
Ethical Hacking

Assembly Language
Tutorial

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Number Systems

 Memory in a computer consists of numbers

 Computer memory does not store these
numbers in decimal (base 10)

 Because it greatly simplifies the hardware,
computers store all information in a binary
(base 2) format.

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Base 10 System

 Base 10 numbers are composed of 10 possible
digits (0-9)

 Each digit of a number has a power of 10
associated with it based on its position in the
number

 For example:
• 234 = 2 102 + 3 101 + 4 100

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Base 2 System

 Base 2 numbers are composed of 2 possible
digits (0 and 1)

 Each digit of a number has a power of 2
associated with it based on its position in the
number. (A single binary digit is called a bit.)

 For example:
• 110012 = 1 24 + 1 23 + 0 22 + 0 21 + 1 20

 = 16 + 8 + 1

 = 25

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Decimal 0 to 15 in Binary

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Binary Addition (C stands for Canary)

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Hexadecimal Number

 Hexadecimal numbers use base 16. Hexadecimal (or
hex for short) can be used as a shorthand for binary
numbers.

 Hex has 16 possible digits. This creates a problem since
there are no symbols to use for these extra digits after 9.

 By convention, letters are used for these extra digits.
The 16 hex digits are 0-9 then A, B, C, D, E and F.

 The digit A is equivalent to 10 in decimal, B is 11, etc.
Each digit of a hex number has a power of 16 associated
with it.

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Hex Example

 2BD16 = 2 162 + 11 161 + 13 160

 = 512 + 176 + 13

 = 701

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Hex Conversion

 To convert a hex number to binary, simply
convert each hex digit to a 4-bit binary number.

 For example, 24D16 is converted to 0010 0100
11012.

 Note that the leading zeros of the 4-bits are
important!

 I f the leading zero for the middle digit of 24D16
is not used the result is wrong.

 Example:
 110 0000 0101 1010 0111 11102 (Binary)
 6 0 5 A 7 E (Base 16)

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

nibble

 A 4-bit number is called a nibble

 Thus each hex digit corresponds to a nibble

 Two nibbles make a byte and so a byte can be
represented by a 2-digit hex number

 A byte’s value ranges from 0 to 11111111 in
binary, 0 to FF in hex and 0 to 255 in decimal

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Computer memory

 The basic unit of memory is a byte

 A computer with 32 megabytes of memory can
hold roughly 32 million bytes of information

 Each byte in memory is labeled by a unique
number known as its address

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Characters Coding

 All data in memory is numeric. Characters are stored by
using a character code that maps numbers to characters

 One of the most common character codes is known as
ASCII (American Standard Code for Information
Interchange)

 A new, more complete code that is supplanting ASCII is
Unicode

 One key difference between the two codes is that ASCI I
uses one byte to encode a character, but Unicode uses
two bytes (or a word) per character

 For example, ASCI I maps the byte 4116 (6510) to the
character capital A; Unicode maps the word 004116

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

ASCII and UNICODE

 Since ASCII uses a byte, it is limited to only 256
different characters

 Unicode extends the ASCII values to words and
allows many more characters to be represented

 This is important for representing characters
for all the languages of the world

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

CPU

 The Central Processing Unit (CPU) is the physical
device that performs instructions

 The instructions that CPUs perform are generally very
simple

 Instructions may require the data they act on to be in
special storage locations in the CPU itself called
registers

 The CPU can access data in registers much faster than
data in memory

 However, the number of registers in a CPU is limited, so
the programmer must take care to keep only currently
used data in registers

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Machine Language

 The instructions a type of CPU executes make up the
CPU’s machine language

 Machine programs have a much more basic structure
than higher level languages

 Machine language instructions are encoded as raw
numbers, not in friendly text formats

 A CPU must be able to decode an instruction’s purpose
very quickly to run efficiently

 Programs written in other languages must be converted
to the native machine language of the CPU to run on the
computer

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Compilers

 A compiler is a program that translates
programs written in a programming language
into the machine language of a particular
computer architecture

 In general, every type of CPU has its own
unique machine language

 This is one reason why programs written for a
Mac can not run on an IBM-type PC

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Clock Cycle

 Computers use a clock to synchronize the execution of
the instructions

 The clock pulses at a fixed frequency (known as the
clock speed)

 When you buy a 1.5 GHz computer, 1.5 GHz is the
frequency of this clock

 The clock does not keep track of minutes and seconds

 I t simply beats at a constant rate. The electronics of the
CPU uses the beats to perform their operations

 GHz stands for gigahertz or one billion cycles per
second

 A 1.5 GHz CPU has 1.5 billion clock pulses per second

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Original Registers

 General purpose registers. They are used in many of the
data movement and arithmetic instructions
• AX, BX, CX and DX

 Index registers. They are often used as pointers
• SI and DI

 BP and SP registers are used to point to data in the
machine language stack and are called the Base Pointer
and Stack Pointer

 CS, DS, SS and ES registers are segment registers. They
denote what memory is used for different parts of a
program

 CS stands for Code Segment, DS for Data Segment, SS
for Stack Segment and ES for Extra Segment

 ES is used as a temporary segment register

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Instruction Pointer

 The Instruction Pointer (IP) register is used
with the CS register to keep track of the address
of the next instruction to be executed by the
CPU.

 Normally, as an instruction is executed, IP is
advanced to point to the next instruction in
memory

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Pentium Processor

 This CPU greatly enhanced the original
registers

 First, it extends many of the registers to hold
32-bits (EAX, EBX, ECX, EDX, ESI , EDI , EBP,
ESP, EIP) and adds two new 16-bit registers FS
and GS

 I t also adds a new 32-bit protected mode

 In this mode, it can access up to 4 gigabytes

 Programs are again divided into segments, but
now each segment can also be up to 4 gigabytes
in size!

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Interrupts

 Sometimes the ordinary flow of a program must
be interrupted to process events that require
prompt response

 The hardware of a computer provides a
mechanism called interrupts to handle these
events

 For example, when a mouse is moved, the
mouse hardware interrupts the current
program to handle the mouse movement (to
move the mouse cursor, etc.)

 Interrupts cause control to be passed to an
interrupt handler

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Interrupt handler

 Interrupt handlers are routines that process the
interrupt

 Each type of interrupt is assigned an integer
number

 At the beginning of physical memory, a table of
interrupt vectors resides that contain the
segmented addresses of the interrupt handlers

 The number of interrupt is essentially an index
into this table

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

External interrupts and Internal
interrupts

 External interrupts are raised from outside the
CPU. (The mouse is an example of this type.)
Many I / O devices raise interrupts (e.g.,
keyboard, timer, disk drives, CD-ROM and
sound cards).

 Internal interrupts are raised from within the
CPU, either from an error or the interrupt
instruction.

 Error interrupts are also called traps. Interrupts
generated from the interrupt instruction are
called software interrupts

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Handlers

 Many interrupt handlers return control back to
the interrupted program when they finish

 They restore all the registers to the same values
they had before the interrupt occurred

 Thus, the interrupted program runs as if
nothing happened (except that it lost some CPU
cycles)

 Traps generally do not return. Often they abort
the program.

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Machine Language

 Every type of CPU understands its own machine
language

 Instructions in machine language are numbers
stored as bytes in memory

 Each instruction has its own unique numeric
code called its operation code or opcode for
short

 The 80x86 processor’s instructions vary in size.
The opcode is always at the beginning of the
instruction

 Many instructions also include data (e.g.,
constants or addresses) used by the instruction

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Machine Language

 Machine language is very difficult to program in directly

 Deciphering the meanings of the numerical-coded
instructions is tedious for humans

 For example, the instruction that says to add the EAX
and EBX registers together and store the result back
into EAX is encoded by the following hex codes:

• 03 C3

 This is hardly obvious. Fortunately, a program called an
assembler can do this tedious work for the programmer

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Assembly Language

 An assembly language program is stored as text (just as
a higher level language program)

 Each assembly instruction represents exactly one
machine instruction. For example, the addition
instruction would be represented in assembly language
as:
• add eax, ebx

 Here the meaning of the instruction is much clearer
than in machine code

 The word add is a mnemonic for the addition
instruction.

 The general form of an assembly instruction is:
• mnemonic operand(s)

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Assembler

 An assembler is a program that reads a text file with
assembly instructions and converts the assembly into
machine code

 Compilers are programs that do similar conversions for
high-level programming languages

 An assembler is much simpler than a compiler

 Every assembly language statement directly represents
a single machine instruction

 High-level language statements are much more
complex and may require many machine instructions

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Assembly Language Vs High-level
Language

 Difference between assembly and high-level
languages is that since every different type of
CPU has its own machine language, it also has
its own assembly language

 Porting assembly programs between different
computer architectures is much more difficult
than in a high-level language

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Assembly Language Compilers

 Netwide Assembler or NASM (freely available
off the Internet)

 Microsoft’s Assembler (MASM)

 Borland’s Assembler (TASM)

 There are some differences in the assembly
syntax for MASM, TASM and NASM

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Instruction operands

 Machine code instructions have varying number and
type of operands; however, in general, each instruction
itself will have a fixed number of oper-ands (0 to 3).

 Operands can have the following types:
• register : These operands refer directly to the contents of the

CPU’s registers
• memory: These refer to data in memory. The address of the

data may be a constant hardcoded into the instruction or may
be computed using

• values of registers. Address are always offsets from the
beginning of a segment.

• immediate: These are fixed values that are listed in the
instruction itself. They are stored in the instruction itself (in the
code segment), not in the data segment.

• implied: There operands are not explicitly shown. For
example, the increment instruction adds one to a register or
memory. The one is implied.

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

MOV instruction

 The most basic instruction is the MOV instruction

 I t moves data from one location to another (like the
assignment operator in a high-level language)

 I t takes two operands:
• mov dest, src

 The data specified by src is copied to dest

 One restriction is that both operands may not be
memory operands

 The operands must also be the same size

 The value of AX can not be stored into BL

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

MOV instruction Example

 mov eax, 3

• store 3 into EAX register (3 is immediate operand)

 mov bx, ax

• store the value of AX into the BX register

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

ADD instruction

 The ADD instruction is used to add integers.
 add eax, 4

• eax = eax + 4

 add al, ah

• al = al + ah

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

SUB instruction

 The SUB instruction subtracts integers.
 sub bx, 10

• bx = bx - 10

 sub ebx, edi

• ebx = ebx - edi

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

INC and DEC instructions

 The INC and DEC instructions increment or
decrement values by one

 inc ecx

• ecx++

 dec dl

• dl--

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Directive

 Directive is an artifact of the assembler not the
CPU

 They are generally used to either instruct the
assembler to do something or inform the
assembler of something

 They are not translated into machine code
 Common uses of directives are:

• define constants
• define memory to store data into
• group memory into segments
• conditionally include source code
• include other files

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

preprocessor

 NASM code passes through a preprocessor just
like C

 I t has many of the same preprocessor
commands as C

 NASM’s preprocessor directives start with a %
instead of a # as in C

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

equ directive

 The equ directive can be used to define a
symbol

 Symbols are named constants that can be used
in the assembly program

 The format is:
• symbol equ value

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

%define directive

 This directive is similar to C’s #define directive

 I t is most commonly used to define constant
macros just as in C
• %define SIZE 100

• mov eax, SIZE

 The above code defines a macro named SIZE
and shows its use in a MOV instruction

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Data directives

 Data directives are used in data segments to define
room for memory.

 There are two ways memory can be reserved.
• The first way only defines room for data
• The second way defines room and an initial value

 The first method uses one of the RESX directives. The X
is replaced with a letter that determines the size of the
object (or objects) that will be stored

 The second method (that defines an initial value, too)
uses one of the DX directives

 The X letters are the same as those in the RESX
directives

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Labels

 Labels allow one to easily refer to memory locations in code
 Examples:

• L1 db 0

– byte labeled L1 with initial value 0
• L2 dw 1000

– word labeled L2 with initial value 1000
• L3 db 110101b

– byte initialized to binary 110101 (53 in decimal)
• L4 db 12h

– byte initialized to hex 12 (18 in decimal)
• L5 db 17o

– byte initialized to octal 17 (15 in decimal)
• L6 dd 1A92h

– double word initialized to hex 1A92
• L7 resb 1

– 1 uninitialized byte
• L8 db "A"

– byte initialized to ASCI I code for A (65)
• L9 db 0, 1, 2, 3

– defines 4 bytes
• L10 db "w", "o", "r", ’d’, 0

– defines a C string = "word"
• L11 db ’word’, 0

– same as L10

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Label []

 There are two ways that a label can be used. I f a
plain label is used, it is interpreted as the
address (or offset) of the data

 I f the label is placed inside square brackets ([]),
it is interpreted as the data at the address

 You should think of a label as a pointer to the
data and the square brackets dereferences the
pointer just as the asterisk does in C

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Example

 mov al, [L1]

• copy byte at L1 into AL
 mov eax, L1

• EAX = address of byte at L1
 mov [L1], ah

• copy AH into byte at L1
 mov eax, [L6]

• copy double word at L6 into EAX
 add eax, [L6]

• EAX = EAX + double word at L6
 add [L6], eax

• double word at L6 += EAX
 mov al, [L6]

• copy first byte of double word at L6 into AL

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Input and output

 Input and output are very system dependent activities

 I t involves interfacing with the system’s hardware

 High level languages, like C, provide standard libraries
of routines that provide a simple, uniform
programming interface for I / O

 Assembly languages provide no standard libraries

 They must either directly access hardware (which is a
privileged operation in pro-tected mode) or use
whatever low level routines that the operating system
provides

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

C Interface

 I t is very common for assembly routines to be
interfaced with C

 One advantage of this is that the assembly code
can use the standard C library I / O routines

 To use these routines, you must include a file
with information that the assembler needs to
use them

 To include a file in NASM, use the %include
preprocessor directive

 The following line includes the file needed:
• %include "asm_io.inc"

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Call

 To use one of the print routines, you load EAX
with the correct value and use a CALL
instruction to invoke it

 The CALL instruction is equivalent to a function
call in a high level language

 I t jumps execution to another section of code,
but returns back to its origin after the routine is
over

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Creating a Program

 Today, it is unusual to create a stand alone
program written completely in assembly
language

 Assembly is usually used to key certain critical
routines

 I t is much easier to program in a higher level
language than in assembly

 Using assembly makes a program very hard to
port to other platforms

 In fact, it is rare to use assembly at all

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Why should anyone learn assembly at
all?

1. Sometimes code written in assembly can be faster and
smaller than compiler generated code

2. Assembly allows access to direct hardware features of
the system that might be difficult or impossible to use
from a higher level language

3. Learning to program in assembly helps to gain a
deeper understanding of how computers work

4. Learning to program in assembly helps you understand
better how compilers and high level languages like C
work

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

First.asm

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Assembling the code

 The first step is to assembly the code

 From the command line, type:
• nasm -f object-format first.asm

 where object-format is either coff , elf , obj or
win32 depending on what C compiler will be
used

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Compiling the C code

 Compile the driver.c file using a C compiler
• gcc -c driver.c

 The -c switch means to just compile, do not
attempt to link yet

 This same switch works on Linux, Borland and
Microsoft compilers as well

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Linking the object files

 Linking is the process of combining the
machine code and data in object files and
library files together to create an executable file

 This process is complicated
 C code requires the standard C library and

special startup code to run
 I t is much easier to let the C compiler call the

linker with the correct parameters, than to try
to call the linker directly
• gcc -o first driver.o first.o asm io.o

 This creates an executable called first.exe (or
just first under Linux)

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Understanding an assembly listing file

 The -l listing-file switch can be used to tell nasm
to create a listing file of a given name

 This file shows how the code was assembled

 The first column in each line is the line number
and the second is the offset (in hex) of the data
in the segment

 The third column shows the raw hex values that
will be stored

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Big and Little Endian Representation

 There are two popular methods of storing integers: big
endian and little endian

 Big endian is the method that seems the most natural.
The biggest (i.e. most significant) byte is stored first,
then the next biggest, etc

 For example, the dword 00000004 would be stored as
the four bytes 00 00 00 04

 IBM mainframes, most RISC processors and Motorola
processors all use this big endian method

 Intel-based processors use the little endian method!
 Here the least significant byte is stored first
 00000004 is stored in memory as 04 00 00 00
 This format is hardwired into the CPU and can not be

changed

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Skeleton File

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Working with Integers

 Integers come in two flavors: unsigned and
signed

 Unsigned integers (which are non-negative) are
represented in a very straightforward binary
manner

 The number 200 as an one byte unsigned
integer would be represented as by 11001000
(or C8 in hex)

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Signed integers

 Signed integers (which may be positive or negative) are
represented in a more complicated ways

 For example, consider 56. +56 as a byte would be
represented by 00111000

 On paper, one could represent 56 as 111000, but
how would this be represented in a byte in the
computer’s memory

 How would the minus sign be stored?
 There are three general techniques that have been used

to represent signed integers in computer memory
 All of these methods use the most significant bit of the

integer as a sign bit
 This bit is 0 if the number is positive and 1 if negative

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Signed Magnitude

 The first method is the simplest and is called
signed magnitude. I t represents the integer as
two parts

 The first part is the sign bit and the second is
the magnitude of the integer

 So 56 would be represented as the byte
00111000 (the sign bit is underlined) and 56
would be 10111000

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Two’s Compliment

 Signed Magnitude methods described were used on
early computers

 Modern computers use a method called two’s
complement representation

 The two’s complement of a number is found by the
following two steps:
• 1. Find the one’s complement of the number
• 2. Add one to the result of step 1

 Here’s an example using 00111000 (56)
• First the one’s complement is computed: 11000111
• Then one is added:

 11000111

 + 1

 11001000

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

I f statements

 The following pseudo-code:
• if (condition)

– then block ;

• else

– else block ;

 Could be implemented as:
• 1 ; code to set FLAGS

• 2 jxx else_block ; select xx so that branches if
condition false

• 3 ; code for then block

• 4 jmp endif

• 5 else_block:

• 6 ; code for else block

• 7 endif:

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Do while loops

 The do while loop is a bottom tested loop:
• do

• {

• body of loop ;

• } while (condition);

 This could be translated into:
• 1 do:

• 2 ; body of loop

• 3 ; code to set FLAGS based on
condition

• 4 jxx do ; select xx so that branches
if true

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Example: Finding Prime Numbers

 This is a program that finds prime numbers

 Prime numbers are evenly divisible by only 1
and themselves

 There is no formula for doing this

 The basic method this program uses is to find
the factors of all odd numbers3 below a given
limit

 I f no factor can be found for an odd number, it
is prime

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Finding Prime Numbers

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Code 1

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Code 2

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Code 3

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Indirect addressing

 Indirect addressing allows registers to act like
pointer variables

 To indicate that a register is to be used
indirectly as a pointer, it is enclosed in square
brackets ([])

 For example:
• 1 mov ax, [Data] ; normal direct memory

addressing of a word

• 2 mov ebx, Data ; ebx = & Data

• 3 mov ax, [ebx] ; ax = *ebx

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Subprogram

 A subprogram is an independent unit of code
that can be used from different parts of a
program

 A subprogram is like a function in C

 A jump can be used to invoke the subprogram,
but returning presents a problem

 I f the subprogram is to be used by different
parts of the program, it must return back to the
section of code that invoked it

 The jump back from the subprogram can not be
hard coded to a label

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Simple Subprogram Example

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

The Stack

 Many CPU’s have built-in support for a stack

 A stack is a Last-In First-Out (LIFO) list

 The stack is an area of memory that is
organized in this fashion

 The PUSH instruction adds data to the stack
and the POP instruction removes data

 The data removed is always the last data added

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

The SS segment

 The SS segment register specifies the segment that
contains the stack (usually this is the same segment
data is stored into)

 The ESP register contains the address of the data that
would be removed from the stack

 This data is said to be at the top of the stack
 Data can only be added in double word units
 The PUSH instruction inserts a double word1 on the

stack by subtracting 4 from ESP and then stores the
double word at [ESP]

 The POP instruction reads the double word at [ESP]
and then adds 4 to ESPESP is initially 1000H

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

ESP

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

The Stack Usage

 The stack can be used as a convenient place to
store data temporarily

 I t is also used for making subprogram calls,
passing parameters and local variables

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

The CALL and RET Instructions

 The 80x86 provides two instructions that use
the stack to make calling subprograms quick
and easy

 The CALL instruction makes an unconditional
jump to a subprogram and pushes the address
of the next instruction on the stack

 The RET instruction pops off an address and
jumps to that address

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Passing parameters on the stack

 Parameters to a subprogram may be passed on the stack

 They are pushed onto the stack before the CALL
instruction

 Just as in C, if the parameter is to be changed by the
subprogram, the address of the data must be passed,
not the value

 I f the parameter’s size is less than a double word, it
must be converted to a double word before being
pushed

 The parameters on the stack are not popped off by the
subprogram, instead they are accessed from the stack
itself

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Stack Data

 This is how the stack looks when a subprogram
is called

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

General subprogram form

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Sample subprogram call

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Example

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Local variables on the stack

 The stack can be used as a convenient location
for local variables

 This is exactly where C stores normal (or
automatic in C lingo) variables

 Using the stack for variables is important if you
wish subprograms to be reentrant

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

General subprogram form with local
variables

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Example: C version of sum

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Example: Assembly version of sum

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Multi-module program

 Multi-module program is one composed of more than
one object file.

 They consisted of the C driver object file and the
assembly object file (plus the C library object files)

 The linker combines the object files into a single
executable program

 The linker must match up references made to each label
in one module (i.e. object file) to its definition in
another module

 In order for module A to use a label defined in module
B, the extern directive must be used

 After the extern directive comes a comma delimited list
of labels

 The directive tells the assembler to treat these labels as
external to the module

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Saving registers

 First, C assumes that a subroutine maintains the values
of the following registers: EBX, ESI , EDI , EBP, CS, DS,
SS, ES

 This does not mean that the subroutine can not change
them internally

 I t means that if it does change their values, it must
restore their original values before the subroutine
returns

 The EBX, ESI and EDI values must be unmodified
because C uses these registers for register variables

 Usually the stack is used to save the original values of
these registers

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Stack inside printf Statement

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Labels of functions

 Most C compilers prepend a single underscore (
) character at the beginning of the names of
functions and global/ static variables

 For example, a function named f will be
assigned the label f

 I f this is to be an assembly routine, it must be
labelled f, not f

 The Linux gcc compiler does not prepend any
character

 Under Linux ELF executables, one simply
would use the label f for the C function f

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Calculating addresses of local variables

 Consider the case of passing the address of a variable
(let’s call it x) to a function (let’s call it foo)

 I f x is located at EBP 8 on the stack, one cannot just
• use: mov eax, ebp - 8

 Why? The value that MOV stores into EAX must be
computed by the assembler (that is, it must in the end
be a constant)

 There is an instruction that does the desired calculation.
I t is called LEA (for Load Effective Address)

 The following would calculate the address of x and store
it into EAX:
• lea eax, [ebp - 8]

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 End of Slides

