function deleteAllLinkedNotifications($delete = FALSE) {

$id = $this->id();

$query = \Drupal::entityQuery('notification')

->condition('offer_id', $id);

$notificationIds = $query->execute();

foreach($notificationIds as $id) {

$notification = Notification::load($id);

$notification->delete();

}

}

Now, when a user deletes an offer in the UI, all linked dataparts get removed as well.
This keeps our database clean and prevents orphan entities which could lead to errors.

A good example of the power of Object Oriented programming (OO): we inherited the
preDelete() function and use it in our offer entities. Make sure you take a look at all
the other methods that can be used in EntityBase as well.

As an extra we could add a new notification type to inform the user that an offer he
had done a bid on was deleted, but this would lead us too far away for this course.

Caching in-depth

👉 In this important chapter we dig deeper on the powerful drupal caching API.
After this chapter you will be able to implement complex caching mechanisms
on entities, views and controllers.

Caching is an important aspect that was improved drastically when the drupal
community built drupal 8 from scratch (it was a complete rewrite of drupal 7). More
specifically it added great control over which portions of your page you would like to
have cached and how.

208



Cache API
types

What Example Example code

Cache tags For
dependencies
on data like
entities and
configuration

A block that needs
to be refreshed
when a node entity
with id 68 is
changed.

public function

getCacheTags() { return

Cache::mergeTags(parent::

getCacheTags(),

array('node:68')); }

Cache
contexts

For variations,
i.e.
dependencies
on the request
context

Cache a block
differently on
every path.

Or cache a block
differently for
every user.

public function

getCacheContexts() {

return ['url.path']; }

public function

getCacheContexts() {

return ['user']; }

Cache
max-age

For
time-sensitive
caching, i.e.
time
dependencies

Never cache this
block.

Cache 1 day, then
renew each day

public function

getCacheMaxAge() { return

0; }

public function

getCacheMaxAge() { return

86400; }

Certainly interesting to check out
https://www.drupal.org/docs/drupal-apis/cache-api to see all contexts, available
tags etc.

Caching of views pages

👉 This short and theoretical chapter explains how caching works on view listings.

For our offering platform, let’s start with the /offer page. This is a views page. It has
caching support in the settings. On the right bottom corner of
/admin/structure/views/view/offer:

209

https://www.drupal.org/docs/drupal-apis/cache-api


Set “Caching”  to “Tag based”. Because this view only looks for entities of type ‘offer’,
it will automatically invalidate when new offers are added.

💻 I can check this in the “headers” tab of the network profile in my developer tools:

X-Drupal-Dynamic-Cache: HIT means I’ve got myself a cached page. If I add a
new offer, this is what I get the first time I render the page:

So, the first time this views page gets rendered it goes in the cache until a new
offer is added. This way I’m sure the page will be loaded very quickly.

Caching of custom entity pages

210



👉 In this chapter we explore the caching mechanisms behind the detail page of an
entity.

Great news for our custom entity detail pages. Drupal 8 has an automatic caching
system by default that is pretty amazing, which makes it possible to provide caching
without any configuration.

💻 Make sure the core module “Internal dynamic page caching”
(dynamic_page_cache) is enabled to properly cache your entities.

But be sure to check this. It is why in an earlier chapter I advised to keep forms in
blocks instead of trying to render them IN your entity. If I had added the form in my
preprocess() functions I would have got this header:

The X-Drupal-Dynamic-Cache: UNCACHEABLE response header says our page is
definitely not cached. A useful help is to add the following (development) setting to
your services.yml file:

http.response.debug_cacheability_headers: true

Refreshing the page resulted in the following response headers (with my form inside
my entity):

The nice part about this is we get more information about all the cache contexts and
cache tags of our page. The drupal entity cache should work by default so when I use
the block to show my form I get the desired result:

211



I have my cached entity again. This works pretty smart. Any update on the entity will
clear the caches for it. For our form and bidding table, we need to use more
advanced caching techniques like contexts and cache tags.

Caching was a pain-point in drupal 7, in drupal 8 and later it is definitely one of the
strengths!

Use of cache contexts and cache tags for caching custom blocks

👉 This chapter digs deeper on cache tags and how to invalidate caches on a
custom block, when something happens like an entity update.

How can we properly cache our bid table for our users? We want two things:
● A table cached uniquely for our page (i.e. based on the entity we are looking

at)
● A table that gets updated when a new bid is added

To make it uniquely for our page, remove the max-age:0 based caching that was
currently set in custom/offer/src/Plugin/Block/OfferBiddingTableBlock.php and
add:

use Drupal\Core\Cache\Cache; // on top of file

/**

* Cache per page

*/

public function getCacheContexts() {

return ['url.path'];

}

This way we are sure we cache a bidding table that is different per page. But of
course we need to have it changed once there are new bids.

212



/**

* Invalidate caches when there are new bids

*/

public function getCacheTags() {

$offer = $this->requestStack->getCurrentRequest()->get('offer');

$offerId = $offer->id();

return Cache::mergeTags(parent::getCacheTags(),

array('offer:'.$offerId));

}

While this will update the table when our offer entity gets updated, this won’t update
the table when there is a new bid, yet.

We add an invalidateTags() command on the offer whenever there is a new bid on the
offer. This way we have two nice advantages:

● We automatically update offer teasers to show an update on the amount of
bids

● We automatically invalidate caches of the OfferBiddingTableBlock, to show
the latest bids

We go back to our custom/offer/src/Plugin/Form/OfferBiddingForm.php. More
specifically in the submitForm() method we add the invalidateCacheTags() command
on the current offer:

use Drupal\Core\Cache\Cache; // on top of file

if($validation === 0) {

$bid->save();

Cache::invalidateTags($offer->getCacheTags());

\Drupal::messenger()->addMessage($this->t('Your bid was successfully

submitted.'));

} else {

\Drupal::messenger()->addWarning($violations[0]->getMessage());

}

With rather easy commands, we are now able to have custom-tailored caching
working!

213



Use of cacheable dependencies in render arrays

👉 This chapter will expand your knowledge on caching a little more. More
specifically Cacheable Dependencies. With this API we can add caching
dependent of certain situations.

To make dealing with cacheability metadata (cache tags, cache contexts and
max-age) easier, Drupal 8 has CacheableDependencyInterface. It is implemented by
a majority of objects you interact with while writing Drupal 8 code!

Because not only controllers or blocks need to have caching, also access results,
menu links, context plugins, condition plugins, and so on.

You might remember the following from our chapter on access:

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($en

tity);

This means that access to the entity gets cached for each user and this will be
invalidated when the entity changes. That’s why we get access to an offer as soon its
workflow state changes from draft to published.

We’ll use this in the following example. Remember our form with global configuration
from the chapter on configuration management? Let’s extend it with a textarea field.
We want to create a “About” page with the content of that textarea field. I only want
the caches to invalidate when the content of the textarea (which is config) is
changed.

To custom/offer/src/Form/OfferSettingsForm we add to the buildForm() method:

$form['content'] = array(

'#type' => 'details',

'#title' => $this->t('Content'),

'#open' => TRUE,

);

$form['content']['about'] = [

'#type' => 'text_format',

'#title' => $this->t('About page'),

214

https://www.drupal.org/docs/8/api/cache-api/cacheabledependencyinterface-friends


'#default_value' => $config->get('about'),

'#maxlength' => NULL,

];

Extend the submitForm method:

$this->config('offer.customconfig')

->set('tagmanager', $form_state->getValue('tagmanager'))

->set('about', $form_state->getValue('about')['value'])

->save();

Notice the use of ‘text_format’ instead of textarea. This makes my textarea render
with a ckeditor wysiwyg overlay at /admin/config/offer/adminsettings. I add some
text to it and save:

Okay, I move on with adding a controller.

First, the route and the access to custom/offer/offer.routing.yml:

offer.about:

path: '/about'

defaults:

_controller: '\Drupal\offer\Controller\AboutPageController::Render'

title: 'About us'

requirements:

_access: 'TRUE'

215



The page will be accessible for all users, hence the _access: ‘True’ parameter. Next, I
add custom/offer/src/Controller/AboutPageController.php:

<?php

namespace Drupal\offer\Controller;

use Drupal\Core\Controller\ControllerBase;

/**

* Class AboutPageController

*/

class AboutPageController extends ControllerBase {

public function Render() {

$config = \Drupal::config('offer.customconfig');

$build = [

'#markup' => $config->get('about'),

];

$renderer = \Drupal::service('renderer');

$renderer->addCacheableDependency($build, $config);

return $build;

}

}

Add the menu item to the menu at offer.links.menu.yml:

offer.main.about:

title: 'About'

menu_name: main

route_name: offer.about

weight: 80

Clear caches and visit your page. Like always, the very first time this page ever gets
visited it goes into the cache. Next time, everyone gets a correctly caches page:

But when I add a new line of text to the About configuration textarea and save:

216



Very nice. Again we controlled precisely when and where the caches needed to be
emptied.

💻 We’ve now learned that we can use cacheable dependencies for every
renderable object we use in our drupal installation.

Cache menu items with a custom cache tag

👉 This chapter is about how to add caching mechanisms to plugins. At the end
you will be able to provide your system with a menu item with a counter, that is
cached the way you want it.

Remember the section about custom menu links. We added a menu link with a
counter, to show the amount of offers this user has. This is a query for this user only.
One strategy could be to never cache this. But doing a custom query on every page
load is not good practice.

This is where custom cache tags come into play. Let’s head back to the
custom/offer/src/Plugin/Menu/MyOffers.php and we remove the
getCacheMaxAge() function. Instead we add:

use Drupal\Core\Cache\Cache; // on top of file

/**

* {@inheritdoc}

*/

public function getCacheTags() {

return Cache::mergeTags(parent::getCacheTags(),

array('my_offers_user_'. \Drupal::currentUser()->id()));

}

This is a unique cache tag for this user only. The menu item will only get queried
again when this specific cache tag gets invalidated.

217



We must make sure to invalidate this whenever:
A) A new offer is added
B) A new offer is deleted

We need to add postCreate() and postDelete() methods in
custom/offer/src/Entity/offer.php:

use Drupal\Core\Cache\Cache; // on top of file

/**

* {@inheritdoc}

*/

public function postCreate(EntityStorageInterface $storage) {

Cache::invalidateTags(['my_offers_user_'. $this->getOwnerId()]);

}

/**

* {@inheritdoc}

*/

public static function postDelete(EntityStorageInterface $storage,

array $entities) {

parent::preDelete($storage, $entities);

// Delete all bids and notifications of the offer that will be

deleted

foreach ($entities as $entity) {

$entity->deleteAllLinkedBids();

$entity->deleteAllLinkedNotifications();

Cache::invalidateTags(['my_offers_user_'. $entity->getOwnerId()]);

}

}

That’s it! Whenever an offer is added or deleted, the custom cache tag for this user
gets invalidated. Again, another example of the power of Object oriented coding and
the great caching system of drupal.

Invalidate cache of another entity after saving

👉 In this chapter more about invalidating caches of an entity dependent on other

218



linked entities.

On building the platform, I stumbled upon the following. Whenever I added bids to an
offer, the teaser kept saying ‘0 offers so far’. This makes sense, because my offer did
not know about new bids. Bids are just entities being stored in its own table.

To solve this issue I inherit the postSave() and postDelete() method from
ContentEntityBase() to my bid entity. To custom/offer/src/Entity/bid.php add the
following:

// Add this on top of the file

use Drupal\Core\Cache\Cache;

use Drupal\offer\Entity\Offer;

/**

* {@inheritdoc}

*/

public function postSave(EntityStorageInterface $storage,

$update = TRUE) {

parent::postSave($storage, $update);

$offer = Offer::load($this->get('offer_id')->target_id);

Cache::invalidateTags($offer->getCacheTagsToInvalidate());

}

/**

* {@inheritdoc}

*/

public static function postDelete(EntityStorageInterface

$storage, array $entities) {

parent::preDelete($storage, $entities);

// Invalidate all caches of offers whenever bids are deleted

foreach ($entities as $entity) {

$offer = Offer::load($entity->get('offer_id')->target_id);

if($offer) {

Cache::invalidateTags($offer->getCacheTagsToInvalidate());

}

}

}

219



With these changes, after a bid gets saved or deleted it will invalidate the caches of
the offer the bid is for. This way, our offer teaser gets updated wherever it is visible in
the system whether it is on the entity detail page or in a views listing.

We got an insight into the various possibilities of caching in drupal 9. I dare to say the
caching system is one of the most advanced out there. Once you get comfortable, it is
set up very rapidly.

Dispatch custom Events with an EventSubscriber to redirect
users

👉 In this chapter more about the Event system in drupal. Moreover you get an
insight into how to add an EventSubscriber and how to dispatch the event. At the
end you will be able to define and catch certain events and attach actions to
them.

There are still a few things left unfinished about our software. Our homepage still
redirects to our users page. We set the standard homepage to our offer page at
/admin/config/system/site-information. Fill in “/offer” at the default front page
textfield. This way, we get the overview with the offers as our frontpage.

We’ve told earlier that drupal is moving away (slowly) from the hook system. We will
learn how to redirect users on login with an EventSubscriber.

From the symfony documentation:

Symfony triggers several events related to the kernel while processing the HTTP
Request. Third-party bundles may also dispatch events, and you can even dispatch
custom events from your own code.

For dispatching own events, we have to add an Event and an EventSubscriber service
to our module.

We start with adding an Event at custom/offer/src/Event/UserLoginEvent.php:

<?php

220



namespace Drupal\offer\Event;

use Drupal\user\UserInterface;

use Symfony\Contracts\EventDispatcher\Event;

/**

* Event fired when a user logs in.

*/

class UserLoginEvent extends Event {

const EVENT_NAME = 'offer_user_login';

/**

* The user account.

*

* @var \Drupal\user\UserInterface

*/

public $account;

/**

* Constructs the object.

*

* @param \Drupal\user\UserInterface $account

*   The account of the user logged in.

*/

public function __construct(UserInterface $account) {

$this->account = $account;

}

}

This is simply telling our system this event exists (in the same way we added files to
the Ajax directory). Next we have to add a ‘subscriber’ which handles the aftermath
of when the event is triggered, like a redirection or a log:

To a new file offer.services.yml we add:

services:

offer_login.event_subscriber:

class: Drupal\offer\EventSubscriber\UserLoginSubscriber

arguments: [ '@path.matcher', '@current_user' ]

tags:

- { name: event_subscriber }

221



To a new folder we add
custom/offer/src/EventSubscriber/UserLoginSubscriber.php:

<?php

namespace Drupal\offer\EventSubscriber;

use Drupal\offer\Event\UserLoginEvent;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

use Symfony\Component\HttpFoundation\RedirectResponse;

/**

* Class UserLoginSubscriber.

*

* @package Drupal\custom_events\EventSubscriber

*/

class UserLoginSubscriber implements EventSubscriberInterface

{

/**

* {@inheritdoc}

*/

public static function getSubscribedEvents()

{

return [

UserLoginEvent::EVENT_NAME => ['onUserLogin', 29]

];

}

/**

* Subscribe to the user login event dispatched.

*

* @param \Drupal\custom_events\Event\UserLoginEvent $event

*   Dat event object yo.

*/

public function onUserLogin(UserLoginEvent $event)

{

$username = \Drupal::currentUser()->getDisplayName();

\Drupal::messenger()->addStatus(t('Welcome %name, happy bidding!', [

'%name' => $username,

]));

$response = new RedirectResponse("/");

$response->send();

}

222



}

An event subscriber is a PHP class that’s able to tell the dispatcher exactly which
events it should subscribe to. It implements the
Symfony\Component\EventDispatcher\EventSubscriberInterface interface, which
requires a single static method called getSubscribedEvents() which shows the
priority of each listener method. The higher the number, the earlier the method is
called. Note that we added a higher number than dynamic page cache, otherwise the
system could miss the event!

The last thing we need to do is telling the system when to dispatch the event. In our
case it is when a user logs in. Therefore we hook into the user login form in
custom/offer/offer.module:

/*

* Implements hook_user_login()

*/

function offer_user_login($account) {

// Instantiate our event.

$event = new UserLoginEvent($account);

// Get the event_dispatcher service and dispatch the event to fire the

event.

$event_dispatcher = \Drupal::service('event_dispatcher');

$event_dispatcher->dispatch(UserLoginEvent::EVENT_NAME, $event);

}

Make sure to clear caches the first time to make sure everything is registered
correctly. Next time you login, we get redirected to the frontpage and get a
welcoming message:

We learned to create custom Events and how to subscribe to them. The nice thing
about custom events is that we can fire them whenever we would like to. In this case
an event on logging in, but we could also fire logging events or e-mail events on
multiple occasions. A very powerful feature of drupal 9, with as special thanks to
symfony!

223

https://github.com/symfony/symfony/blob/5.2/src/Symfony/Component/EventDispatcher/EventSubscriberInterface.php


Customize the user registration process with a
RouteSubscriber

With all the things we learned so far, it is interesting to take a look at the core user
module. You’ll find out that users are nothing more than an entity. The core
registration, login and password forms are entity forms with a bit of custom logic
attached.

The core user register form looks like this:

224



This form is not exactly what we wanted. We’d like a registration with name, e-mail
address and password only. I want to on-board users more rapidly and worry about
verification later. How do we change this?

Using a typical drupal hook hook_form_alter() could do the job, but is tricky in my
opinion because we do not have control on how the default form will evolve in the
future. Well, it’s not that tricky I guess but I prefer to keep control in code. Thus, a
safer option would be to show a different form on this page.

At /admin/config/people/accounts/form-display we can change the entity forms
display. A view mode for ‘register’ (the registration page) is present. Check the box
and save. This way, we can build the registration form.

This results in the following form settings at
/admin/config/people/accounts/form-display/register:

225



Drupal core combines User name and password in one form field, and what we want
is a form that asks first for an e-mail and then automatically offers access to the
platform. We want to grant a 1-hour access before the user has to validate it’s
address.

Seems like something to do with a custom form instead of an entityform. We add
custom/offer/src/Form/RegistrationForm.php:

<?php

namespace Drupal\offer\Form;

226



use Drupal\Core\Form\FormBase;

use Drupal\Core\Form\FormStateInterface;

use Drupal\user\Entity\User;

use Drupal\Component\Utility\Xss;

class RegistrationForm extends FormBase {

/**

* @return string

*   The unique string identifying the form.

*/

public function getFormId() {

return 'offer_registration_form';

}

/**

* Form constructor.

*

* @param array $form

*   An associative array containing the structure of the form.

* @param \Drupal\Core\Form\FormStateInterface $form_state

*   The current state of the form.

* @param \Drupal\offer\Entity\Offer $offer

*   The offer entity we're viewing

*

* @return array

*   The form structure.

*/

public function buildForm(array $form, FormStateInterface $form_state,

$offer = NULL) {

$form['email'] = [

'#type' => 'email',

'#attributes' => array(

' type' => 'email', // note the space before attribute name

),

'#title' => $this->t('Your email address'),

'#required' => TRUE,

];

$form['username'] = [

'#type' => 'textfield',

'#attributes' => array(

' minlength' => 2, // note the space before attribute name

227



),

'#title' => $this->t('Your name'),

'#required' => TRUE,

];

$form['password'] = [

'#type' => 'password',

'#attributes' => array(

' type' => 'password', // note the space before attribute name

' minlength' => 8

),

'#title' => $this->t('Your password'),

'#description' => $this->t('Should be minimum 8 characters.'),

'#required' => TRUE,

];

// Group submit handlers in an actions element with a key of

"actions" so

// that it gets styled correctly, and so that other modules may add

actions

// to the form. This is not required, but is convention.

$form['actions'] = [

'#type' => 'actions',

];

$form['actions']['submit'] = [

'#type' => 'submit',

'#value' => $this->t('Register'),

];

return $form;

}

/**

* Validate the input values of the form

*

* @param array $form

* @param \Drupal\Core\Form\FormStateInterface $form_state

*

*/

public function validateForm(array &$form, FormStateInterface

$form_state)

{

parent::validateForm($form, $form_state);

228



// Server side validation for email

if

(!\Drupal::service('email.validator')->isValid($form_state->getValues()[

'email'])) {

$form_state->setErrorByName('Email', $this->t('Email address is

not a valid.'));

}

// Check if username exists

$user_exists =

user_load_by_name(Xss::filter($form_state->getValues()['username']));

if(!empty($user_exists)) {

$form_state->setErrorByName('username', $this->t('An account with

this username already exists.'));

}

// Check if email exists

$ids = \Drupal::entityQuery('user')

->condition('mail',

Xss::filter($form_state->getValues()['email']))

->range(0, 1)

->execute();

if(!empty($ids)){

$form_state->setErrorByName('email', $this->t('An account with

this email address already exists.'));

}

// check if pass = minimum 8 characters server-side

if(strlen($form_state->getValues()['password']) < 8) {

$form_state->setErrorByName('password', $this->t('Minimum length

of password needs to be 8 characters.'));

}

}

/**

* Form submission handler.

*

* @param array $form

*   An associative array containing the structure of the form.

* @param \Drupal\Core\Form\FormStateInterface $form_state

*   The current state of the form.

*/

public function submitForm(array &$form, FormStateInterface

$form_state) {

229



$user = User::create();

$user->enforceIsNew();

$user->setEmail($form_state->getValues()['email']);

$user->setUsername($form_state->getValues()['email']); //This

username must be unique and accept only a-Z,0-9, - _ @ .

$user->setPassword(Xss::filter($form_state->getValues()['password']));

$user->activate();

$user->save();

user_login_finalize($user); // logs a new session etc.

// This will redirect with UserLoginEvent

}

}

This form asks for a name, mailing address and password and then creates the user
and automatically logs the user in.

Note: on a production website we would have to verify the email of the user and
probably add a reCaptcha spam detection. We will skip this in this course.

But how do we get this form at the core /user/register place? We can dispatch a
RouteSubscriber event for this. It allows custom code to listen for dynamic routing
events.

Any route - whether statically defined in a YAML file, as seen in the introductory
example, or a dynamic route as described in Providing dynamic routes - can be
altered. You can do so by modifying a RouteCollection using an EventSubscriber
triggered by the RoutingEvents::ALTER event.

We add a new service to custom/offer/offer.services.yml:

services:

... // already 1 service here

offer.route_subscriber:

class: Drupal\offer\Routing\RouteSubscriber

tags:

- { name: event_subscriber }

Now, add the file RouteSubscriber.php to custom/offer/src/Routing:

230

https://www.drupal.org/docs/drupal-apis/routing-system/altering-existing-routes-and-adding-new-routes-based-on-dynamic-ones


<?php

namespace Drupal\offer\Routing;

use Drupal\Core\Routing\RouteSubscriberBase;

use Symfony\Component\Routing\RouteCollection;

/**

* Listens to the dynamic route events.

*/

class RouteSubscriber extends RouteSubscriberBase {

/**

* {@inheritdoc}

*/

protected function alterRoutes(RouteCollection $collection) {

$entityUserRegisterFormRoute = $collection->get('user.register');

if ($entityUserRegisterFormRoute) {

$entityUserRegisterFormRoute->setDefaults([

'_form' => '\Drupal\offer\Form\RegistrationForm',

'_title' => 'Create your offer platform account',

]);

}

}

}

If we clear caches, our custom form appears on the /user/register route:

231



This is powerful stuff. With this routeSubscriber we can basically override any of the
default routes in drupal core. We basically changed the behaviour of registered
routes in drupal.

The validateForm() and submitForm() methods guard our input and make sure the
user does not exist yet. Because we already listen to the login event (remember this
from a previous tutorial), the new user gets redirected to the homepage
automatically.

For our platform, this 1-step log in will on-board many more users than the core user
register form.

232



We could attach an Event to send out an email for verifications and so forth. This leads
us too far for this course but is something you would do on a software in production.
In the meantime you could let users have a bid and put an unverified label to their
profile.

Finishing up the platform
This course was quite a ride. While this stays just a course and the software is not
ready for production use I added the following stuff that isn’t covered because it is
either repetitive stuff from earlier chapters or it leads too far:

● I added a RedirectProfilePageToProfileSubscriber Event Subscriber to redirect
the profile page to the edit page of the user. You’ll find out you need this quite
a lot! Note: for this platform, user profiles wouldn’t be a bad thing though not
the focus of this course. Tip: to make this page a bit more production-ready,
remove unnecessary fields at /admin/config/people/accounts/form-display

● I added an OfferExpiredController just like the OfferPublishController. This is
used to set the moderation state from published to expired. Affected files are
offer.routing.yml to add a new route, OfferDynamicOperationLInks plugin to
add the link. Result is this:

● I’ve created a view mode ‘compact’ for the users, added a profile image and
added them to the offer teaser and full template, and to the bid table. A good
example on how to render a custom entity. I spiced it up a little with css. Take
a look at offer.module and user--compact.html.twig to see how I did it. The
trick was to alter the template suggestion so that we could override the twig
of the user module. Last step was to edit the OfferBiddingTable to add the
user teasers. This is how the integration looks:

233



● Copy the SeedDataGenerator.php from the final platform code to yours. It is
extended with some extra users and offers. Remove your own test users,
offers (drush entity:delete offer) with drush and create your offers and users
like in the Seed Data chapter:

drush offer-create-seeds

Log in with username “test” and password “test” and add a profile image.
Place a bid on an offer and it will look like this:

These things were left unfinished:

● Every modern platform should have a responsive lay-out with a mobile-first
approach. This was far from the purpose of this course. We stayed away from
theming. Maybe I’ll create a course about this later! Personally I like building
custom themes with Tailwind css.

● The registration form should contain some sort of spam prevention. Take a
look at some ReCaptcha modules on drupal.org to do the trick.

● On a production platform we’d use cron jobs to do some tasks (and
automated drupal cleanup tasks). hook_cron() is used for this.

💻 Download the latest project files here:
https://stefvanlooveren.me/download/8cb8b68a0242ac130003?i=g

Also, check out the changelog and subscribe to the mailing list at
https://stefvanlooveren.me/courses/drupal-9-framework to stay updated
about changes and new chapters in the future.

234

https://stefvanlooveren.me/download/8cb8b68a0242ac130003?i=g
https://stefvanlooveren.me/courses/drupal-9-framework

