
Ethical Hacking and
CountermeasuresCountermeasures
Version 6

Mo dule XXIVMo dule XXIV

Buffer Overflows

News

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Source: http:/ / w w w .new s.com /

Scenario

It was a job that Tim wanted right from the start of his

career. Being a Project Manager at a well-known software

firm was definitely a sign of prestige. But now, his

credibility was at stake.

The last project that Tim handled failed to deliver because

the application crashed. The customer of Tim's company

suffered a huge financial loss. g

At the back of his mind, something was nagging Tim...

Had he asked his Test Engineers to do a thorough testing of

h d l d k h ld h h dthe delivered package, this would not have happened.

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Module Objective

• Buffer Overflows
R f b ff fl tt k

This module will familiarize you with :

• Reasons for buffer overflow attacks
• Understanding Stacks and Heaps
• Types of buffer overflow
• Detecting buffer overflows in a programg p g
• Attacking a real program
• Defense Against Buffer Overflows
• Buffer overflow detection tools
• Libsafe • Libsafe
• Simple buffer overflow in C

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Module Flow

Buffer Overflows Attacking a real program

Reasons for
Buffer Overflow Attacks

Defense Against
Buffer Overflows

Understanding

Buffer Overflow Attacks

Buffer overflow

Buffer Overflows

g
Stacks and Heaps

Libsafe

detection tools

Si l b ff fl i C Detecting buffer

Libsafe Types of buffer overflow

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Simple buffer overflow in C Detecting buffer
overflows in a program

Real World Scenario

Source: http:/ / w w w .heise-online.co.uk/

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Why are Programs/ Applications
VulnerableVulnerable

Boundary checks are not done fully or in most cases they are skipped entirelyBoundary checks are not done fully or, in most cases, they are skipped entirely

Programming languages such as C have errors in itProgramming languages, such as C, have errors in it

The strcat(), strcpy(), sprintf(), vsprintf(), bcopy(), gets(), and scanf()calls in C
language can be exploited because these functions do not check to see if the language can be exploited because these functions do not check to see if the
buffer, allocated on the stack, is large enough for the data copied into the buffer

P / li ti t dh d t d i tiPrograms/ appli cations are not adhered to good programming practices

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Buffer Overflows

A generic buffer overflow occurs when a buffer that has been allocated a
ifi h d i d i h i h dlspecifi c storage space, has more data copied to it than it can handle

Consider the following source code. When the source is compiled and turned
into a program and the program is run it will assign a block of memory 32 into a program and the program is run, it will assign a block of memory 32
bytes long to hold the name string

#include<stdio.h>
int main (int argc char ** argv)int main (int argc , char argv)

{
char target[5]=”TTTT”;
char attacker[11]=”AAAAAAAAAA”;
strcpy(attacker,” DDDDDDDDDDDDDD”);
printf(“% \ n”,target);
return 0;

}

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

This type of vulnerability is prevalent in UNIX- and NT-based systems

Reasons for Buffer Overflow
AttacksAttacks

Buffer overflow attacks depend on two things:

• The lack of boundary testing
• A machine that can execute a code that resides in the data/ stack segment

The lack of boundary is common and, usually, the program ends with the
segmentation fault or bus error

In order to exploit buffer overflow to gain access to or escalate privileges the In order to exploit buffer overflow to gain access to or escalate privileges, the
offender must create the data to be fed to the application

Random data will generate a segmentation fault or bus error, never a remote g g ,
shell or the execution of a command

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Knowledge Required to Program
Buffer Overflow ExploitsBuffer Overflow Exploits

C f ti d th t kC functions and the stack

A littl k l d f bl / hi lA littl e knowledge of assembly/ machine language

Ho s stem calls a e made (at the machine code le el)How system calls are made (at the machine code level)

e ec() s stem callsexec() system calls

Ho to guess some ke parameters

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

How to guess some key parameters

Understanding Stacks

The stack is a (LIFO) mechanism
that computers use to pass
arguments to functions as well as to
refer to the local variables SPrefer to the local variables

It acts like a buffer, holding all of the

BP
anywhere
within the

SP
points
here

It acts like a buffer, holding all of the
information that the function needs

within the
stack
frame

The stack is created at the beginning
of a function and released at the end
of it

Stack
growth
direction

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

direction

Understanding Heaps

The heap is an area of memory utilized by an application and
is allocated dynamically at the runtimeis allocated dynamically at the runtime

Static variables are stored on the stack along with
the data allocated using the malloc interfacethe data allocated using the malloc interface

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Sim ple H e ap Co n te n ts

Types of Buffer Overflows: Stack-
Based Buffer OverflowBased Buffer Overflow

A stack overflow occurs when a buffer has been overrun in the stack space

Malicious code can be pushed on the stack

The overflow can overwrite the return pointer so that the flow of control switches to the
malicious code

C language and its derivatives offer many ways to put more data than anticipated into a
buffer

Consider an example program given on the next slide for simple uncontrolled overflow

• The program calls the bof() function

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

p g
• Once in the bof() function, a string of 20 As is copied into a buffer that holds 8 bytes, resulting in a

buffer overflow

A Simple Uncontrolled Overflow of
the Stackthe Stack

/* This is a program to show a simple unco ntrolled overflow of the stack. It will

overflow EIP with 0x41414141, which is AAAA in ASCII. */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int bof()

{

char buffer[8]; /* an 8 byte char acter buffer */

strcpy(buffer,"AAAAAAAAAAAA AAAAAAAA"); /*copy 20 bytes of A into the buffer*/

return 1; /*return this will cause an access violation due to stack corruption */return 1; /*return , this will cause an access violation due to stack corruption . */

}

int main(int argc, char **argv)

{

bof(); /*call our function*/

/*print a short message, execution will never reach this poin t because of the

overflow*/

printf(“Lets Go\n");

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

return 1; /*leaves the main function*/

}

Stack Based Buffer Overflows

Bottom of Stack

Data on Stack
S

Bottom of Stack

Data on Stack
S

Bottom of Stack

Data on Stack
S

Some data
may be Segment

SP

Segment

Return Address4 Bytes

Segment

New Return Address

may be
overwritten

4 Bytes

More Data on
Stack Segment

n Bytes Overwritten Data
on Stack Segment

Machine Code. Ex.
Execve(/ bin/ sh)

n Bytes +
new data

End of Stack

k h k ll

SP SP

k h f i

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

A No rm al Stack Stack, w he n Attacke r calls
a fun ctio n

Stack, w he n fun ctio n
sm ashe s a s tack

Types of Buffer Overflows: Heap-
Based Buffer OverflowBased Buffer Overflow

Variables that are dynamically allocated with functions such as Variables that are dynamically allocated with functions, such as
malloc(), are created on the heap

In a heap-based buffer overflow attack, an attacker overflows a buffer
that is placed on the lower part of heap, overwriting other dynamic
variables, which can have unexpected and unwanted effects

If an application copies data without first checking whether it fits into
the target destination, the attacker could supply the application with a
piece of data that is large, overwriting heap management information

In most environments, this may allow the attacker to control over the
program’s execution

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

program s execution

Heap Memory Buffer Overflow Bug

/*heap1.c – the simplest of heap overflows*/
#include <stdio.h>
#i l d dlib h#i nc l ude <st dlib . h>

int main(int argc, char *argv[])
{{

char *input = malloc (20);
char *output = malloc (20);

strcpy (output, "normal output");
strcpy (input, argv[1]);

printf ("input at %p: %s\n", input, input);
printf ("output at %p: %s\n", output, output);

printf(" \ n\ n%s\ n" , output);

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

printf(\ n\ n%s\ n , output);
}

Heap-Based Buffer Overflow

input=malloc(20); output=malloc(20);

“normal output\ 0”XXXXXXXXXXXXXXXXXXXX

output malloc(20);

normal output\ 0XXXXXXXXXXXXXXXXXXXX

H e ap: Be fo re Ove rflo w

input=malloc(20); output=malloc(20);

rdfnordfnord\ 0fnordfnordfnordfnordfnord fn0

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

H e ap: Afte r Ove rflo w

Understanding Assembly Language

The two most important operations in a stack:The two most important operations in a stack:

• 1. Push – put one item on the top of the stack
• 2. Pop – "remove" one item from the top of the stack

T i l l h i d b i d h Typicall y, returns the contents pointed to by a pointer and changes
the pointer (not the memory contents)

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Shellcode

Shellcode is a method to exploit stack-based overflowsShellcode is a method to exploit stackbased overflows

Shellcodes exploit computer bugs in how the stack is handledp p g

Buffers are soft targets for attackers as they overflow easily if the
conditions match

"\x2d\x0b\xd8\x9a\xac\x15\xa1\x6e \x2f\x0b\xdc\xda\x 90\x0b\x80\x0e"

conditions match

"\x92\x03\xa0\x08\x94 \ x1a\ x80\ x0a\ x9c \ x03\ xa0\ x10\ xec\x3b \ xbf \ x f0"

"\xdc\x23\xbf\xf8\xc0\x23\xbf\x fc\x82\x10\x20\x3b\xaa\x10\x3f\xff"

"\x91\xd5\x60\x01\x90\x1b\xc0\x 0f\x82\x10\x20\x01\x91\xd5\x60\x01"

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

How to Detect Buffer Overflows
in a Programin a Program

There are two ways to detect buffer overflows:There are two ways to detect buffer overflows:

One way is to look at the source code

• In this case, the hacker can look for strings declared as local variables in
functions or methods and verify the presence of boundary checks

• It is also necessary to check for improper use of standard functions,
especially those related to strings and input/ output

Another way is to feed the application with huge amounts of data
and check for the abnormal behavior

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Attacking a Real Program

Assuming that a string function is being exploited, the attacker can g g g p ,
send a long string as the input

This string overflows the buffer and causes a segmentation errorThis string overflows the buffer and causes a segmentation error

The return pointer of the function is overwritten, and the attacker po o o o , d
succeeds in altering the flow of execution

If th h t i t hi d i th i t h / h h tIf the user has to insert his code in the input, he/ she has to:

• Know the exact address on the stack
• Know the size of the stack

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

• Make the return pointer point to his code for execution

NOPS

Most CPUs have a No Operation (NOP) instruction – it does nothing but advance the
instruction pointerinstruction pointer

Usually, you can put some of these ahead of your program (in the string)

As long as the new return address points to a NOP, it is OK

Attacker pads the beginning of the intended buffer overflow with a long run of NOP
instructions (a NOP slide or sled) so the CPU will do nothing until it gets to the 'main
event' (which preceded the 'return pointer')

Most intrusion detection systems (IDSs) look for signatures of NOP sleds

ADMutate(by K2) accepts a buffer overflow exploit as input and randomly creates a

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

ADMutate(by K2) accepts a buffer overflow exploit as input and randomly creates a
functionally equivalent version (polymorphism)

How to Mutate a Buffer Overflow
ExploitExploit

For the NOP portion

• Randomly replace the NOPs with functionally equivalent segments
of code (e.g.: x++; x-; ? NOP NOP)

For the NOP portion

A l XOR t bi d ith d k i t lli ibl t

For the "main event"

• Apply XOR to combine code with a random key unintelli gible to
IDS. The CPU code must also decode the gibberish in time in order
to run the decoder. By itself, the decoder is polymorphic and,
therefore, hard to spot

R d l t k LSB f i t t l d i th NOP

For the "return pointer"

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

• Randomly tweak LSB of pointer to land in the NOP-zone

Once the Stack is Smashed...

Once the vulnerable process is commandeered, the attacker has p ,
the same privileges as the process and can gain normal access.
He/ she can then exploit a local buffer overflow vulnerability to
gain super-user access

Create a backdoor

• Using (UNIX-specific) inetd
• Using Trivial FTP (TFTP) included with Windows 2000 and some

UNIX flavors

• Shoot back an Xterminal connection

Use Netcat to make raw and interactive connections

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

• UNIX-specific GUI

Defense Against Buffer
OverflowsOverflows

M l Di bli S f C Manual
auditing of

code

Disabling
stack

execution

Safer C
library
support

Compiler
techniques

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Tool to Defend Buffer Overflow:
Return Address Defender (RAD)Return Address Defender (RAD)

RAD i i l t h f th il th t t ti ll t f RAD is a simple patch for the compiler that automaticall y creates a safe area
to store a copy of return addresses

After that, RAD automatically adds protection code into applications and
compiles them to defend programs against buffer overflow attacks

RAD does not change the stack layout

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Tool to Defend Buffer Overflow:
StackGuardStackGuard

StackGuard: Protects systems from stack smashing attacks

StackGuard is a compiler approach for defending programs and
systems against "stack smashing" attacks

Programs that have been compiled with StackGuard are largely
immune to stack smashing attacks

Protection requires no source code changes at all. When a
vulnerability is exploited, StackGuard detects the attack in

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

progress, raises an intrusion alert, and halts the victim’s program

Tool to Defend Buffer Overflow:
Immunix SystemImmunix System

Immunix System is an Immunix-enabled RedHat Linux distribution and suite of
th li ti l l it t lthe appli cation-level securit y tools

Immunix secures a Linux OS and applications

Immunix works by hardening the existing software components and platforms so
that attempts to exploit security vulnerabilities will fail safe

The compromised process halts instead of giving control to the attacker, and then
is restarted

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Vulnerability Search: NIST 1

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Vulnerability Search: NIST 2

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Valgrind

Valgrind is a suite of simulation-based debugging and profilin g tools for g gg g p g
programs running on Linux

The system consists of a core which provides a synthetic CPU in software and a The system consists of a core, which provides a synthetic CPU in software, and a
series of tools, each of which performs some kind of debugging, profiling, or
similar task

• Memcheck detects memory-management problems in programs
• Cachegrind is a cache profiler

Various tools present in Valgrind are:

• Cachegrind is a cache profiler
• Helgrind finds data races in multithreaded programs
• Callgrind is a program profiler
• Massif is a heap profiler

L k i i l f i l d t

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

• Lackey is a simple profil er and memory tracer

Valgrind: Screenshot

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Insure++

Insure++ is a runtime memory analysis and error detection tool for C
and C++ that automatically identifies a variety of difficult to track and C++ that automatically identifies a variety of difficult -to-track
programming and memory-access errors, along with potential defects
and inefficiencies in memory usage

• Corrupted heap and stack memory

Errors that Insure++ detects include:

• Use of uninitialized variables and objects
• Array and string bounds errors on heap and stack
• Use of dangling, NULL, and uninitialized pointers
• All types of memory allocation and free errors or mismatches All types of memory allocation and free errors or mismatches
• All types of memory leaks
• Type mismatches in global declarations, pointers, and function

calls
• Some varieties of dead code (compiletime)

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

• Some varieties of dead code (compile-time)

Insure++: Features

Detection of memory corruption on heap and stack

Detection of uninitialized variables, pointers, and objects

Detection of memory leaks and other memory allocation/ free errors y y /

STL checking** for proper usage of STL containers, and related memory errors

Compile time checks for typeand sizerelated errors Compile-time checks for type- and size-related errors

Runtime tracing of function calls

GUI and command line interface

Memory error checking in 3rd party static and dynamic libraries

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Direct interfaces with Visual Studio debugger

Insure++: Screenshot

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Buffer Overflow Protection
Solution: LibsafeSolution: Libsafe

Libsafe is a library which re-writes some sensitive libc
functions (strcpy strcat sprintf vsprintf getwd gets functions (strcpy, strcat, sprintf, vsprintf, getwd, gets,
realpath, fscanf, scanf, sscanf) to prevent any overflow
caused by a misuse of any one of them

It launches alerts when an overflow attempt is detected

Libsafe intercepts the calls to the unsafe functions and
uses its own implementation of the function instead

While keeping the same semantic, it adds detection of the
bound violations

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

bound violations

Comparing Functions of libc and
libsafelibsafe

Some functions of libc are unsafe because
they do not check the bounds of a buffer Implementation of strcpyby libsafe:they do not check the bounds of a buffer

Implementation of strcpyby libc:

p e e a o os cpyby bsa e

char *strcpy(char *dest, const

h *)ch ar * src)

{

...

if ((len = strnlen(src,

max size)) == max size)

char * strcpy(char *

dest,const char *src)

{ max_size)) == max_size)

_libsafe_die("Overf low caused by

strcpy()");

real_memcpy(dest, src, len + 1);

return dest;

{

char *tmp = dest;

while ((*dest++ = *src++) !=

'\0')

/* nothing */;

The size of the dest buffer is not a factor for Function libsafe_ diestops the process if

return dest;

}
/* nothing */;

return tmp;

}

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

The size of the dest buffer is not a factor for
deciding whether to copy more characters
or not

strlen returns max_ size (attempt to buffer
overflow)

Simple Buffer Overflow in C

#include <stdio h>

Vulnerable C Program overrun.c

#include <stdio . h>

main() {

char *name;

char *dangerous system command;char *dangerous_system_command;

name = (char *) malloc(10);

dangerous_system_comman d = (char *) malloc(128);

printf("Address of name is %d \ n" name);printf("Address of name is %d\ n" , name);

printf("Address of command is %d\n", dangerous_ system_command);

sprintf(dangerous_system_ command, "echo %s", "Hello world!");

i tf("Wh t' ?")pr i ntf("Wh at' s your name ?") ;

gets(name);

system(dangerous_system _command);

}

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

}

Code Analysis

The first thing the program does is declare two string variables and assign memory to
hthem

The "n am e " variable is given 10 bytes of memory (which will allow it to hold a 10-
character string)character string)

The "dan ge ro us_ sys te m _ co m m an d" variable is given 128 bytes

You have to understand that, in C, the memory chunks given to these variables will be
located directly next to each other in the virtual memory space given to the program

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Code Analysis (cont’d)

¿ To compile the overrun.c program
R thi d i Li¿ Run this command in Linux:

gcc overrun.c –o overrun

[XX]$./overrun

Address of name is 134518696

Address of command is 134518712

What's your name?xmen

Hello world!

[XX]$

¿ The address given to the "dangerous_system_command"

variable is 16 bytes from the start of the "name" variable

¿ The extra 6 bytes are overhead used by the "malloc" system call to
allow the memory to be returned to general usage when it is freed

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

allow the memory to be returned to general usage when it is freed

Code Analysis (cont’d)

The "ge ts ", which reads a string from the standard input to the
specified memory location, does not have a "length" specification

This means it will read as many characters as it takes to get to the end
of the line, even if it overruns the end of the memory allocated

Knowing this, a attacker can overrun the "n am e " memory into the
"dan ge ro us_ sys te m _ co m m an d" memory, and run whatever
command he/ she wishes

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Code Analysis (cont’d)

[XX]$./overrun

Address of name is 134518696

Address of command is 134518712

What's your name?012345678912 3456cat /etc/passwd

root:x:0:0:root:/root: /bin/bash

bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon:/sbin:daemon:x:2:2:daemon:/sbin:

adm:x:3:4:adm:/var/adm:

lp:x:4:7:lp:/var/spool/lpd:

sync:x:5:0:s ync:/sbin:/bin/s yncy y y

shutdown:x:6:0:shutdown:/sb in:/sbin/shutdown

halt:x:7:0:halt:/sbin: /sbin/halt

mail:x:8:12:mail:/var/ spool/mail

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

What Happened Next

Since the project was running behind schedule, he had to
hurry through testing. hurry through testing.

Tim had worked with the same team for his previous
projects, and all of the other projects had successful projects, and all of the other projects had successful
conclusions. Therefore, he thought that nothing would
possibly go wrong with this one. This notion made him
overconfident about the testing of this project.

But this time, he was not lucky. The web server of the
client company had succumbed to a buffer overflow attack.
This was due to a flaw in coding because bounds were not
checked.checked.

Is Tim's decision justified?

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

Summary

A buffer overflow occurs when a program or process tries to store more data in a buffer
d h d d h ld(temporary data storage area) than it was intended to hold

Buffer overflow attacks depend on: the lack of boundary testing, and a machine that can
t d th t id i th d t / t k texecute a code that resides in the data/ stack segment

Buffer overflow vulnerability can be detected by skilled auditing of the code as well as
boundary testingboundary testing

Countermeasures include checking the code, disabling stack execution, safer C library
support and using safer compiler techniquessupport, and using safer compiler techniques

Tools like stackguard, Immunix, and vulnerability scanners help in securing systems

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

EC-Council
Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited

