Ethical Hacking

Assembly Language
Tutorial

Number Systems

® Memory in acomputer consists of numbers

® Computer memory does not store these
numbersin decimal (base 10)

® Because it greatly simplifiesthe hardware,
computersstore all information in abinary
(base 2) format.

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Base 10 System

® Base 10 numbers are composed of 10 possible
digits (0-9)

® Each digit of anumber has a power of 10
associated with it based on its position in the
number

® For example:

e 234=2x102+3 x 101+ 4 x 100

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Base 2 System

® Base 2 numbers are composed of 2 possible
digits (0 and 1)

® Each digit of anumber has a power of 2
associated with it based on its position in the
number. (A single binary digit is called a bit.)

® For example:
¢ 110012=1%x24+1x23+0x22+0x21+1x20

=16+8+1
=25

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Decimal O to 15in Binary

Decimal | Binary Decimal | Binary
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Binary Addition (C stands for Canary)

No previous carry

0 0 1 1
+0 +1 +0 +1
0 1 1 0
C

Previous carry
0 0 1 1
+0 +1 +0 +1
1 0 0
c c c

EC-Council

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

Hexadecimal Number

® Hexadecimal numbers use base 16. Hexadecimal (or
hex for short) can be used as a shorthand for binary
numbers.

® Hex has 16 possible digits. This creates a problem since
there are no symbolsto use for these extra digits after 9.

® By convention, letters are used for these extra digits.
The 16 hex digitsare 0-9 then A, B, C, D, E and F.

® Thedigit Aisequivalent to 10 in decimal, B is 11, etc.
Each digit of a hex number has a power of 16 associated
with it.

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Hex Example

® 2BD16 =2 x 162 + 11 x 161+ 13 x 160
=512 + 176 + 13
=701

All Rightsreserved. Reproduction is strictly prohibited

EC-Council

Copyright © by EC-Council

Hex Conversion

® To convert ahex number to binary, simply
convert each hex digit to a 4-bit binary number.

® For example, 24D16 is converted to 0010 0100
11012.

® Notethat the leading zeros of the 4-bitsare
Important!

@ If the leading zero for the middle digit of 24D 16
IS not used the result iswrong.

® Example:
® 110 0000 0101 1010 0111 11102 (Binary)
® 6 0 5 A 7 E (Base 16)

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

nibble

® A 4-bit number iscalled anibble
® Thus each hex digit correspondsto anibble

® Two nibbles make a byte and so a byte can be
represented by a 2-digit hex number

® A byte'svalueranges from 0 to 11111111.in
binary, O to FF in hex and 0 to 255 in decimal

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Computer memory

® The basic unit of memory is a byte

® A computer with 32 megabytes of memory can
hold roughly 32 million bytes of information

® Each bytein memory islabeled by a unique

number known as its address

Address

Memory

EC-Council

0

1

2

3

4

5

2A

45

Bs

20

s

CD

Figure 1.4: Memory Addresses

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

Characters Coding

® All datain memory isnumeric. Characters are stored by
using a character code that maps numbersto characters

® One of the most common character codesis known as
ASCII (American Standard Code for Information
I|nterchange)

® A new, more complete code that is supplanting ASCII is
Unicode

® One key difference between the two codesisthat ASCI|
uses one byte to encode a character, but Unicode uses
two bytes (or aword) per character

® For example, ASCII mapsthe byte 4116 (6510) to the
character capital A; Unicode mapsthe word 004116

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

ASCI|I and UNICODE

® Since ASCI | uses abyte, it islimited to only 256
different characters

® Unicode extendsthe ASCI| valuesto words and
allows many more charactersto be represented

® Thisisimportant for representing characters
for all the languages of the world

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

CPU

® The Central Processing Unit (CPU) isthe physical
device that performsinstructions

® Theinstructionsthat CPUs perform are generally very
simple

® Instructions may requirethe datathey act on to bein
special storage locationsin the CPU itself called
registers

® The CPU can access data in registers much faster than
datain memory

® However, the number of registersin a CPU islimited, so
the programmer must take care to keep only currently
used datain registers

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Machine Language

® Theinstructionsatype of CPU executes make up the
CPU’s machine language

® Machine programs have a much more basic structure
than higher level languages

® Machine language instructions are encoded as raw
numbers, not in friendly text formats

® A CPU must be able to decode an instruction’s purpose
very quickly to run efficiently

® Programswritten in other languages must be converted
to the native machine language of the CPU to run on the
computer

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Compilers

® A compiler isaprogram that translates
programswritten in a programming language
Into the machine language of a particular
computer architecture

® In general, every type of CPU hasits own
unigque machine language

® Thisisonereason why programswritten for a
Mac can not run on an |BM-type PC

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Clock Cycle

® Computersuse aclock to synchronize the execution of
theinstructions

® Theclock pulses at a fixed frequency (known asthe
clock speed)

® When you buy a 1.5 GHz computer, 1.5 GHzisthe
frequency of this clock

® The clock does not keep track of minutes and seconds

® It simply beats at a constant rate. The electronics of the
CPU usesthe beatsto perform their operations

® GHz standsfor gigahertz or one billion cycles per
second

® A 15 GHz CPU has 1.5 billion clock pulses per second

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Original Registers

® General purposeregisters. They are used in many of the
data movement and arithmetic instructions

« AX, BX,CX and DX

® Index registers. They are often used as pointers
« Sl and DI

® BP and SPregisters are used to point to datain the
machine language stack and are called the Base Pointer
and Stack Pointer

® CS, DS, SSand ESregisters are segment registers. They
denote what memory is used for different parts of a
program

® CSstandsfor Code Segment, DS for Data Segment, SS
for Stack Segment and ESfor Extra Segment

® ESisused asatemporary segment register

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

| nstruction Pointer

® The lnstruction Pointer (I1P) register is used
with the CSregister to keep track of the address
of the next instruction to be executed by the
CPU.

® Normally, as an instruction is executed, P Is
advanced to point to the next instruction in
memory

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Pentium Processor

® This CPU greatly enhanced the original
registers

® First, it extends many of theregistersto hold
32-bits (EAX, EBX, ECX, EDX, ESI, EDI, EBP,
ESP, EIP) and adds two new 16-bit registers FS
and GS

® It also adds a new 32-bit protected mode
® In thismode, it can access up to 4 gigabytes

® Programs are again divided into segments, but
now each segment can also be up to 4 gigabytes
In sizel

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

|nterrupts

® Sometimes the ordinary flow of a program must
be interrupted to process events that require
prompt response

® The hardware of a computer provides a
mechanism called interruptsto handle these
events

® For example, when a mouse is moved, the
mouse hardware interruptsthe current
program to handle the mouse movement (to
move the mouse cursor, etc.)

® Interrupts cause control to be passed to an
Interrupt handler

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Interrupt handler

® Interrupt handlers areroutines that processthe
Interrupt

® Each type of interrupt is assigned an integer
number

® At the beginning of physical memory, atable of
Interrupt vectorsresides that contain the
segmented addresses of the interrupt handlers

® The number of interrupt is essentially an index
Into thistable

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

External interrupts and Internal

Interrupts

® External interrupts areraised from outside the
CPU. (The mouse is an example of thistype.)
Many |/ O devicesraise interrupts (e.g.,
keyboard, timer, disk drives, CD-ROM and
sound cards).

® Internal interrupts are raised from within the
CPU, either from an error or the interrupt
Instruction.

® Error interrupts are also called traps. Interrupts
generated from theinterrupt instruction are
called software interrupts

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Handlers

® Many interrupt handlersreturn control back to
theinterrupted program when they finish

® They restore all theregistersto the same values
they had before the interrupt occurred

® Thus, the interrupted program runs as if
nothing happened (except that it lost some CPU
cycles)

® Trapsgenerally do not return. Often they abort
the program.

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Machine Language

® Every type of CPU understands its own machine
language

® Instructions in machine language are numbers
stored as bytesin memory

® Each instruction hasits own unique numeric
code called its operation code or opcode for
short

® The 80x86 processor’s instructions vary in size.
The opcodeis always at the beginning of the
Instruction

® Many instructions also include data (e.g.,
constants or addresses) used by the instruction

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Machine Language

® Machinelanguage is very difficult to program in directly

® Deciphering the meanings of the numerical-coded
Instructionsistedious for humans

® For example, the instruction that saysto add the EAX
and EBX registerstogether and store the result back
Into EAX is encoded by the following hex codes:

« 03C3

® Thisishardly obvious. Fortunately, a program called an
assembler can do thistedious work for the programmer

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Assembly Language

® An assembly language program is stored as text (just as
a higher level language program)

® Each assembly instruction represents exactly one
machineinstruction. For example, the addition
Instruction would be represented in assembly language
as:

* add eax, ebx

® Herethe meaning of the instruction is much clearer
than in machine code

® Theword add isa mnemonic for the addition
Instruction.

® The general form of an assembly instruction is:

e mnemonic operand(s)

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Assembler

® An assembler isaprogram that reads atext file with
assembly instructions and converts the assembly into
machine code

® Compilersare programsthat do similar conversions for
high-level programming languages

® An assembler is much simpler than a compiler

® Every assembly language statement directly represents
a single machine instruction

® High-level language statements are much more
complex and may require many machine instructions

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Assembly Language Vs High-level

Language

® Difference between assembly and high-level
languages is that since every different type of
CPU has its own machine language, it also has
Its own assembly language

® Porting assembly programs between different
computer architecturesis much more difficult
than in a high-level language

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Assembly Language Compilers

® Netwide Assembler or NASM (freely available
off the Internet)

® Microsoft’s Assembler (MASM)
® Borland’s Assembler (TASM)

® There are some differencesin the assembly
syntax for MASM, TASM and NASM

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Instruction operands

® Machine codeinstructions have varying number and
type of operands; however, in general, each instruction
itself will have a fixed number of oper-ands (0 to 3).

® Operands can have the following types.:

e register: These operandsrefer directly to the contents of the
CPU’sreqisters

 memory: Theserefer to datain memory. The address of the
data may be a constant hardcoded into the instruction or may
be computed using

 values of registers. Address are always offsets from the
beginning of a segment.

« iImmediate: These are fixed values that arelisted in the
Instruction itself. They are stored in theinstruction itself (in the
code segment), not in the data segment.

« Implied: There operands are not explicitly shown. For
example, the increment instruction adds one to a register or
memory. Theoneisimplied.
Copyright © by EC-Council

EC-Council All Rights reserved. Reproduction is strictly prohibited

MOV Instruction

® The most basicinstruction isthe MOV instruction

® It moves datafrom onelocation to another (likethe
assignment operator in a high-level language)

® It takes two operands:
* mov dest, src

® Thedata specified by srcis copied to dest

® Onerestriction isthat both operands may not be
memory operands

® The operands must also be the same size
® Thevalue of AX can not be stored into BL

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

MOQV Instruction Example

® mov eax, 3

« store3into EAX register (3 isimmediate operand)
® mov bx, ax

« storethevalue of AX intothe BX register

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

ADD instruction

® The ADD instruction isused to add integers.
® add eax, 4

e eax=eax + 4
® add al, ah
e al =al + ah

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

SUB Instruction

® The SUB instruction subtracts integers.
® sub bx, 10

e bx=Dbx-10
® sub ebx, edi

e ebx = ebx - edi

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

INC and DEC instructions

® ThelINCand DEC instructionsincrement or
decrement values by one

® INC ecx
* ecxX++
® dec dl
e dl|--

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Directive

® Directiveis an artifact of the assembler not the
CPU

® They are generally used to either instruct the
assembler to do something or inform the
assembler of something

® They are not translated into machine code

® Common uses of directives are:
define constants
define memory to store data into
group memory into segments
conditionally include source code
Include other files
Copyright © by EC-Council

EC-Council All Rights reserved. Reproduction is strictly prohibited

preprocessor

® NASM code passes through a preprocessor just
like C

® It has many of the same preprocessor
commandsasC

® NASM'’s preprocessor directives start with a %
Instead of a# asin C

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

egu directive

® The equ directive can be used to define a
symbol

® Symbols are named constants that can be used
In the assembly program

® Theformat iIs:
* symbol equ value

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

%define directive

® Thisdirectiveis similar to Cs#define directive

® It Ismost commonly used to define constant
macrosjust asin C

* %define SIZE 100
e MoV eax, SIZE

® The above code defines a macro named SI ZE
and showsitsusein a MOV instruction

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Data directives

® Datadirectives are used in data segmentsto define
room for memory.
® There are two ways memory can be reserved.
 Thefirst way only definesroom for data
 Thesecond way definesroom and an initial value
® Thefirst method uses one of the RESX directives. The X

Isreplaced with aletter that determines the size of the
object (or objects) that will be stored

® Thesecond method (that defines an initial value, too)
uses one of the DX directives

® The X lettersarethe same asthosein the RESX
directives

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

® Labelsallow oneto easily refer to memory locationsin code
® Examples:

e L1dbO
— bytelabeled L1with initial value O
e L2dw 1000

— word labeled L2 with initial value 1000
e L3db110101b
— byteinitialized to binary 110101 (53 in decimal)

« L4db12h
— byteinitialized to hex 12 (18 in decimal)
e L5db170

— byteinitialized to octal 17 (15 in decimal)
e L6dd1A92h
— doubleword initialized to hex 1A92

e L7resb1l
— luninitialized byte
e L8db"A"

— byteinitialized to ASCII code for A (65)
e L9db0,1,2,3

— defines 4 bytes
e L10db"w","0o","r",’d’, O

— definesaCstring = "word"
e L11 db’'word’, O

. — sameasL10 Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

® There are two ways that alabel can be used. If a
plain label isused, it isinterpreted asthe
address (or offset) of the data

® If the label i1s placed inside square brackets ([]),
it isinterpreted asthe data at the address

® You should think of alabel as a pointer to the
data and the square brackets dereferences the
pointer just asthe asterisk doesin C

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Example

©

EC-Council

mov al, [L1]
e copy byteat L1into AL
mov eax, L1
« EAX = addressof byteat L1
mov [L1], ah
e copy AH into byteat L1
mov eax, [L6]
e copy doubleword at L6 into EAX
add eax, [L6]
e EAX = EAX + doubleword at L6
add [L6], eax
e doubleword at L6 += EAX
mov al, [L6]
o copy first byte of double word at L6 into AL

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

|nput and output

® Input and output are very system dependent activities
® Itinvolvesinterfacing with the system’s hardware

® High level languages, like C, provide standard libraries
of routines that provide asimple, uniform
programming interfacefor 1/ O

® Assembly languages provide no standard libraries

® They must either directly access hardware (which isa
privileged operation in pro-tected mode) or use
whatever low level routines that the operating system
provides

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

C Interface

® It iIsvery common for assembly routinesto be
Interfaced with C

® One advantage of thisisthat the assembly code
can usethe standard Clibrary |/ O routines

® To usethese routines, you must include afile
with information that the assembler needsto
use them

® Toincludeafilein NASM, use the %include
preprocessor directive

® Thefollowinglineincludesthe file needed:
* %include "asm_lio.inc"

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Call

® To use one of the print routines, you load EAX
with the correct value and use a CALL
Instruction to invoke it

® The CALL instruction iseguivalent to afunction
call in ahigh level language

® It jumps execution to another section of code,
but returns back to itsorigin after theroutineis
over

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Creating a Program

® Today, it isunusual to create a stand alone
program written completely in assembly
language

® Assembly isusually used to key certain critical
routines

® It Ismuch easier to program in a higher level
language than in assembly

® Using assembly makes a program very hard to
port to other platforms

® In fact, it israreto use assembly at all

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Why should anyone |earn assembly at

all?

1

EC-Council

Sometimes code written in assembly can be faster and
smaller than compiler generated code

Assembly allows access to direct hardware features of
the system that might be difficult or impossibleto use
from a higher level language

Learning to program in assembly helpsto gain a
deeper understanding of how computers work

Learning to program in assembly helps you understand
better how compilers and high level languages like C
work

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

first.asm

: file: first.asm
F' .t 2 3 First assembly program. This program asks for two integers as
I rS -aS I l a ; input and prints out their sum.

5 ; To create executable using djgpp:
i 3 nasm -f coff first.asm
7 3 Bec =o first first.o driver.c asm_io.o

s Y%include "asm_io.inc"

L 5

11 ; inmitialized data is put in the .data segment
3+ segment .data

¥

15 ; These labels refer to strings used for output

T
17 promptl db "Enter a number: ", 0O ; don’t forget null terminator
& prompt2 db "Enter another number: ", O

w outmsgl db "You entered ", 0O

= outmsg2 db " and ", O

21 outmsg3 db ", the sum of these iz ", 0

a3

a3 G

2: ; uninitialized data is put in the .bss segment
= gSegment .bas
23 ; These labels refer to double words used to store the inputs

bt 3

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

EC-Council

E6

b T

Ak

K1

40

inputl resd 1
input2 resd 1

; code is put in the .text segment
segment .text
global _asm_main

_asm_main:
enter 0,0
pusha
nov eax, promptl

call print_string

call read_int
mov [inputil], eax
LoV eax, prompt2

call print_string

call read_int

mov [input2], eax
mov eax, [inputi]
add eax, [input2]
mov ebx, eax
dump_regs 1

dump_menr 2, outmsgl, 1

setup routine

print out prompt

read integer

store into inputil
print out prompt

read integer

store into input2

eax = dword at inputl
eax += dword at input2
ebx = eax

; print out register wvalues
; pPrint out memory

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

EC-Council

Gl

G2

B

"
¥

; next print out result message as series

r

MoV
call
MoV
call
MoV
call
mov
call
MoV

eax, outmsgl
print_string
eax, [inputi]
print_int

eax, outmsgZ
print_string
eax, [input2]
print_int

eax, outmsgd

; print
; print

; print

print

of steps

out first message
out inputil
out second message

out input2

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

72 call print_string

74 mov eax, ebx
74 call print_int
7a call print_nl
TH

" popa

74 mov eax, 0O

74 leave

Bl ret

EC-Council

; print out third message

; print out sum (ebx)
; print new-line

: return back to C

first.asm

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

Assembling the code

® Thefirst step isto assembly the code
® From the command line, type:
e nasm -f object-format first.asm

® where object-format is either coff , elf , obj or

win32 depending on what C compiler will be
used

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Compiling the C code

® Compilethedriver.cfileusing a C compiler
e gcc -c driver.c

® The-c switch meansto just compile, do not
attempt to link yet

® This same switch works on Linux, Borland and
Microsoft compilers as well

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Linking the object files

® Linkingisthe process of combining the
machine code and data in object files and
library filestogether to create an executablefile

® Thisprocessiscomplicated

® Ccoderequiresthe standard Clibrary and
special startup codeto run

® It Ismuch easier to let the C compiler call the
linker with the correct parameters, than to try
to call thelinker directly

e gcc -o first driver.o first.o asm i0.0

® This creates an executable called first.exe (or
just first under Linux)

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Understanding an assembly listing file

® The -l listing-file switch can be used to tell nasm
to create alisting file of a given name

® Thisfile shows how the code was assembled

® Thefirst column in each lineisthe line number
and the second isthe offset (in hex) of the data

In the segment

® Thethird column showstheraw hex values that

will be stored

48 00000000 45BET465722061208E-
49 00000009 7H8D6265T23A2000

50 00000011 456E74657220616E6F-
51 0000001A 74686572206E7E6D62-
52 00000023 B65723A2000

EC-Council

promptl db

prompt2 db

"Enter a number: ", O

"Enter another number: ", 0

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

Big and Little Endian Representation

® There aretwo popular methods of storing integers: big
endian and little endian

® Bigendian isthe method that seems the most natural.
The biggest (i.e. most significant) byte is stored first,
then the next biggest, etc

® For example, the dword 00000004 would be stored as
the four bytes00 00 00 04

® IBM mainframes, most RISC processors and Motorola
processors all use this big endian method

® Intel-based processors use the little endian method!
® Heretheleast significant byte is stored first
® 00000004 isstored in memory as04 00 00 00

® Thisformat is hardwired into the CPU and can not be
changed T

EC-Council All Rights reserved. Reproduction is strictly prohibited

Skeleton File

EC-Council

skel .asm

Y%include "asm_io.inc"
segment .data

¥

; imitialized data is put in the data segment here

.
¥

gegment .bss

; uninitialized data is put in the bss segment

®
¥

segment .TexXt
global _asm_main

_asm_main:
enter 0,0 i setup routine
pusha

; code is put in the text segment. Do not modify the code before
: or after this comment.

popa
mav gax, O : return back toe C
leave

TRt skel .asm

All Rightsreserved. Reproduction is strictly prohibited

Copyright © by EC-Council

Working with Integers

® Integers come in two flavors: unsigned and
signed

® Unsigned integers (which are non-negative) are
represented in avery straightforward binary
manner

® The number 200 as an one byte unsigned
Integer would be represented as by 11001000
(or C8 in hex)

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Signed integers

® Signed integers (which may be positive or negative) are
represented in a more complicated ways

® For example, consider —56. +56 as a byte would be
represented by 00111000

® On paper, one could represent —56 as —1 11000, but
how would this berepresented in abytein the
computer’'s memory

® How would the minus sign be stored?

® Therearethree general techniques that have been used
to represent signed integersin computer memory

® All of these methods use the most significant bit of the
Integer as asign bit

® ThisbitisO if the number is positive and 1if negative

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Signed Magnitude

® Thefirst method isthe simplest and is called
signed magnitude. It representstheinteger as
two parts

® Thefirst part isthe sign bit and the second is
the magnitude of the integer

® S0 56 would berepresented asthe byte
00111000 (the sign bit isunderlined) and —56
would be 10111000

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

EC-Council All Rights reserved. Reproduction is strictly prohibited

Two’s Compliment

® Signed Magnitude methods described were used on
early computers

® Modern computers use amethod called two’s
complement representation

® Thetwo’'s complement of anumber isfound by the
following two steps:

1 Find the one’'s complement of the number
« 2.Addonetotheresult of step 1

® Here'san example using 00111000 (56)
e First theone’'s complement is computed: 11000111
« Then oneisadded:

® 11000111
® +1
® 11001000

Copyright © by EC-Council

|f statements

® The following pseudo-code:
 if (condition)
— then block ;
* else
— else block ;
® Could beimplemented as:
1 ; code to set FLAGS

o 2 jxx else block ; select xx so that branches if
condition false

» 3; code for then block
e 4 jmp endif

5 else block:

* 6 ; code for else block
o 7 endif:

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Do whileloops

® Thedo whileloop is abottom tested loop:
e do
* {
* body of loop ;
 } while (condition);

® This could be translated into:
e 1 do:
e 2 ; body of loop

 3: code to set FLAGS based on
condition

* 4 jxx do ; select xx so that branches
If true

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Example: Finding Prime Numbers

® Thisisaprogram that finds prime numbers

® Prime numbers are evenly divisible by only 1
and themselves

® Thereisno formulafor doingthis

® The basic method this program usesisto find
the factors of all odd numbers3 below a given
limit

® If no factor can be found for an odd number, it
ISprime

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Finding Prime Numbers

EC-Council

unsigned guess; /* current guess for prime w)
unsigned factor; /% possible factor of guess)
unsigned limit; /% find primes up to this value =/

printf ("Find primes up to: " };
scanf(" %u", &limit);
printf ("2\n"); /% treat first two primes as =/
printf ("3\n"); /+ special case *
guess = 5; J/* initial guess =/
while (guess <= limit) {
/* look for a factor of guess =/
factor = 3;
while ([factor=factor < guess &&
guess % factor 1=0)
factor += 2;
if (guess % factor !=0)
printf (" %d\n", guess);
guess += 2; /% only look at odd numbers =/

}

Copyright © by EC-Council

All Rightsreserved. Reproduction is strictly prohibited

Code 1

i
BT
12

1%

EC-Council

- ; G prime.asm
Yinclude "asm io.inc"

segment .data
Message db "Find primes up to: ", 0

segment .bss
Limit resd 1 ; find primes up to this limit
Guess resd 1 ; the current guess for prime

gegment .text
global _asm_main

_asm_main:
enter 0,0 ; setup routine
pusha
mov eax, Message
call print_string
call read_int : scanf ("Yu", & limit);
mov [Limit], eax

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

Code 2

20 mov eax, 2 ¢ printf("2\n");
21 call print_int
22 call print_nl
23 mov eax, 3 : printf{"3\n"};
24 call print_int
25 call print_nl
26
a7 mov dword [Guess]l, 5 : Guess = §;
2s while_limit: ;: while { Guess <= Limit)
20 nov eax, [Guess]
50 Cmp eax, [Limit]
31 jobe end_while_limit ; use jnbe since numbers are unsigned
B8
a3 mov ebx, 3 ; ebx is factor = 3;
3« while_factor:
a5 mnov eax,ebx
A mul eax ; edx:eax = eax¥®eax
a7 jo end_while_factor ; if answer won’t fit in eax alone
38 cmp eax, [Guess]
30 jnb end_while_factor ; if !(factor+factor < guess)
40 nov eax, [Guess]
i1 LoV edx,0
42 div ebx ; edx = edx:eax } ebx
43 cmp edx, O
je end_while_factor ; if !(guess ¥ factor != 0)
Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Code 3

EC-Council

4

add
jop

ebx,2 i
while factor

end while_factor:

je
mov
call
call
end_if:
add
jump
end_while_limit:

popa
mov

leave
ret

end_if ; if !(guess) factor !'= 0)
eax, [Guess] ; printf ("%u\n")

print_int

print_ni

dword [Guess], 2 ; guess += 2

while_limit

eax, O : return back to C

prime.asm

factor += 2;

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

Indirect addressing

® Indirect addressing allowsregistersto act like
pointer variables

® Toindicatethat aregister isto be used
Indirectly as a pointer, it isenclosed in square
brackets ([])

® For example:

* 1 mov ax, [Data] ; normal direct memory
addressing of a word

e 2 mov ebx, Data ; ebx = & Data
* 3 mov ax, [ebx] ; ax = *ebx

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Subprogram

® A subprogram is an independent unit of code
that can be used from different parts of a
program

® A subprogram islikeafunctionin C

® A jump can be used to invoke the subprogram,
put returning presents a problem

® If the subprogram isto be used by different
parts of the program, it must return back to the
section of code that invoked it

® Thejump back from the subprogram can not be
hard coded to alabel

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Simple Subprogram Example

subl.asm
i1 3 file: subl.asm
¢ ; Subprogram example program
5 #hinclude "asm_io.inc"
4
= segment .data
& promptl db "Enter a number: ", 0 ; don’t forget null terminator
: promptZ2 db "Enter another number: ", O
= outmsgl db "You entered ", O
s outmsg2 db " and ", O
w outmsgd db " the sum of these is ", 0O
11
1z Segment .bss
i3 inputl resd 1
1+ input2 resd 1
16 Segment .text
17 global _asm_main
1= _Aasm _main:
L enter 0,0 ; setup routine
20 pusha
21
22 mov eax, promptl ; print out prompt
2 call print_string
24
25 mov ebx, inputl ; Store address of inputl into ebx
~ © by BE>Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

EC-Council

a0

31

32

a3

35

6

34

41

42

retl:

mow
jmp

mov
call

mowv
o

jmp

mov
add
mov

mov
call
mov
call
mov
call
mov
call
mov
call
mov
call
call

ecx, retl
short get_int

eax, promptl
print_string

ebx, input2
ecx, $ + 7
short get_int

eax, [inputi]
eax, [input2]
ebx, eax

eax, outmsgl
print_string
eax, [inmputi]
print_int
eax, outmsgl
print_string
eax, [input2]
print_int
eax, outmsg3
print_string
eax, ebx
print_int
print_nl

y 2CX

; eax
; eax += dword at input2
; ebx =

store return address into ec
; read integer

; print
; print
; print
; print
; print

; print
; print

; print out prompt

this address + 7

dword at imputl

eax

out

out

out

out

out

out

first message
inputi
second message
input2
third message

sum (ebx)

new-line

Copyright © by EC-Council

All Rightsreserved. Reproduction is strictly prohibited

G

il

G

i3

fid

63

Ge

EC-Council

bopa
mov eax, 0O : return back to C

leave
ret
; subprogram get_int
: Parameters:
: ebx - address of dword to store integer into
* ecx - address of instruction to returm to

: Notes:

i value of eax is destroyed

get_int:
call read_int
moV [ebx], eax i Store input into memory
jmp ecx Eubl.gg&ump back to caller

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

The Stack

® Many CPU’s have built-in support for a stack
® A stack isalLast-In First-Out (LIFO) list

® The stack isan area of memory that is
organized in this fashion

® The PUSH instruction adds datato the stack
and the POP instruction removes data

® The dataremoved isalwaysthe |last data added

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

The SS segment

® The SSsegment register specifies the segment that
contains the stack (usually thisisthe same segment
dataisstored into)

® The ESP register contains the address of the data that
would be removed from the stack

® Thisdataissaid to be at the top of the stack
® Datacan only be added in double word units

® The PUSH instruction inserts adouble wordlon the
stack by subtracting 4 from ESP and then storesthe
double word at [ESP]

® The POP instruction reads the double word at [ESP]
and then adds 4 to ESPESP isinitially 1000H

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

! push
2 push
4 push
4 pop
B pop
B pop

EC-Council

dword 1
dword 2
dword 3
eax
ebx
ecx

r

¥

EAX =

EBX =
ECX =

+ 1 stored

r

» 2 stored
- 3 stored

at OFFCh, ESP = (OFFCh
at OFF8h, ESP = (QFF8h
at OFF4h, ESP = 0QFF4h
ESF = OFFBh
ESP = OFFCh
ESP = 1000h

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

The Stack Usage

® The stack can be used as a convenient placeto
store datatemporarily

® It Isalso used for making subprogram calls,
passing parameters and local variables

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

The CALL and RET Instructions

® The 80x86 providestwo instructions that use
the stack to make calling subprograms quick
and easy

® The CALL instruction makes an unconditional
jump to a subprogram and pushes the address
of the next instruction on the stack

® The RET instruction pops off an address and
jumpsto that address

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Passing parameters on the stack

® Parametersto asubprogram may be passed on the stack

® They are pushed onto the stack beforethe CALL
Instruction

® Just asin C, if the parameter isto be changed by the
subprogram, the address of the data must be passed,
not the value

® Ifthe parameter’s sizeislessthan a doubleword, it
must be converted to a double word before being
pushed

® The parameterson the stack are not popped off by the
subprogram, instead they are accessed from the stack
itsel f

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Stack Data

® Thisis how the stack looks when a subprogram
IS called

ESP + 4 Parameter
ESP ~Return address

ESP + 8 Parameter
ESP + 4 | Return address
ESP subprogram data

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

General subprogram form

subprogram_label:

2 push ebp ; save original EBF value on stack
3 oV ebp, esp ; new EBP = ESP

1 | ; subprogram code

5 pop ebp ; restore original EEF wvalue

6 ret

| —
ESP + & EBP +8 Parameter
ESP + 4 EBP + 4 | Return address
ESP EBP saved EBP

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Sample subprogram call

EC-Council

Bl

push
call
add

dword 1

fun
esp, 4

; pass 1 as parameter

; remove parameter from stack

Copyright © by EC-Council

All Rightsreserved. Reproduction is strictly prohibited

Example

sub3.asn

{ ¥include "asm_io.inc"

i segment .data
¢ sum dd ©

i Segment .bss
; input resd 1

w3 pseudo-code algorithm

i1 oy di-=ol

12 3 sum = 0;

i 3 while{ get_int(i, &input), input !=0) {
; sum += input;

15) i++;

w T}

7 ; print_sum(num);

2 Segment .text

19 glebal _asm_main

w2 _asm_main:

21 enter 0,0 ; setup routine

22 pusha

23

24 mov edx, 1 ; edx is 'i' in pseudo-code

25 while_loop:

6 push edx ; save 1 on stack

27 push dword input ; push address on input on stack
28 call get_int

24 add esp, 8 ; remove 1 and &input from stack

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

EC-Council

0

31
FE
S
i
&5

=0

Ak
it
Al
4l
42
4%
44
45
46

47

mov
CIp
je

add

ine
jup

end_while:

push
call

pop

popa
leave
ret

eax, [input]
gax, 0O
end_while

[sum], eax

adx
short while_loop

dword [sum]
print_sum
ecx

; sum += input

; push value of sum onto stack

: remove [sum] from stack

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

EC-Council

0

G2
63

£id

GE

G7

BE

G2

o

; subprogram get_int

; Parameters (in order pushed on stack)

; number of input (at [ebp + 12])

; address of word to store input into (at [ebp + 8])
: Notes:
i values of eax and ebx are destroyed
segment .data

prompt

segment .text

get_int:

db

push

maw

mov
call

mov
call

call
LoV
mov

") Enter an integer number (0 to quit): ", 0

ebp
ebp, esp

eax, [ebp + 12]
print_imt

gax, prompt
print_string

read_int
ebx, [ebp + 8]
[ebx], eax ; Store input into memory

All Rightsreserved. Reproduction is strictly prohibited

Copyright © by EC-Council

EC-Council

ai

o

g3

pop
ret

ebp

; subprogram print_sum
; prints out the sum

: Parameter:

; sum to print out (at [ebp+8]1)
; Note: destroys walue of eax

segment .data
result db

segment .text

print_sum:
push
nov

mov
call

mov
call
call

pop
I8%

"The sum is ", O

ebp
ebp, esp

eax, result
print_string

eax, [ebp+B]
print_int

print_mnl

ebp

sub3.asm -

; jump back to caller

Copyright © by EC-Council
ANl Kigis 1eser ved. xeproduction is strictly prohibited

Local variables on the stack

® The stack can be used as a convenient location
for local variables

® Thisis exactly where C stores normal (or
automatic in Clingo) variables

® Using the stack for variablesisimportant if you
wish subprogramsto be reentrant

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

General subprogram form with local

variables

EC-Council

subprogram_label:
push ebp
mov ebp, esp
sub esp, LOCAL_BYTES

; Subprogram code

LoV esp, ebp
pop ebp
ret

; save original EBP value on stack
; new EEP = ESP

; = # bytes needed by locals

; deallocate locals
; restore original EBP value

Copyright © by EC-Council

All Rightsreserved. Reproduction is strictly prohibited

Example: C version of sum

. void calcsum(int n, int * sump)

{

25

]

for{ i=1;i <=n;i++)
B sum += i

*SUMP = sum;
s |}

ot £

|

|
|
int i, sum=0; |
|
|
|
|

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Example: Assembly version of sum

EC-Council

21

22

W

cal_sum:
push
mov
sub

mov
mov

for_loop:
cmp
jnle

add
inc
jmp

end_for:
mov
mov
mov

mowv

pPop

ret

ebp
ebp, esp
esp, 4

dword [ebp - 4], O

ebx, 1

ebx, [ebp+12]

end_for
[ebp-4], ebx
ebx

short for_loop

ebx, [ebp+8]
eax, [ebp-4]
[ebx], eax

esp, ebp
ebp

¥

make room for lecal sum

:osum = 0

ebx (i) =1

is i <= n?

sum += i

ebx = sump

cax sum
*EUmp Sum,

Copyright © by EC-Council

All Rightsreserved. Reproduction is strictly prohibited

Multi-module program

O)

Multi-module program is one composed of more than
one object file.

® They consisted of the Cdriver object file and the

O)

O)

O

assembly object file (plusthe Clibrary object files)

Thelinker combinesthe object filesinto asingle
executable program

Thelinker must match up references made to each label
In one module (i.e. object file) to its definition in
another module

|n order for module A to use alabel defined in module
B, the extern directive must be used

® After the extern directive comes acommadelimited list

©

EC-Council

of labels
The directive tellsthe assembler to treat these labels as
external to the module Copyright © by EG-Council

All Rightsreserved. Reproduction is strictly prohibited

Savingregisters

® First, Cassumesthat a subroutine maintainsthe values
of the following registers:. EBX, ESI, EDI, EBP, CS, DS,
SS, ES

® Thisdoes not mean that the subroutine can not change
them internally

® It meansthat if it does change their values, it must
restore their original values before the subroutine
returns

® The EBX, ESI and EDI values must be unmodified
because C uses these registers for register variables

® Usually the stack is used to save the original values of
these registers

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Stack inside printf Statement

EC-Council

EBP + 12
EBP + &
EBP + 4
EBP

value of x

address of format St.rirlg_

Return address
saved EBP

Copyright © by EC-Council
All Rightsreserved. Reproduction is strictly prohibited

abels of functions

® Most Ccompilers prepend asingle underscore (
) character at the beginning of the names of
functions and global/ static variables

® For example, afunction named f will be
assigned the label f

® If thisisto be an assembly routine, it must be
labelled f, not f

® The Linux gcc compiler does not prepend any
character

® Under Linux ELF executables, one simply
would use the label f for the Cfunction f

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

Calculating addresses of local variables

® Consider the case of passing the address of a variable
(let’'scall it x) to afunction (let’s call it foo)

® If xislocated at EBP — 8 on the stack, one cannot just
e use: mov eax, ebp - 8

® Why? Thevaluethat MOV storesinto EAX must be
computed by the assembler (that is, it must in the end
be a constant)

® Thereisan instruction that doesthe desired calculation.
It iscalled LEA (for Load Effective Address)

® The following would calculate the address of x and store
It into EAX:

* lea eax, [ebp - 8]

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

® End of Slides

: Copyright © by EC-Council
EC-Council All Rights reserved. Reproduction is strictly prohibited

