

Team[oR] 2001
[x] java

javaxml/ch01/example_1_1.xml

 The Wood Shop

 2
 excellent

 blue

 3
 average

javaxml/ch01/example_1_2.xml

 Test Page

 What you see is what you get!

javaxml/ch01/example_1_3.xsl

javaxml/ch01/example_1_4.html

 Test Page

What you see is what you get!

javaxml/ch01/example_1_7.xsp

 A Simple XSP Page
 Hi, I've been hit times.

javaxml/ch01/example_1_8.xsl

 java.lang.*

 private static int counter = 0;

 private synchronized int currentCount() {
 return ++counter;
 }

 currentCount()

javaxml/ch02/contents.xml

 Java and XML

 Introduction
 What Is It?
 How Do I Use It?
 Why Should I Use It?
 What's Next?

 Creating XML
 An XML Document
 The Header
 The Content
 What's Next?

 Parsing XML
 Getting Prepared
 SAX Readers
 Content Handlers
 Error Handlers

 A Better Way to Load a Parser

 "Gotcha!"
 What's Next?

 Web Publishing Frameworks
 Selecting a Framework
 Installation

 Using a Publishing Framework

 XSP
 Cocoon 2.0 and Beyond
 What's Next?

javaxml/ch02/example_2_2.xml

 Brett
 McLaughlin

 brettmclaughlin@earthlink.net

 Eddie
 Balucci

 eddieb@freeworld.net

javaxml/ch03/contents.xml

 Java and XML

 Introduction
 What Is It?
 How Do I Use It?
 Why Should I Use It?
 What's Next?

 Creating XML
 An XML Document
 The Header
 The Content
 What's Next?

 Parsing XML
 Getting Prepared
 SAX Readers
 Content Handlers
 Error Handlers

 A Better Way to Load a Parser

 "Gotcha!"
 What's Next?

 Web Publishing Frameworks
 Selecting a Framework
 Installation

 Using a Publishing Framework

 XSP
 Cocoon 2.0 and Beyond
 What's Next?

javaxml/ch03/SAXParserDemo.java

javaxml/ch03/SAXParserDemo.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import java.io.IOException;

import org.xml.sax.Attributes;

import org.xml.sax.ContentHandler;

import org.xml.sax.ErrorHandler;

import org.xml.sax.Locator;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.xml.sax.XMLReader;

import org.xml.sax.helpers.XMLReaderFactory;

/**

 * <code>SAXParserDemo</code> will take an XML file and parse it using SAX,

 * displaying the callbacks in the parsing lifecycle.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class SAXParserDemo {

 /**

 * <p>

 * This parses the file, using registered SAX handlers, and output

 * the events in the parsing process cycle.

 * </p>

 *

 * @param uri <code>String</code> URI of file to parse.

 */

 public void performDemo(String uri) {

 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Get instances of our handlers

 ContentHandler contentHandler = new MyContentHandler();

 ErrorHandler errorHandler = new MyErrorHandler();

 try {

 // Instantiate a parser

 XMLReader parser =

 XMLReaderFactory.createXMLReader(

 "org.apache.xerces.parsers.SAXParser");

 // Register the content handler

 parser.setContentHandler(contentHandler);

 // Register the error handler

 parser.setErrorHandler(errorHandler);

 // Parse the document

 parser.parse(uri);

 } catch (IOException e) {

 System.out.println("Error reading URI: " + e.getMessage());

 } catch (SAXException e) {

 System.out.println("Error in parsing: " + e.getMessage());

 }

 }

 /**

 * <p>

 * This provides a command line entry point for this demo.

 * </p>

 */

 public static void main(String[] args) {

 if (args.length != 1) {

 System.out.println("Usage: java SAXParserDemo [XML URI]");

 System.exit(0);

 }

 String uri = args[0];

 SAXParserDemo parserDemo = new SAXParserDemo();

 parserDemo.performDemo(uri);

 }

}

/**

 * <code>MyContentHandler</code> implements the SAX

 * <code>ContentHandler</code> interface and defines callback

 * behavior for the SAX callbacks associated with an XML

 * document's content.

 */

class MyContentHandler implements ContentHandler {

 /** Hold onto the locator for location information */

 private Locator locator;

 /**

 * <p>

 * Provide reference to <code>Locator</code> which provides

 * information about where in a document callbacks occur.

 * </p>

 *

 * @param locator <code>Locator</code> object tied to callback

 * process

 */

 public void setDocumentLocator(Locator locator) {

 System.out.println(" * setDocumentLocator() called");

 // We save this for later use if desired.

 this.locator = locator;

 }

 /**

 * <p>

 * This indicates the start of a Document parse - this precedes

 * all callbacks in all SAX Handlers with the sole exception

 * of <code>{@link #setDocumentLocator}</code>.

 * </p>

 *

 * @throws <code>SAXException</code> when things go wrong

 */

 public void startDocument() throws SAXException {

 System.out.println("Parsing begins...");

 }

 /**

 * <p>

 * This indicates the end of a Document parse - this occurs after

 * all callbacks in all SAX Handlers.</code>.

 * </p>

 *

 * @throws <code>SAXException</code> when things go wrong

 */

 public void endDocument() throws SAXException {

 System.out.println("...Parsing ends.");

 }

 /**

 * <p>

 * This will indicate that a processing instruction (other than

 * the XML declaration) has been encountered.

 * </p>

 *

 * @param target <code>String</code> target of PI

 * @param data <code>String</code containing all data sent to the PI.

 * This typically looks like one or more attribute value

 * pairs.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void processingInstruction(String target, String data)

 throws SAXException {

 System.out.println("PI: Target:" + target + " and Data:" + data);

 }

 /**

 * <p>

 * This will indicate the beginning of an XML Namespace prefix

 * mapping. Although this typically occur within the root element

 * of an XML document, it can occur at any point within the

 * document. Note that a prefix mapping on an element triggers

 * this callback <i>before</i> the callback for the actual element

 * itself (<code>{@link #startElement}</code>) occurs.

 * </p>

 *

 * @param prefix <code>String</code> prefix used for the namespace

 * being reported

 * @param uri <code>String</code> URI for the namespace

 * being reported

 * @throws <code>SAXException</code> when things go wrong

 */

 public void startPrefixMapping(String prefix, String uri) {

 System.out.println("Mapping starts for prefix " + prefix +

 " mapped to URI " + uri);

 }

 /**

 * <p>

 * This indicates the end of a prefix mapping, when the namespace

 * reported in a <code>{@link #startPrefixMapping}</code> callback

 * is no longer available.

 * </p>

 *

 * @param prefix <code>String</code> of namespace being reported

 * @throws <code>SAXException</code> when things go wrong

 */

 public void endPrefixMapping(String prefix) {

 System.out.println("Mapping ends for prefix " + prefix);

 }

 /**

 * <p>

 * This reports the occurrence of an actual element. It will include

 * the element's attributes, with the exception of XML vocabulary

 * specific attributes, such as

 * <code>xmlns:[namespace prefix]</code> and

 * <code>xsi:schemaLocation</code>.

 * </p>

 *

 * @param namespaceURI <code>String</code> namespace URI this element

 * is associated with, or an empty

 * <code>String</code>

 * @param localName <code>String</code> name of element (with no

 * namespace prefix, if one is present)

 * @param rawName <code>String</code> XML 1.0 version of element name:

 * [namespace prefix]:[localName]

 * @param atts <code>Attributes</code> list for this element

 * @throws <code>SAXException</code> when things go wrong

 */

 public void startElement(String namespaceURI, String localName,

 String rawName, Attributes atts)

 throws SAXException {

 System.out.print("startElement: " + localName);

 if (!namespaceURI.equals("")) {

 System.out.println(" in namespace " + namespaceURI +

 " (" + rawName + ")");

 } else {

 System.out.println(" has no associated namespace");

 }

 for (int i=0; i<atts.getLength(); i++)

 System.out.println(" Attribute: " + atts.getLocalName(i) +

 "=" + atts.getValue(i));

 }

 /**

 * <p>

 * Indicates the end of an element

 * (<code></[element name]></code>) is reached. Note that

 * the parser does not distinguish between empty

 * elements and non-empty elements, so this will occur uniformly.

 * </p>

 *

 * @param namespaceURI <code>String</code> URI of namespace this

 * element is associated with

 * @param localName <code>String</code> name of element without prefix

 * @param rawName <code>String</code> name of element in XML 1.0 form

 * @throws <code>SAXException</code> when things go wrong

 */

 public void endElement(String namespaceURI, String localName,

 String rawName)

 throws SAXException {

 System.out.println("endElement: " + localName + "\n");

 }

 /**

 * <p>

 * This will report character data (within an element).

 * </p>

 *

 * @param ch <code>char[]</code> character array with character data

 * @param start <code>int</code> index in array where data starts.

 * @param end <code>int</code> index in array where data ends.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void characters(char[] ch, int start, int end)

 throws SAXException {

 String s = new String(ch, start, end);

 System.out.println("characters: " + s);

 }

 /**

 * <p>

 * This will report whitespace that can be ignored in the

 * originating document. This is typically only invoked when

 * validation is ocurring in the parsing process.

 * </p>

 *

 * @param ch <code>char[]</code> character array with character data

 * @param start <code>int</code> index in array where data starts.

 * @param end <code>int</code> index in array where data ends.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void ignorableWhitespace(char[] ch, int start, int end)

 throws SAXException {

 String s = new String(ch, start, end);

 System.out.println("ignorableWhitespace: [" + s + "]");

 }

 /**

 * <p>

 * This will report an entity that is skipped by the parser. This

 * should only occur for non-validating parsers, and then is still

 * implementation-dependent behavior.

 * </p>

 *

 * @param name <code>String</code> name of entity being skipped

 * @throws <code>SAXException</code> when things go wrong

 */

 public void skippedEntity(String name) throws SAXException {

 System.out.println("Skipping entity " + name);

 }

}

/**

 * <code>MyErrorHandler</code> implements the SAX

 * <code>ErrorHandler</code> interface and defines callback

 * behavior for the SAX callbacks associated with an XML

 * document's errors.

 */

class MyErrorHandler implements ErrorHandler {

 /**

 * <p>

 * This will report a warning that has occurred; this indicates

 * that while no XML rules were "broken", something appears

 * to be incorrect or missing.

 * </p>

 *

 * @param exception <code>SAXParseException</code> that occurred.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void warning(SAXParseException exception)

 throws SAXException {

 System.out.println("**Parsing Warning**\n" +

 " Line: " +

 exception.getLineNumber() + "\n" +

 " URI: " +

 exception.getSystemId() + "\n" +

 " Message: " +

 exception.getMessage());

 throw new SAXException("Warning encountered");

 }

 /**

 * <p>

 * This will report an error that has occurred; this indicates

 * that a rule was broken, typically in validation, but that

 * parsing can reasonably continue.

 * </p>

 *

 * @param exception <code>SAXParseException</code> that occurred.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void error(SAXParseException exception)

 throws SAXException {

 System.out.println("**Parsing Error**\n" +

 " Line: " +

 exception.getLineNumber() + "\n" +

 " URI: " +

 exception.getSystemId() + "\n" +

 " Message: " +

 exception.getMessage());

 throw new SAXException("Error encountered");

 }

 /**

 * <p>

 * This will report a fatal error that has occurred; this indicates

 * that a rule has been broken that makes continued parsing either

 * impossible or an almost certain waste of time.

 * </p>

 *

 * @param exception <code>SAXParseException</code> that occurred.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void fatalError(SAXParseException exception)

 throws SAXException {

 System.out.println("**Parsing Fatal Error**\n" +

 " Line: " +

 exception.getLineNumber() + "\n" +

 " URI: " +

 exception.getSystemId() + "\n" +

 " Message: " +

 exception.getMessage());

 throw new SAXException("Fatal Error encountered");

 }

}

javaxml/ch04/contents.xml

 Java and XML

 Introduction
 What Is It?
 How Do I Use It?
 Why Should I Use It?
 What's Next?

 Creating XML
 An XML Document
 The Header
 The Content
 What's Next?

 Parsing XML
 Getting Prepared
 SAX Readers
 Content Handlers
 Error Handlers

 A Better Way to Load a Parser

 "Gotcha!"
 What's Next?

 Web Publishing Frameworks
 Selecting a Framework
 Installation

 Using a Publishing Framework

 XSP
 Cocoon 2.0 and Beyond
 What's Next?

javaxml/ch04/DTD/JavaXML.dtd

<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus (XML|Java) "Java"
>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections CDATA #IMPLIED
>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY OReillyCopyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">

javaxml/ch04/example_4_1.xml

 Commerce
 #CC9900
 Arial

 Lots of content would go here

javaxml/ch04/example_4_2.xml

 Commerce
 #CC9900
 Arial

 Message Center
 #9900FF
 Arial

 News Center
 #EECCEE
 Helvetica

 Lots of content would go here

javaxml/ch04/example_4_5.xml

javaxml/ch04/Schema/JavaXML.xsd

javaxml/ch05/contents.xml

 Java and XML

 Introduction
 What Is It?
 How Do I Use It?
 Why Should I Use It?
 What's Next?

 Creating XML
 An XML Document
 The Header
 The Content
 What's Next?

 Parsing XML
 Getting Prepared
 SAX Readers
 Content Handlers
 Error Handlers

 A Better Way to Load a Parser

 "Gotcha!"
 What's Next?

 Web Publishing Frameworks
 Selecting a Framework
 Installation

 Using a Publishing Framework

 XSP
 Cocoon 2.0 and Beyond
 What's Next?

javaxml/ch05/DTD/JavaXML.dtd

<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus (XML|Java) "Java"
>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections CDATA #IMPLIED
>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY OReillyCopyright SYSTEM
 "entities/copyright.txt">
<!--
<!ENTITY OReillyCopyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">
-->

javaxml/ch05/entities/copyright.txt

This is a shared copyright file.

javaxml/ch05/SAXParserDemo.java

javaxml/ch05/SAXParserDemo.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import java.io.IOException;

import org.xml.sax.Attributes;

import org.xml.sax.ContentHandler;

import org.xml.sax.ErrorHandler;

import org.xml.sax.Locator;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.xml.sax.XMLReader;

import org.xml.sax.helpers.XMLReaderFactory;

/**

 * <code>SAXParserDemo</code> will take an XML file and parse it using SAX,

 * displaying the callbacks in the parsing lifecycle.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class SAXParserDemo {

 /**

 * <p>

 * This parses the file, using registered SAX handlers, and output

 * the events in the parsing process cycle.

 * </p>

 *

 * @param uri <code>String</code> URI of file to parse.

 */

 public void performDemo(String uri) {

 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Get instances of our handlers

 ContentHandler contentHandler = new MyContentHandler();

 ErrorHandler errorHandler = new MyErrorHandler();

 try {

 // Instantiate a parser

 XMLReader parser =

 XMLReaderFactory.createXMLReader(

 "org.apache.xerces.parsers.SAXParser");

 // Register the content handler

 parser.setContentHandler(contentHandler);

 // Register the error handler

 parser.setErrorHandler(errorHandler);

 // Turn on validation

 parser.setFeature("http://xml.org/sax/features/validation",

 true);

 // Turn off namespace awareness

 parser.setFeature("http://xml.org/sax/features/namespaces",

 false);

 // Parse the document

 parser.parse(uri);

 } catch (IOException e) {

 System.out.println("Error reading URI: " + e.getMessage());

 } catch (SAXException e) {

 System.out.println("Error in parsing: " + e.getMessage());

 }

 }

 /**

 * <p>

 * This provides a command line entry point for this demo.

 * </p>

 */

 public static void main(String[] args) {

 if (args.length != 1) {

 System.out.println("Usage: java SAXParserDemo [XML URI]");

 System.exit(0);

 }

 String uri = args[0];

 SAXParserDemo parserDemo = new SAXParserDemo();

 parserDemo.performDemo(uri);

 }

}

/**

 * <code>MyContentHandler</code> implements the SAX

 * <code>ContentHandler</code> interface and defines callback

 * behavior for the SAX callbacks associated with an XML

 * document's content.

 */

class MyContentHandler implements ContentHandler {

 /** Hold onto the locator for location information */

 private Locator locator;

 /**

 * <p>

 * Provide reference to <code>Locator</code> which provides

 * information about where in a document callbacks occur.

 * </p>

 *

 * @param locator <code>Locator</code> object tied to callback

 * process

 */

 public void setDocumentLocator(Locator locator) {

 System.out.println(" * setDocumentLocator() called");

 // We save this for later use if desired.

 this.locator = locator;

 }

 /**

 * <p>

 * This indicates the start of a Document parse - this precedes

 * all callbacks in all SAX Handlers with the sole exception

 * of <code>{@link #setDocumentLocator}</code>.

 * </p>

 *

 * @throws <code>SAXException</code> when things go wrong

 */

 public void startDocument() throws SAXException {

 System.out.println("Parsing begins...");

 }

 /**

 * <p>

 * This indicates the end of a Document parse - this occurs after

 * all callbacks in all SAX Handlers.</code>.

 * </p>

 *

 * @throws <code>SAXException</code> when things go wrong

 */

 public void endDocument() throws SAXException {

 System.out.println("...Parsing ends.");

 }

 /**

 * <p>

 * This will indicate that a processing instruction (other than

 * the XML declaration) has been encountered.

 * </p>

 *

 * @param target <code>String</code> target of PI

 * @param data <code>String</code containing all data sent to the PI.

 * This typically looks like one or more attribute value

 * pairs.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void processingInstruction(String target, String data)

 throws SAXException {

 System.out.println("PI: Target:" + target + " and Data:" + data);

 }

 /**

 * <p>

 * This will indicate the beginning of an XML Namespace prefix

 * mapping. Although this typically occur within the root element

 * of an XML document, it can occur at any point within the

 * document. Note that a prefix mapping on an element triggers

 * this callback <i>before</i> the callback for the actual element

 * itself (<code>{@link #startElement}</code>) occurs.

 * </p>

 *

 * @param prefix <code>String</code> prefix used for the namespace

 * being reported

 * @param uri <code>String</code> URI for the namespace

 * being reported

 * @throws <code>SAXException</code> when things go wrong

 */

 public void startPrefixMapping(String prefix, String uri) {

 System.out.println("Mapping starts for prefix " + prefix +

 " mapped to URI " + uri);

 }

 /**

 * <p>

 * This indicates the end of a prefix mapping, when the namespace

 * reported in a <code>{@link #startPrefixMapping}</code> callback

 * is no longer available.

 * </p>

 *

 * @param prefix <code>String</code> of namespace being reported

 * @throws <code>SAXException</code> when things go wrong

 */

 public void endPrefixMapping(String prefix) {

 System.out.println("Mapping ends for prefix " + prefix);

 }

 /**

 * <p>

 * This reports the occurrence of an actual element. It will include

 * the element's attributes, with the exception of XML vocabulary

 * specific attributes, such as

 * <code>xmlns:[namespace prefix]</code> and

 * <code>xsi:schemaLocation</code>.

 * </p>

 *

 * @param namespaceURI <code>String</code> namespace URI this element

 * is associated with, or an empty

 * <code>String</code>

 * @param localName <code>String</code> name of element (with no

 * namespace prefix, if one is present)

 * @param rawName <code>String</code> XML 1.0 version of element name:

 * [namespace prefix]:[localName]

 * @param atts <code>Attributes</code> list for this element

 * @throws <code>SAXException</code> when things go wrong

 */

 public void startElement(String namespaceURI, String localName,

 String rawName, Attributes atts)

 throws SAXException {

 System.out.print("startElement: " + localName);

 if (!namespaceURI.equals("")) {

 System.out.println(" in namespace " + namespaceURI +

 " (" + rawName + ")");

 } else {

 System.out.println(" has no associated namespace");

 }

 for (int i=0; i<atts.getLength(); i++)

 System.out.println(" Attribute: " + atts.getLocalName(i) +

 "=" + atts.getValue(i));

 }

 /**

 * <p>

 * Indicates the end of an element

 * (<code></[element name]></code>) is reached. Note that

 * the parser does not distinguish between empty

 * elements and non-empty elements, so this will occur uniformly.

 * </p>

 *

 * @param namespaceURI <code>String</code> URI of namespace this

 * element is associated with

 * @param localName <code>String</code> name of element without prefix

 * @param rawName <code>String</code> name of element in XML 1.0 form

 * @throws <code>SAXException</code> when things go wrong

 */

 public void endElement(String namespaceURI, String localName,

 String rawName)

 throws SAXException {

 System.out.println("endElement: " + localName + "\n");

 }

 /**

 * <p>

 * This will report character data (within an element).

 * </p>

 *

 * @param ch <code>char[]</code> character array with character data

 * @param start <code>int</code> index in array where data starts.

 * @param end <code>int</code> index in array where data ends.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void characters(char[] ch, int start, int end)

 throws SAXException {

 String s = new String(ch, start, end);

 System.out.println("characters: " + s);

 }

 /**

 * <p>

 * This will report whitespace that can be ignored in the

 * originating document. This is typically only invoked when

 * validation is ocurring in the parsing process.

 * </p>

 *

 * @param ch <code>char[]</code> character array with character data

 * @param start <code>int</code> index in array where data starts.

 * @param end <code>int</code> index in array where data ends.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void ignorableWhitespace(char[] ch, int start, int end)

 throws SAXException {

 String s = new String(ch, start, end);

 System.out.println("ignorableWhitespace: [" + s + "]");

 }

 /**

 * <p>

 * This will report an entity that is skipped by the parser. This

 * should only occur for non-validating parsers, and then is still

 * implementation-dependent behavior.

 * </p>

 *

 * @param name <code>String</code> name of entity being skipped

 * @throws <code>SAXException</code> when things go wrong

 */

 public void skippedEntity(String name) throws SAXException {

 System.out.println("Skipping entity " + name);

 }

}

/**

 * <code>MyErrorHandler</code> implements the SAX

 * <code>ErrorHandler</code> interface and defines callback

 * behavior for the SAX callbacks associated with an XML

 * document's errors.

 */

class MyErrorHandler implements ErrorHandler {

 /**

 * <p>

 * This will report a warning that has occurred; this indicates

 * that while no XML rules were "broken", something appears

 * to be incorrect or missing.

 * </p>

 *

 * @param exception <code>SAXParseException</code> that occurred.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void warning(SAXParseException exception)

 throws SAXException {

 System.out.println("**Parsing Warning**\n" +

 " Line: " +

 exception.getLineNumber() + "\n" +

 " URI: " +

 exception.getSystemId() + "\n" +

 " Message: " +

 exception.getMessage());

 throw new SAXException("Warning encountered");

 }

 /**

 * <p>

 * This will report an error that has occurred; this indicates

 * that a rule was broken, typically in validation, but that

 * parsing can reasonably continue.

 * </p>

 *

 * @param exception <code>SAXParseException</code> that occurred.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void error(SAXParseException exception)

 throws SAXException {

 System.out.println("**Parsing Error**\n" +

 " Line: " +

 exception.getLineNumber() + "\n" +

 " URI: " +

 exception.getSystemId() + "\n" +

 " Message: " +

 exception.getMessage());

 throw new SAXException("Error encountered");

 }

 /**

 * <p>

 * This will report a fatal error that has occurred; this indicates

 * that a rule has been broken that makes continued parsing either

 * impossible or an almost certain waste of time.

 * </p>

 *

 * @param exception <code>SAXParseException</code> that occurred.

 * @throws <code>SAXException</code> when things go wrong

 */

 public void fatalError(SAXParseException exception)

 throws SAXException {

 System.out.println("**Parsing Fatal Error**\n" +

 " Line: " +

 exception.getLineNumber() + "\n" +

 " URI: " +

 exception.getSystemId() + "\n" +

 " Message: " +

 exception.getMessage());

 throw new SAXException("Fatal Error encountered");

 }

}

javaxml/ch06/contents.xml

 Java and XML

 Introduction
 What Is It?
 How Do I Use It?
 Why Should I Use It?
 What's Next?

 Creating XML
 An XML Document
 The Header
 The Content
 What's Next?

 Parsing XML
 Getting Prepared
 SAX Readers
 Content Handlers
 Error Handlers

 A Better Way to Load a Parser

 "Gotcha!"
 What's Next?

 Web Publishing Frameworks
 Selecting a Framework
 Installation

 Using a Publishing Framework

 XSP
 Cocoon 2.0 and Beyond
 What's Next?

 The W3C
 http://www.w3.org/Style/XSL

 XSL List
 http://www.mulberrytech.com/xsl/xsl-list

 Copyright O'Reilly and Associates, 2000

javaxml/ch06/example_6_9.html

Table of Contents

			Introduction (XML Focus)

			Creating XML (XML Focus)

			Parsing XML (Java Focus)

			Web Publishing Frameworks (Java Focus)

Useful References

			
The W3C

			
XSL List

 			
 			

 Copyright O'Reilly and Associates, 2000

javaxml/ch06/XSL/JavaXML.html.xsl

 Table of Contents

 (Java Focus)

 (XML Focus)

 Useful References

javaxml/ch07/contents.xml

 Java and XML

 Introduction
 What Is It?
 How Do I Use It?
 Why Should I Use It?
 What's Next?

 Creating XML
 An XML Document
 The Header
 The Content
 What's Next?

 Parsing XML
 Getting Prepared
 SAX Readers
 Content Handlers
 Error Handlers

 A Better Way to Load a Parser

 "Gotcha!"
 What's Next?

 Web Publishing Frameworks
 Selecting a Framework
 Installation

 Using a Publishing Framework

 XSP
 Cocoon 2.0 and Beyond
 What's Next?

 The W3C
 http://www.w3.org/Style/XSL

 XSL List
 http://www.mulberrytech.com/xsl/xsl-list

javaxml/ch07/DOMParserDemo.java

javaxml/ch07/DOMParserDemo.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import org.w3c.dom.Document;

import org.w3c.dom.DocumentType;

import org.w3c.dom.NamedNodeMap;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

// Import your vendor's DOM parser

import org.apache.xerces.parsers.DOMParser;

/**

 * <code>DOMParserDemo</code> will take an XML file and display

 * the document using DOM.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class DOMParserDemo {

 /**

 * <p>

 * This parses the file, and then prints the document out

 * using DOM.

 * </p>

 *

 * @param uri <code>String</code> URI of file to parse.

 */

 public void performDemo(String uri) {

 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Instantiate your vendor's DOM parser implementation

 DOMParser parser = new DOMParser();

 try {

 parser.setFeature("http://xml.org/sax/features/validation", true);

 parser.setFeature("http://xml.org/sax/features/namespaces", false);

 parser.parse(uri);

 Document doc = parser.getDocument();

 // Print the document from the DOM tree and

 // feed it an initial indentation of nothing

 printNode(doc, "");

 } catch (Exception e) {

 e.printStackTrace();

 System.out.println("Error in parsing: " + e.getMessage());

 }

 }

 /**

 * <p>

 * This will print a DOM <code>Node</code> and then recurse

 * on its children.

 * </p>

 *

 * @param node <code>Node</code> object to print.

 * @param indent <code>String</code> spacing to insert

 * before this <code>Node</code>

 */

 public void printNode(Node node, String indent) {

 switch (node.getNodeType()) {

 case Node.DOCUMENT_NODE:

 System.out.println("<xml version=\"1.0\">\n");

 // recurse on each child

 NodeList nodes = node.getChildNodes();

 if (nodes != null) {

 for (int i=0; i<nodes.getLength(); i++) {

 printNode(nodes.item(i), "");

 }

 }

 break;

 case Node.ELEMENT_NODE:

 String name = node.getNodeName();

 System.out.print(indent + "<" + name);

 NamedNodeMap attributes = node.getAttributes();

 for (int i=0; i<attributes.getLength(); i++) {

 Node current = attributes.item(i);

 System.out.print(" " + current.getNodeName() +

 "=\"" + current.getNodeValue() +

 "\"");

 }

 System.out.println(">");

 // recurse on each child

 NodeList children = node.getChildNodes();

 if (children != null) {

 for (int i=0; i<children.getLength(); i++) {

 printNode(children.item(i), indent + " ");

 }

 }

 System.out.println(indent + "</" + name + ">");

 break;

 case Node.TEXT_NODE:

 case Node.CDATA_SECTION_NODE:

 System.out.print(node.getNodeValue());

 break;

 case Node.PROCESSING_INSTRUCTION_NODE:

 System.out.println("<?" + node.getNodeName() +

 " " + node.getNodeValue() +

 "?>");

 break;

 case Node.ENTITY_REFERENCE_NODE:

 System.out.print("&" + node.getNodeName() + ";");

 break;

 case Node.DOCUMENT_TYPE_NODE:

 DocumentType docType = (DocumentType)node;

 System.out.print("<!DOCTYPE " + docType.getName());

 if (docType.getPublicId() != null) {

 System.out.print(" PUBLIC \"" + docType.getPublicId() + "\" ");

 } else {

 System.out.print(" SYSTEM ");

 }

 System.out.println("\"" + docType.getSystemId() + "\">");

 break;

 }

 }

 /**

 * <p>

 * This provides a command line entry point for this demo.

 * </p>

 */

 public static void main(String[] args) {

 if (args.length != 1) {

 System.out.println("Usage: java DOMParserDemo [XML URI]");

 System.exit(0);

 }

 String uri = args[0];

 DOMParserDemo parserDemo = new DOMParserDemo();

 parserDemo.performDemo(uri);

 }

}

javaxml/ch07/DTD/JavaXML.dtd

<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus (XML|Java) "Java"
>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections CDATA #IMPLIED
>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY OReillyCopyright SYSTEM
 "entities/copyright.txt">
<!--
<!ENTITY OReillyCopyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">
-->

javaxml/ch07/entities/copyright.txt

This is a shared copyright file.

javaxml/ch07/XSL/JavaXML.html.xsl

 Table of Contents

 (Java Focus)

 (XML Focus)

 Useful References

javaxml/ch08/com/oreilly/xml/PrettyPrinter.java

javaxml/ch08/com/oreilly/xml/PrettyPrinter.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

package com.oreilly.xml;

import java.io.File;

import org.jdom.Document;

import org.jdom.input.Builder;

import org.jdom.input.SAXBuilder;

import org.jdom.output.XMLOutputter;

/**

 * <code>PrettyPrinter</code> will output the XML document at a

 * given URI

 *

 * @author Brett McLaughlin

 * @author Jason Hunter

 * @version 1.0

 */

public class PrettyPrinter {

 /**

 * <p>

 * Pretty prints a given XML URI

 * </p>

 */

 public static void main(String[] args) {

 if (args.length != 1) {

 System.out.println("Usage: " +

 "java com.oreilly.xml.PrettyPrinter [XML_URI]");

 return;

 }

 String filename = args[0];

 try {

 // Build the Document with SAX and Xerces, no validation

 Builder builder = new SAXBuilder();

 // Create the document (with validation)

 Document doc = builder.build(new File(filename));

 // Output the document, use standard formatter

 XMLOutputter fmt = new XMLOutputter();

 fmt.output(doc, System.out);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

javaxml/ch08/contents.xml

 Java and XML

 Introduction
 What Is It?
 How Do I Use It?
 Why Should I Use It?
 What's Next?

 Creating XML
 An XML Document
 The Header
 The Content
 What's Next?

 Parsing XML
 Getting Prepared
 SAX Readers
 Content Handlers
 Error Handlers

 A Better Way to Load a Parser

 "Gotcha!"
 What's Next?

 Web Publishing Frameworks
 Selecting a Framework
 Installation

 Using a Publishing Framework

 XSP
 Cocoon 2.0 and Beyond
 What's Next?

javaxml/ch08/DTD/JavaXML.dtd

<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus (XML|Java) "Java"
>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections CDATA #IMPLIED
>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY OReillyCopyright SYSTEM
 "entities/copyright.txt">
<!--
<!ENTITY OReillyCopyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">
-->

javaxml/ch08/entities/copyright.txt

This is a shared copyright file.

javaxml/ch09/chapterOne.inline.xml

 Java and XML
 Brett McLaughlin

 Chapter 1: Introduction

 XML. These three letters have brought shivers to
 almost every developer in the world today at some point in the
 last two years. While those shivers were often fear at another
 acronym to memorize, excitement at the promise of a new technology,
 or annoyance at another source of confusion for today's
 developer, they were shivers all the same. Surprisingly, almost every
 type of response was well merited with regard to XML. It is another
 acronym to memorize, and in fact brings with it a dizzying array of
 companions: XSL, XSLT, PI, DTD, XHTML, and more. It also brings with
 it a huge promise-what Java did for portability of code, XML claims
 to do for portability of data. Sun has even been touting the
 rather ambitious slogan "Java + XML = Portable Code + Portable
 Data" in recent months. And yes, XML does bring with it a
 significant amount of confusion. We will seek to unravel and
 demystify XML, without being so abstract and general as to be
 useless, and without diving in so deeply that this becomes just
 another droll specification to wade through. This
 is a book for you, the Java developer, who wants to understand the
 hype and use the tools that XML brings to the table.

 boolean authorOrEditor = false;

 // Perform logic to see if user is an author or editor

 String[] roleValues = request.getParameterValues("userRole");
 String[] passwordValues = request.getParameterValues("password");
 if ((roleValues != null) && (passwordValues != null)) {
 String userRole = roleValues[0];
 String password = passwordValues[0];
 if (userRole.equals("author") && password.equals("brett")) {
 authorOrEditor = true;
 } else
 if (userRole.equals("editor") && password.equals("mike")) {
 authorOrEditor = true;
 }

 }

 if (authorOrEditor) {

 Is the formatting of this first paragraph OK? I
 wonder if we should break this into two separate paragraphs. Let
 me know what you think, Mike.

 }

 Today's web application now faces a wealth of problems
 that were not even considered ten years ago. Systems that are
 distributed across thousands of miles must perform quickly and
 flawlessly. Data from heterogeneous systems, databases, directory
 services, and applications must be transferred without a single
 decimal place being lost. Applications must be able to communicate
 not only with other business components, but other business systems
 altogether, often across companies as well as technologies. Clients
 are no longer limited to thick clients, but can be web browsers that
 support HTML, mobile phones that support Wireless Application
 Protocol (WAP), or handheld organizers with entirely different markup
 languages altogether. Data, and the transformation of that data, has
 become the crucial centerpiece of every application being developed
 today.

javaxml/ch09/chapterOne.xml

 Java and XML
 Brett McLaughlin

 XML. These three letters have brought shivers to
 almost every developer in the world today at some point in the
 last two years. While those shivers were often fear at another
 acronym to memorize, excitement at the promise of a new technology,
 or annoyance at another source of confusion for today's
 developer, they were shivers all the same. Surprisingly, almost every
 type of response was well merited with regard to XML. It is another
 acronym to memorize, and in fact brings with it a dizzying array of
 companions: XSL, XSLT, PI, DTD, XHTML, and more. It also brings with
 it a huge promise-what Java did for portability of code, XML claims
 to do for portability of data. Sun has even been touting the
 rather ambitious slogan "Java + XML = Portable Code + Portable
 Data" in recent months. And yes, XML does bring with it a
 significant amount of confusion. We will seek to unravel and
 demystify XML, without being so abstract and general as to be
 useless, and without diving in so deeply that this becomes just
 another droll specification to wade through. This
 is a book for you, the Java developer, who wants to understand the
 hype and use the tools that XML brings to the table.

 boolean authorOrEditor = false;

 // Perform logic to see if user is an author or editor

 String[] roleValues = request.getParameterValues("userRole");
 String[] passwordValues = request.getParameterValues("password");
 if ((roleValues != null) && (passwordValues != null)) {
 String userRole = roleValues[0];
 String password = passwordValues[0];
 if (userRole.equals("author") && password.equals("brett")) {
 authorOrEditor = true;
 } else
 if (userRole.equals("editor") && password.equals("mike")) {
 authorOrEditor = true;
 }

 }

 if (authorOrEditor) {

 Is the formatting of this first paragraph OK? I
 wonder if we should break this into two separate paragraphs. Let
 me know what you think, Mike.

 }

 Today's web application now faces a wealth of problems
 that were not even considered ten years ago. Systems that are
 distributed across thousands of miles must perform quickly and
 flawlessly. Data from heterogeneous systems, databases, directory
 services, and applications must be transferred without a single
 decimal place being lost. Applications must be able to communicate
 not only with other business components, but other business systems
 altogether, often across companies as well as technologies. Clients
 are no longer limited to thick clients, but can be web browsers that
 support HTML, mobile phones that support Wireless Application
 Protocol (WAP), or handheld organizers with entirely different markup
 languages altogether. Data, and the transformation of that data, has
 become the crucial centerpiece of every application being developed
 today.

javaxml/ch09/cocoon.properties

##
Cocoon Configuration file
##

##
Global Configurations
##

Indicates whether or not Cocoon should be visible if
the requested URI equals the specified one.
selfservlet.enabled = true
selfservlet.uri = /Cocoon.xml

Indicates whether or not Cocoon should handle errors internally
and format the error and the exception stack trace to the client
or return the HTTP error code to the web server and let it handle it.
handle.errors.internally = true

Indicates the log severity level
#log.level = emergency
#log.level = critical
log.level = error
#log.level = warning
#log.level = info
#log.level = debug

##
XML Parsers
##

Apache Xerces 1.0.1+ (http://xml.apache.com/)
parser = org.apache.cocoon.parser.XercesParser

SUN ProjectX TR2 (http://java.sun.com/xml/)
#parser = org.apache.cocoon.parser.SunXMLParser

Indicate whether the XML file should be validated or not
this is turned off by default for faster operation.
parser.validate = false

##
XSLT Transformers
##

Apache Xalan (http://xml.apache.org/)
transformer = org.apache.cocoon.transformer.XalanTransformer

James Clark's XT (http://www.jclark.com/)
#transformer = org.apache.cocoon.transformer.XTTransformer

##
XML Producers
##

For example, if you want to produce your XML template reading it from
the file system, using your producer, you should request the URI:
http://your.site.com/your_XML_file.xml?producer=file

This is the request parameter used to identify the producer in the request:
(default value is "producer")
producer.parameter = producer

The syntax for this is
producer.type.xxx = full.class.name
where "xxx" is the producer indentier used in the request
producer.type.file = org.apache.cocoon.producer.ProducerFromFile
producer.type.request = org.apache.cocoon.producer.ProducerFromRequest

This is used in the example files
producer.type.dummy = org.apache.cocoon.example.DummyProducer

When producer indication is present in the request
this configuration allows to map those requests to a particular
producer indicated here with its type.
NOTE: this type must present in the above map.
producer.default = file

##
XML Processors
##

These are used when the <?cocoon-process type="xxx"?> PI is present.
If no PI of that type is present, no processing is performed.
The syntax for this is
processor.type.xxx = full.class.name

XSL Transformations (XSLT)
processor.type.xslt = org.apache.cocoon.processor.xslt.XSLTProcessor

SQL Processor
processor.type.sql = org.apache.cocoon.processor.sql.SQLProcessor

LDAP Processor
NOTE: you need to have the SUN JDNI API (jndi.jar) in your classpath
in order for this processor to work. Check the FAQ for more information.
#processor.type.ldap = org.apache.cocoon.processor.ldap.LdapProcessor

##
XSP Processor
##

eXtensible Server Pages Processor (XSP)
processor.type.xsp = org.apache.cocoon.processor.xsp.XSPProcessor

supported languages
processor.xsp.languages = java

Default encoding to be used for code generation and compilation
If omitted, the platform's default encoding will be used
This encoding should be used in:
- The XSP document <?xml?> declaration
- The XSLT stylesheet <xsl:output> "encoding" attribute
- Cocoon's default formatter "encoding" configuration property
Example: Russian uses "Cp1251"
processor.xsp.encoding = Cp1251

support for the java language
processor.xsp.java.processor = org.apache.cocoon.processor.xsp.language.java.XSPJavaProcessor
processor.xsp.java.logicsheet = xsp-java.xsl
processor.xsp.java.preprocessor = org.apache.cocoon.processor.xsp.language.java.XSPJavaPreprocessor

sets the repository where the compiled pages are stored.
NOTE: make sure the directory is readable. This directory is usually
relative to the web server's or to the servlet engine's. In case you're not
sure, use an absolute location.
WARNING: since this repository may contain information you want to remain
secret, we highly suggest that you protect the repository from untrusted
access, even read-only. Only Cocoon and the system administrators should
have access here.
processor.xsp.repository = ./repository

Set the libraries associated with the given namespace.
Use the syntax:
processor.xsp.logicsheet.<namespace-tag>.<language> = URL to file
where "URL to file" is usually starting with file:// if you locate
your custom library in your file system.
processor.xsp.logicsheet.context.java = resource://org/apache/cocoon/processor/xsp/library/java/context.xsl
processor.xsp.logicsheet.cookie.java = resource://org/apache/cocoon/processor/xsp/library/java/cookie.xsl
processor.xsp.logicsheet.global.java = resource://org/apache/cocoon/processor/xsp/library/java/global.xsl
processor.xsp.logicsheet.request.java = resource://org/apache/cocoon/processor/xsp/library/java/request.xsl
processor.xsp.logicsheet.response.java = resource://org/apache/cocoon/processor/xsp/library/java/response.xsl
processor.xsp.logicsheet.session.java = resource://org/apache/cocoon/processor/xsp/library/java/session.xsl
processor.xsp.logicsheet.util.java = resource://org/apache/cocoon/processor/xsp/library/java/util.xsl
processor.xsp.logicsheet.sql.java = resource://org/apache/cocoon/processor/xsp/library/java/sql.xsl

processor.xsp.logicsheet.JavaXML.java = resource://JavaXML.xsp.xsl

!!!!WARNING!!!!
The DCP processor should be considered -deprecated- and we highly suggest
you to convert all of your DCP stuff into XSP pages that, in the future,
will totally replace DCP.
#
Dynamic Content Processor (DCP)
processor.type.dcp = org.apache.cocoon.processor.dcp.DCPProcessor
#
################################

##
XML Formatters
##

This is used when no <?cocoon?> PI is present to indicate
which MIME type to associate to the document.
NOTE: this type must present in the map below.
formatter.default = text/html

These are used when the <?cocoon-format type="xxx/yyy"?> PI is present
The syntax for this is
formatter.type.xxx/yyy = full.class.name

Full configurable formatters
###############################

formatter.type.text/html = org.apache.cocoon.formatter.HTMLFormatter
formatter.type.text/html/loose = org.apache.cocoon.formatter.HTMLFormatter
formatter.type.text/xhtml = org.apache.cocoon.formatter.XHTMLFormatter
formatter.type.text/xhtml/loose = org.apache.cocoon.formatter.XHTMLFormatter
formatter.type.text/xml = org.apache.cocoon.formatter.XMLFormatter
formatter.type.text/wml = org.apache.cocoon.formatter.XMLFormatter
formatter.type.text/plain = org.apache.cocoon.formatter.TextFormatter
formatter.type.model/vrml = org.apache.cocoon.formatter.TextFormatter
formatter.type.text/xslfo = org.apache.cocoon.formatter.FO2PDFFormatter
formatter.type.application/smil = org.apache.cocoon.formatter.XMLFormatter
formatter.type.image/svg-xml = org.apache.cocoon.formatter.XMLFormatter

You can modify the formatter's behavior by adding the following configurations
for each formatter you want to specifize. Note that even if two formatters
share the same class, they are will be seen as different entities, accessed
only by their types.
#
formatter.[type].MIME-type = [formatter MIME type]
formatter.[type].encoding = [encoding type]
formatter.[type].doctype-public = [public identifier]
formatter.[type].doctype-system = [system identifier]
formatter.[type].preserve-space = [whether to preserve space or not]
formatter.[type].line-width = [page width, wrapping column]
formatter.[type].indent = [numbers of spaces for tag indenting]

HTML 4.0 (strict)
formatter.text/html.doctype-public = -//W3C//DTD HTML 4.0//EN
formatter.text/html.doctype-system = http://www.w3.org/TR/REC-html40/strict.dtd

XHTML 1.0 (strict)
formatter.text/xhtml.doctype-public = -//W3C//DTD XHTML 1.0 Strict//EN
formatter.text/xhtml.doctype-system = xhtml1-strict.dtd

WML 1.1
formatter.text/wml.doctype-public = -//WAPFORUM//DTD WML 1.1//EN
formatter.text/wml.doctype-system = http://www.wapforum.org/DTD/wml_1.1.xml
formatter.text/wml.MIME-type = text/vnd.wap.wml

VRML 97
formatter.model/vrml.MIME-type = model/vrml

PDF
formatter.text/xslfo.MIME-type = application/pdf

HTML 4.0 (transitional)
formatter.text/html/loose.doctype-public = -//W3C//DTD HTML 4.0 Transitional//EN
formatter.text/html/loose.doctype-system = http://www.w3.org/TR/REC-html40/loose.dtd
formatter.text/html/loose.preserve-space = true
formatter.text/html/loose.encoding = UTF-8
formatter.text/html/loose.indent = 1
formatter.text/html/loose.line-width = 120
formatter.text/html/loose.MIME-type = text/html

XHTML 1.0 (transitional)
formatter.text/xhtml/loose.doctype-public = -//W3C//DTD XHTML 1.0 Transitional//EN
formatter.text/xhtml/loose.doctype-system = xhtml1-transitional.dtd

SMIL
formatter.application/smil.doctype-public = -//W3C//DTD SMIL 1.0//EN
formatter.application/smil.doctype-system = http://www.w3.org/TR/REC-smil/SMIL10.dtd
formatter.application/smil.MIME-type = application/smil

SVG (20000303 WD)
formatter.image/svg.doctype-public = -//W3C//DTD SVG 20000303 Stylable//EN
formatter.image/svg.doctype-system = http://www.w3.org/TR/2000/03/WD-SVG-20000303/
formatter.image/svg.MIME-type = image/svg-xml

##
Cache Managers
##

the default cache
cache = org.apache.cocoon.cache.CocoonCache

disable page caching
#cache = org.apache.cocoon.cache.NoCache

##
Object Storage Systems
##

the default object storage
store = org.apache.cocoon.store.MemoryStore

Indicates how much free memory should always be available to the JVM. (in bytes)
store.freememory = 1000000

Indicates what is the maximum heap size that your JVM can reach (in byte).
This is normally set using the -mx or -Xmx command line argument.
store.heapsize = 60000000

Indicates the sleeping time for the background thread (in seconds)
#store.interval = 10

Indicates the thread priority (1-10: 10 is maximum, 1 is minimum)
#store.threadpriority = 10

Uncomment this to disable the background thread that manages the cache
overflow and leave this at request time.
#store.usethread = false

##
Language Interpreters
##

These are used by the DCP Processor
interpreter.type.java = org.apache.cocoon.interpreter.java.JavaInterpreter
#interpreter.type.ecmascript = org.apache.cocoon.interpreter.ecmascript.EcmaScriptInterpreter
#interpreter.type.javascript = org.apache.cocoon.interpreter.ecmascript.EcmaScriptInterpreter

Indicates the default language if not specified in the DCP PIs
interpreter.default = java

NOTE: see the DCP user guide for instructions on using ecmascript and the
packages required for this operation.

##
User Agents (Browsers)
##

NOTE: numbers indicate the search order. This is very important since
some words may be found in more than one browser description. (MSIE is
presented as "Mozilla/4.0 (Compatible; MSIE 4.01; ...")
#
for example, the "explorer=MSIE" tag indicates that the XSL stylesheet
associated to the media type "explorer" should be mapped to those browsers
that have the string "MSIE" in their "user-Agent" HTTP header.

browser.0 = explorer=MSIE
browser.1 = pocketexplorer=MSPIE
browser.2 = handweb=HandHTTP
browser.3 = avantgo=AvantGo
browser.4 = imode=DoCoMo
browser.5 = opera=Opera
browser.6 = lynx=Lynx
browser.7 = java=Java
browser.8 = wap=Nokia
browser.9 = wap=UP
browser.10 = wap=Wapalizer
browser.11 = mozilla5=Mozilla/5
browser.12 = mozilla5=Netscape6/
browser.13 = netscape=Mozilla

javaxml/ch09/contents.xml

 Java and XML

 Introduction
 What Is It?
 How Do I Use It?
 Why Should I Use It?
 What's Next?

 Creating XML
 An XML Document
 The Header
 The Content
 What's Next?

 Parsing XML
 Getting Prepared
 SAX Readers
 Content Handlers
 Error Handlers

 A Better Way to Load a Parser

 "Gotcha!"
 What's Next?

 Web Publishing Frameworks
 Selecting a Framework
 Installation

 Using a Publishing Framework

 XSP
 Cocoon 2.0 and Beyond
 What's Next?

 The W3C
 http://www.w3.org/Style/XSL

 XSL List
 http://www.mulberrytech.com/xsl/xsl-list

 Copyright O'Reilly and Associates, 2000

javaxml/ch09/DTD/JavaXML.dtd

<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus (XML|Java) "Java"
>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections CDATA #IMPLIED
>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY OReillyCopyright SYSTEM
 "entities/copyright.txt">
<!--
<!ENTITY OReillyCopyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">
-->

javaxml/ch09/entities/copyright.txt

This is a shared copyright file.

javaxml/ch09/entry.html

 Java and XML Book in Progress

 Select your role:
 I'm the Author
I'm the Editor
I'm a Reader

 Enter your password:

javaxml/ch09/example_9_7.xml

 private static int numHits = 0;

 private synchronized int getNumHits() {
 return ++numHits;
 }

 Hit Counter

 I've been requested getNumHits() times.

javaxml/ch09/logicsheets.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0
Created-By: 1.2.2 (Sun Microsystems Inc.)

JavaXML.xsp.xsl

 java.util.Date
 java.text.SimpleDateFormat

 private String getDraftDate() {
 return (new SimpleDateFormat("MM/dd/yyyy"))
 .format(new Date());
 }

 private String getTitle(int chapterNum, String chapterTitle) {
 return "Chapter " + chapterNum + ": " + chapterTitle;
 }

 getTitle(,
 " ")
 - getDraftDate()

javaxml/ch09/myStylesheet.xsl

 type="text/html"

javaxml/ch09/XSL/JavaXML.explorer-html.xsl

 (Explorer Version)

 Table of Contents (Explorer Version)

 Try Netscape today!

 (Java Focus)

 (XML Focus)

 Useful References

javaxml/ch09/XSL/JavaXML.fo.xsl

 type="text/xslfo"

javaxml/ch09/XSL/JavaXML.html.xsl

 Table of Contents

 (Java Focus)

 (XML Focus)

 Useful References

javaxml/ch09/XSL/JavaXML.wml.xsl

 type="text/wml"

 Contents
 Copyright

 Copyright 2000, O'Reilly & Associates

 Contents

javaxml/ch09/XSL/JavaXML.xsp.xsl

 java.util.Date
 java.text.SimpleDateFormat

 private String getDraftDate() {
 return (new SimpleDateFormat("MM/dd/yyyy"))
 .format(new Date());
 }

 private String getTitle(int chapterNum, String chapterTitle) {
 return "Chapter " + chapterNum + ": " + chapterTitle;
 }

 getTitle(,
 " ")
 - getDraftDate()

javaxml/ch10/com/oreilly/xml/LightweightXmlRpcServer.java

javaxml/ch10/com/oreilly/xml/LightweightXmlRpcServer.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

package com.oreilly.xml;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.util.Enumeration;

import java.util.Hashtable;

import helma.xmlrpc.XmlRpc;

import helma.xmlrpc.WebServer;

/**

 * <code>LightweightXmlRpcServer</code> is a utility class

 * that will start an XML-RPC server listening for HTTP requests

 * and register a set of handlers, defined in a configuration file.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class LightweightXmlRpcServer {

 /** The XML-RPC server utility class */

 private WebServer server;

 /** Port number to listen on */

 private int port;

 /** Configuration file to use */

 private String configFile;

 /**

 * <p>

 * This will store the requested port and configuration file

 * for the server to use.

 * </p>

 *

 * @param port <code>int</code> number of port to listen to

 * @param configFile <code>String</code> filename to read for

 * configuration information.

 */

 public LightweightXmlRpcServer(int port, String configFile) {

 this.port = port;

 this.configFile = configFile;

 }

 /**

 * <p>

 * This will start up the server.

 * </p>

 *

 * @throws <code>IOException</code> when problems occur.

 */

 public void start() throws IOException {

 try {

 // Use Apache Xerces SAX Parser

 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 System.out.println("Starting up XML-RPC Server...");

 server = new WebServer(port);

 // Register handlers

 registerHandlers(getHandlers());

 } catch (ClassNotFoundException e) {

 throw new IOException("Error loading SAX parser: " +

 e.getMessage());

 }

 }

 /**

 * <p>

 * This is a method that parses the configuration file

 * (in a very simplistic manner) and reads the handler

 * definitions supplied.

 * </p>

 *

 * @return <code>Hashtable</code> - class id/class pairs.

 * @throws <code>IOException</code> - when errors occur in

 * reading/parsing the file.

 */

 private Hashtable getHandlers() throws IOException {

 Hashtable handlers = new Hashtable();

 BufferedReader reader =

 new BufferedReader(new FileReader(configFile));

 String line = null;

 while ((line = reader.readLine()) != null) {

 // Syntax is "handlerName, handlerClass"

 int comma;

 // Skip comments

 if (line.startsWith("#")) {

 continue;

 }

 // Skip empty or useless lines

 if ((comma = line.indexOf(",")) < 2) {

 continue;

 }

 // Add the handler name and the handler class

 handlers.put(line.substring(0, comma),

 line.substring(comma+1));

 }

 return handlers;

 }

 /**

 * <p>

 * This will register the handlers supplied in the XML-RPC

 * server (typically from <code>{@link #getHandlers()}</code>.

 * </p>

 *

 * @param handlers <code>Hashtable</code> of handlers to register.

 */

 private void registerHandlers(Hashtable handlers) {

 Enumeration handlerNames = handlers.keys();

 // Loop through the requested handlers

 while (handlerNames.hasMoreElements()) {

 String handlerName = (String)handlerNames.nextElement();

 String handlerClass = (String)handlers.get(handlerName);

 // Add this handler to the server

 try {

 server.addHandler(handlerName,

 Class.forName(handlerClass).newInstance());

 System.out.println("Registered handler " + handlerName +

 " to class " + handlerClass);

 } catch (Exception e) {

 System.out.println("Could not register handler " +

 handlerName + " with class " +

 handlerClass);

 }

 }

 }

 /**

 * <p>

 * Provide a static entry point.

 * </p>

 */

 public static void main(String[] args) {

 if (args.length < 2) {

 System.out.println(

 "Usage: " +

 "java com.oreilly.xml.LightweightXmlRpcServer " +

 "[port] [configFile]");

 System.exit(-1);

 }

 LightweightXmlRpcServer server =

 new LightweightXmlRpcServer(Integer.parseInt(args[0]),

 args[1]);

 try {

 // Start the server

 server.start();

 } catch (IOException e) {

 System.out.println(e.getMessage());

 }

 }

}

javaxml/ch10/HelloClient.java

javaxml/ch10/HelloClient.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import java.io.IOException;

import java.net.MalformedURLException;

import java.util.Vector;

import helma.xmlrpc.XmlRpc;

import helma.xmlrpc.XmlRpcClient;

import helma.xmlrpc.XmlRpcException;

/**

 * <code>HelloClient</code> is a simple XML-RPC client

 * that makes an XML-RPC request to <code>HelloServer</code>.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class HelloClient {

 /**

 * <p>

 * Connect to the XML-RPC server and make a request.

 * </p>

 */

 public static void main(String args[]) {

 if (args.length < 1) {

 System.out.println(

 "Usage: java HelloClient [your name]");

 System.exit(-1);

 }

 try {

 // Use the Apache Xerces SAX Driver

 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // Specify the server

 XmlRpcClient client =

 new XmlRpcClient("http://localhost:8585/");

 // Create request

 Vector params = new Vector();

 params.addElement(args[0]);

 // Make a request and print the result

 String result =

 (String)client.execute("hello.sayHello", params);

 System.out.println("Response from server: " + result);

 } catch (ClassNotFoundException e) {

 System.out.println("Could not locate SAX Driver");

 } catch (MalformedURLException e) {

 System.out.println(

 "Incorrect URL for XML-RPC server format: " +

 e.getMessage());

 } catch (XmlRpcException e) {

 System.out.println("XML-RPC Exception: " + e.getMessage());

 } catch (IOException e) {

 System.out.println("IO Exception: " + e.getMessage());

 }

 }

}

javaxml/ch10/HelloHandler.java

javaxml/ch10/HelloHandler.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

/**

 * <code>HelloHandler</code> is a simple handler that can

 * be registered with an XML-RPC server.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class HelloHandler {

 /**

 * <p>

 * This will take in a <code>String</code> and return

 * a hello message to the user indicated.

 * </p>

 *

 * @param name <code>String</code> name of person to say Hello to.

 * @return <code>String</code> - hello message.

 */

 public String sayHello(String name) {

 return "Hello " + name;

 }

}

javaxml/ch10/HelloServer.java

javaxml/ch10/HelloServer.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import java.io.IOException;

import helma.xmlrpc.WebServer;

import helma.xmlrpc.XmlRpc;

/**

 * <code>HelloServer</code> is a simple XML-RPC server

 * that will make the <code>HelloHandler</code> class available

 * for XML-RPC calls.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class HelloServer {

 /**

 * <p>

 * Start up the XML-RPC server and register a handler.

 * </p>

 */

 public static void main(String[] args) {

 if (args.length < 1) {

 System.out.println(

 "Usage: java HelloServer [port]");

 System.exit(-1);

 }

 try {

 // Use the Apache Xerces SAX Driver

 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // Start the server

 System.out.println("Starting XML-RPC Server...");

 WebServer server = new WebServer(Integer.parseInt(args[0]));

 // Register our handler class

 server.addHandler("hello", new HelloHandler());

 System.out.println(

 "Registered HelloHandler class to \"hello\"");

 System.out.println("Now accepting requests...");

 } catch (ClassNotFoundException e) {

 System.out.println("Could not locate SAX Driver");

 } catch (IOException e) {

 System.out.println("Could not start server: " +

 e.getMessage());

 }

 }

}

javaxml/ch10/Scheduler.java

javaxml/ch10/Scheduler.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Vector;

/**

 * <code>Scheduler</code> is a class that allows

 * addition, removal, and retrieval of a list of events, sorted

 * by their occurrence time.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class Scheduler {

 /** List of event names (for sorting) */

 private static Vector events = null;

 /** Event details (name, time) */

 private static Hashtable eventDetails = null;

 /** Flag to indicate if events are sorted */

 private static boolean eventsSorted;

 /**

 * <p>

 * This will initialize the storage.

 * </p>

 */

 public Scheduler() {

 events = new Vector();

 eventDetails = new Hashtable();

 eventsSorted = true;

 }

 /**

 * <p>

 * This will add the requested event.

 * </p>

 *

 * @param eventName <code>String</code> name of event to add.

 * @param eventTime <code>Date</code> of event.

 * @return <code>boolean</code> - indication of if event was added.

 */

 public boolean addEvent(String eventName, Date eventTime) {

 // Add this event to the list of events

 if (!events.contains(eventName)) {

 events.addElement(eventName);

 eventDetails.put(eventName, eventTime);

 eventsSorted = false;

 // Start thread on server sorting

 SortEventsThread sorter = new SortEventsThread();

 sorter.start();

 }

 return true;

 }

 /**

 * <p>

 * This will remove the requested event.

 * </p>

 *

 * @param eventName <code>String</code> name of event to remove.

 * @return <code>boolean</code> - indication of if event was removed.

 */

 public synchronized boolean removeEvent(String eventName) {

 events.remove(eventName);

 eventDetails.remove(eventName);

 return true;

 }

 /**

 * <p>

 * This will return the current listing of events.

 * </p>

 *

 * @return <code>Vector</code> - list of events.

 */

 public Vector getListOfEvents() {

 Vector list = new Vector();

 // Create a Date Formatter

 SimpleDateFormat fmt =

 new SimpleDateFormat("hh:mm a MM/dd/yyyy");

 // Add each event to the list

 for (int i=0; i<events.size(); i++) {

 String eventName = (String)events.elementAt(i);

 list.addElement("Event \"" + eventName +

 "\" scheduled for " +

 fmt.format(

 (Date)eventDetails.get(eventName)));

 }

 return list;

 }

 /**

 * <p>

 * Sort the events in the current list.

 * <p>

 */

 private synchronized void sortEvents() {

 if (eventsSorted) {

 return;

 }

 // Create array of events as they are (unsorted)

 String[] eventNames = new String[events.size()];

 events.copyInto(eventNames);

 // Bubble sort these

 String tmpName;

 Date date1, date2;

 for (int i=0; i<eventNames.length - 1; i++) {

 for (int j=0; j<eventNames.length - i - 1; j++) {

 // Compare the dates for these events

 date1 = (Date)eventDetails.get(eventNames[j]);

 date2 = (Date)eventDetails.get(eventNames[j+1]);

 if (date1.compareTo(date2) > 0) {

 // Swap if needed

 tmpName = eventNames[j];

 eventNames[j] = eventNames[j+1];

 eventNames[j+1] = tmpName;

 }

 }

 }

 // Put into new Vector (ordered)

 Vector sortedEvents = new Vector();

 for (int i=0; i<eventNames.length; i++) {

 sortedEvents.addElement(eventNames[i]);

 }

 // Update the global events

 events = sortedEvents;

 eventsSorted = true;

 }

 /**

 * <p>

 * This inner class handles starting the sorting as

 * a <code>Thread</code>.

 */

 class SortEventsThread extends Thread {

 /**

 * <p>

 * Start the sorting.

 * </p>

 */

 public void run() {

 sortEvents();

 }

 }

}

javaxml/ch10/SchedulerClient.java

javaxml/ch10/SchedulerClient.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import java.io.IOException;

import java.net.MalformedURLException;

import java.util.Calendar;

import java.util.Date;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Vector;

import helma.xmlrpc.XmlRpc;

import helma.xmlrpc.XmlRpcClient;

import helma.xmlrpc.XmlRpcException;

/**

 * <code>SchedulerClient</code> is an XML-RPC client

 * that makes XML-RPC requests to <code>Scheduler</code>.

 *

 * @version 1.0

 */

public class SchedulerClient {

 /**

 * <p>

 * Add events to the Scheduler.

 * </p>

 *

 * @param client <code>XmlRpcClient</code> to connect to

 */

 public static void addEvents(XmlRpcClient client)

 throws XmlRpcException, IOException {

 System.out.println("\nAdding events...\n");

 // Parameters for events

 Vector params = new Vector();

 // Add an event for next month

 params.addElement("Proofread final draft");

 Calendar cal = Calendar.getInstance();

 cal.add(Calendar.MONTH, 1);

 params.addElement(cal.getTime());

 // Add the event

 if (((Boolean)client.execute("scheduler.addEvent", params))

 .booleanValue()) {

 System.out.println("Event added.");

 } else {

 System.out.println("Could not add event.");

 }

 // Add an event for tomorrow

 params.clear();

 params.addElement("Submit final draft");

 cal = Calendar.getInstance();

 cal.add(Calendar.DAY_OF_MONTH, 1);

 params.addElement(cal.getTime());

 // Add the event

 if (((Boolean)client.execute("scheduler.addEvent", params))

 .booleanValue()) {

 System.out.println("Event added.");

 } else {

 System.out.println("Could not add event.");

 }

 }

 /**

 * <p>

 * List the events currently in the Scheduler.

 * </p>

 *

 * @param client <code>XmlRpcClient</code> to connect to

 */

 public static void listEvents(XmlRpcClient client)

 throws XmlRpcException, IOException {

 System.out.println("\nListing events...\n");

 // Get the events in the scheduler

 Vector params = new Vector();

 Vector events =

 (Vector)client.execute("scheduler.getListOfEvents", params);

 for (int i=0; i<events.size(); i++) {

 System.out.println((String)events.elementAt(i));

 }

 }

 /**

 * <p>

 * Static entry point for the demo.

 * </p>

 */

 public static void main(String args[]) {

 try {

 // Use the Apache Xerces SAX Parser Implementation

 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // Connect to server

 XmlRpcClient client =

 new XmlRpcClient("http://localhost:8585/");

 // Add some events

 addEvents(client);

 // List events

 listEvents(client);

 } catch (Exception e) {

 System.out.println(e.getMessage());

 }

 }

}

javaxml/ch10/xmlrpc.conf

Hello Handler: sayHello()
hello,HelloHandler

Scheduler: addEvent(), removeEvent(), getEvents()
scheduler,Scheduler

javaxml/ch11/com/oreilly/xml/LightweightXmlRpcServer.java

javaxml/ch11/com/oreilly/xml/LightweightXmlRpcServer.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

package com.oreilly.xml;

import java.util.Enumeration;

import java.io.IOException;

import java.util.Hashtable;

import helma.xmlrpc.XmlRpc;

import helma.xmlrpc.WebServer;

/**

 * <code>LightweightXmlRpcServer</code> is a utility class

 * that will start an XML-RPC server listening for HTTP requests

 * and register a set of handlers, defined in a configuration file.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class LightweightXmlRpcServer {

 /** The XML-RPC server utility class */

 private WebServer server;

 /** Configuration file to use */

 private XmlRpcConfiguration config;

 /**

 * <p>

 * This will store the configuration file for the server to use.

 * </p>

 *

 * @param configFile <code>String</code> filename to read for

 * configuration information.

 * @throws <code>IOException</code> when the server cannot read

 * it's configuration information.

 */

 public LightweightXmlRpcServer(String configFile)

 throws IOException {

 config = new XmlRpcConfiguration(configFile);

 }

 /**

 * <p>

 * This will start up the server.

 * </p>

 *

 * @throws <code>IOException</code> when problems occur.

 */

 public void start() throws IOException {

 try {

 // Use Apache Xerces SAX Parser

 XmlRpc.setDriver(config.getDriverClass());

 System.out.println("Starting up XML-RPC Server...");

 server = new WebServer(config.getPortNumber());

 // Register handlers

 registerHandlers(config.getHandlers());

 } catch (ClassNotFoundException e) {

 throw new IOException("Error loading SAX parser: " +

 e.getMessage());

 }

 }

 /**

 * <p>

 * This will register the handlers supplied in the XML-RPC

 * server (typically from <code>{@link #getHandlers()}</code>.

 * </p>

 *

 * @param handlers <code>Hashtable</code> of handlers to register.

 */

 private void registerHandlers(Hashtable handlers) {

 Enumeration handlerNames = handlers.keys();

 // Loop through the requested handlers

 while (handlerNames.hasMoreElements()) {

 String handlerName = (String)handlerNames.nextElement();

 String handlerClass = (String)handlers.get(handlerName);

 // Add this handler to the server

 try {

 server.addHandler(handlerName,

 Class.forName(handlerClass).newInstance());

 System.out.println("Registered handler " + handlerName +

 " to class " + handlerClass);

 } catch (Exception e) {

 System.out.println("Could not register handler " +

 handlerName + " with class " +

 handlerClass);

 }

 }

 }

 /**

 * <p>

 * Provide a static entry point.

 * </p>

 */

 public static void main(String[] args) {

 if (args.length < 1) {

 System.out.println(

 "Usage: " +

 "java com.oreilly.xml.LightweightXmlRpcServer " +

 "[configFile]");

 System.exit(-1);

 }

 try {

 // Load configuration information

 LightweightXmlRpcServer server =

 new LightweightXmlRpcServer(args[0]);

 // Start the server

 server.start();

 } catch (IOException e) {

 System.out.println(e.getMessage());

 }

 }

}

javaxml/ch11/com/oreilly/xml/XmlRpcConfiguration.java

javaxml/ch11/com/oreilly/xml/XmlRpcConfiguration.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

package com.oreilly.xml;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.InputStream;

import java.io.IOException;

import java.util.Hashtable;

import java.util.Iterator;

import java.util.List;

import org.jdom.Document;

import org.jdom.Element;

import org.jdom.JDOMException;

import org.jdom.Namespace;

import org.jdom.input.Builder;

import org.jdom.input.DOMBuilder;

/**

 * <code>XmlRpcConfiguration</code> is a utility class

 * that will load configuration information for XML-RPC servers

 * and clients to use.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class XmlRpcConfiguration {

 /** The stream to read the XML configuration from */

 private InputStream in;

 /** Port number server runs on */

 private int portNumber;

 /** Hostname server runs on */

 private String hostname;

 /** SAX Driver Class to load */

 private String driverClass;

 /** Handlers to register in XML-RPC server */

 private Hashtable handlers;

 /**

 * <p>

 * This will set a filename to read configuration

 * information from.

 * </p>

 *

 * @param filename <code>String</code> name of

 * XML configuration file.

 */

 public XmlRpcConfiguration(String filename)

 throws IOException {

 this(new FileInputStream(filename));

 }

 /**

 * <p>

 * This will set a filename to read configuration

 * information from.

 * </p>

 *

 * @param in <code>InputStream</code> to read

 * configuration information from.

 */

 public XmlRpcConfiguration(InputStream in)

 throws IOException {

 this.in = in;

 portNumber = 0;

 hostname = "";

 handlers = new Hashtable();

 // Parse the XML configuration information

 parseConfiguration();

 }

 /**

 * <p>

 * This returns the port number the server listens on.

 * </p>

 *

 * @return <code>int</code> - number of server port.

 */

 public int getPortNumber() {

 return portNumber;

 }

 /**

 * <p>

 * This returns the hostname the server listens on.

 * </p>

 *

 * @return <code>String</code> - hostname of server.

 */

 public String getHostname() {

 return hostname;

 }

 /**

 * <p>

 * This returns the SAX driver class to load.

 * </p>

 *

 * @return <code>String</code> - name of SAX driver class.

 */

 public String getDriverClass() {

 return driverClass;

 }

 /**

 * <p>

 * This returns the handlers the server should register.

 * </p>

 *

 * @return <code>Hashtable</code> of handlers.

 */

 public Hashtable getHandlers() {

 return handlers;

 }

 /**

 * <p>

 * Parse the XML configuration information and

 * make it available to clients.

 * </p>

 *

 * @throws <code>IOException</code> when errors occur.

 */

 private void parseConfiguration() throws IOException {

 try {

 // Request DOM Implementation and Xerces Parser

 Builder builder =

 new DOMBuilder("org.jdom.adapters.XercesDOMAdapter");

 // Get the Configuration Document, with validation

 Document doc = builder.build(in);

 // Get the root element

 Element root = doc.getRootElement();

 // Get the JavaXML namespace

 Namespace ns = Namespace.getNamespace("JavaXML",

 "http://www.oreilly.com/catalog/javaxml/");

 // Load the hostname, port, and handler class

 hostname = root.getChild("hostname", ns).getContent();

 driverClass = root.getChild("parserClass", ns).getContent();

 portNumber =

 Integer.parseInt(root.getChild("port", ns).getContent());

 // Get the handlers

 List handlerElements =

 root.getChild("xmlrpc-server", ns)

 .getChild("handlers", ns)

 .getChildren("handler", ns);

 Iterator i = handlerElements.iterator();

 while (i.hasNext()) {

 Element current = (Element)i.next();

 handlers.put(current.getChild("identifier", ns).getContent(),

 current.getChild("class", ns).getContent());

 }

 } catch (JDOMException e) {

 throw new IOException(e.getMessage());

 }

 }

}

javaxml/ch11/DTD/XmlRpc.dtd

<!ELEMENT JavaXML:xmlrpc-config (JavaXML:hostname,
 JavaXML:port,
 JavaXML:parserClass,
 JavaXML:xmlrpc-server)>
<!ATTLIST JavaXML:xmlrpc-config
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:hostname (#PCDATA)>
<!ELEMENT JavaXML:port (#PCDATA)>
<!ATTLIST JavaXML:port
 type (protected|unprotected) "unprotected"
>
<!ELEMENT JavaXML:parserClass (#PCDATA)>
<!ELEMENT JavaXML:xmlrpc-server (JavaXML:handlers)>
<!ELEMENT JavaXML:handlers (JavaXML:handler)+>
<!ELEMENT JavaXML:handler (JavaXML:identifier,
 JavaXML:class)>
<!ELEMENT JavaXML:identifier (#PCDATA)>
<!ELEMENT JavaXML:class (#PCDATA)>

javaxml/ch11/HelloHandler.java

javaxml/ch11/HelloHandler.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

/**

 * <code>HelloHandler</code> is a simple handler that can

 * be registered with an XML-RPC server.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class HelloHandler {

 /**

 * <p>

 * This will take in a <code>String</code> and return

 * a hello message to the user indicated.

 * </p>

 *

 * @param name <code>String</code> name of person to say Hello to.

 * @return <code>String</code> - hello message.

 */

 public String sayHello(String name) {

 return "Hello " + name;

 }

}

javaxml/ch11/Scheduler.java

javaxml/ch11/Scheduler.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Vector;

/**

 * <code>Scheduler</code> is a class that allows

 * addition, removal, and retrieval of a list of events, sorted

 * by their occurrence time.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class Scheduler {

 /** List of event names (for sorting) */

 private static Vector events = null;

 /** Event details (name, time) */

 private static Hashtable eventDetails = null;

 /** Flag to indicate if events are sorted */

 private static boolean eventsSorted;

 /**

 * <p>

 * This will initialize the storage.

 * </p>

 */

 public Scheduler() {

 events = new Vector();

 eventDetails = new Hashtable();

 eventsSorted = true;

 }

 /**

 * <p>

 * This will add the requested event.

 * </p>

 *

 * @param eventName <code>String</code> name of event to add.

 * @param eventTime <code>Date</code> of event.

 * @return <code>boolean</code> - indication of if event was added.

 */

 public boolean addEvent(String eventName, Date eventTime) {

 // Add this event to the list of events

 if (!events.contains(eventName)) {

 events.addElement(eventName);

 eventDetails.put(eventName, eventTime);

 eventsSorted = false;

 // Start thread on server sorting

 SortEventsThread sorter = new SortEventsThread();

 sorter.start();

 }

 return true;

 }

 /**

 * <p>

 * This will remove the requested event.

 * </p>

 *

 * @param eventName <code>String</code> name of event to remove.

 * @return <code>boolean</code> - indication of if event was removed.

 */

 public synchronized boolean removeEvent(String eventName) {

 events.remove(eventName);

 eventDetails.remove(eventName);

 return true;

 }

 /**

 * <p>

 * This will return the current listing of events.

 * </p>

 *

 * @return <code>Vector</code> - list of events.

 */

 public Vector getListOfEvents() {

 Vector list = new Vector();

 // Create a Date Formatter

 SimpleDateFormat fmt =

 new SimpleDateFormat("hh:mm a MM/dd/yyyy");

 // Add each event to the list

 for (int i=0; i<events.size(); i++) {

 String eventName = (String)events.elementAt(i);

 list.addElement("Event \"" + eventName +

 "\" scheduled for " +

 fmt.format(

 (Date)eventDetails.get(eventName)));

 }

 return list;

 }

 /**

 * <p>

 * Sort the events in the current list.

 * <p>

 */

 private synchronized void sortEvents() {

 if (eventsSorted) {

 return;

 }

 // Create array of events as they are (unsorted)

 String[] eventNames = new String[events.size()];

 events.copyInto(eventNames);

 // Bubble sort these

 String tmpName;

 Date date1, date2;

 for (int i=0; i<eventNames.length - 1; i++) {

 for (int j=0; j<eventNames.length - i - 1; j++) {

 // Compare the dates for these events

 date1 = (Date)eventDetails.get(eventNames[j]);

 date2 = (Date)eventDetails.get(eventNames[j+1]);

 if (date1.compareTo(date2) > 0) {

 // Swap if needed

 tmpName = eventNames[j];

 eventNames[j] = eventNames[j+1];

 eventNames[j+1] = tmpName;

 }

 }

 }

 // Put into new Vector (ordered)

 Vector sortedEvents = new Vector();

 for (int i=0; i<eventNames.length; i++) {

 sortedEvents.addElement(eventNames[i]);

 }

 // Update the global events

 events = sortedEvents;

 eventsSorted = true;

 }

 /**

 * <p>

 * This inner class handles starting the sorting as

 * a <code>Thread</code>.

 */

 class SortEventsThread extends Thread {

 /**

 * <p>

 * Start the sorting.

 * </p>

 */

 public void run() {

 sortEvents();

 }

 }

}

javaxml/ch11/SchedulerClient.java

javaxml/ch11/SchedulerClient.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import java.io.IOException;

import java.net.MalformedURLException;

import java.util.Calendar;

import java.util.Date;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Vector;

import com.oreilly.xml.XmlRpcConfiguration;

import helma.xmlrpc.XmlRpc;

import helma.xmlrpc.XmlRpcClient;

import helma.xmlrpc.XmlRpcException;

/**

 * <code>SchedulerClient</code> is an XML-RPC client

 * that makes XML-RPC requests to <code>Scheduler</code>.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class SchedulerClient {

 /**

 * <p>

 * Add events to the Scheduler.

 * </p>

 *

 * @param client <code>XmlRpcClient</code> to connect to

 */

 public static void addEvents(XmlRpcClient client)

 throws XmlRpcException, IOException {

 System.out.println("\nAdding events...\n");

 // Parameters for events

 Vector params = new Vector();

 // Add an event for next month

 params.addElement("Proofread final draft");

 Calendar cal = Calendar.getInstance();

 cal.add(Calendar.MONTH, 1);

 params.addElement(cal.getTime());

 // Add the event

 if (((Boolean)client.execute("scheduler.addEvent", params))

 .booleanValue()) {

 System.out.println("Event added.");

 } else {

 System.out.println("Could not add event.");

 }

 // Add an event for tomorrow

 params.clear();

 params.addElement("Submit final draft");

 cal = Calendar.getInstance();

 cal.add(Calendar.DAY_OF_MONTH, 1);

 params.addElement(cal.getTime());

 // Add the event

 if (((Boolean)client.execute("scheduler.addEvent", params))

 .booleanValue()) {

 System.out.println("Event added.");

 } else {

 System.out.println("Could not add event.");

 }

 }

 /**

 * <p>

 * List the events currently in the Scheduler.

 * </p>

 *

 * @param client <code>XmlRpcClient</code> to connect to

 */

 public static void listEvents(XmlRpcClient client)

 throws XmlRpcException, IOException {

 System.out.println("\nListing events...\n");

 // Get the events in the scheduler

 Vector params = new Vector();

 Vector events =

 (Vector)client.execute("scheduler.getListOfEvents", params);

 for (int i=0; i<events.size(); i++) {

 System.out.println((String)events.elementAt(i));

 }

 }

 /**

 * <p>

 * Static entry point for the demo.

 * </p>

 */

 public static void main(String args[]) {

 if (args.length < 1) {

 System.out.println(

 "Usage: java SchedulerClient [configFile]");

 System.exit(-1);

 }

 try {

 // Load Configuration File

 XmlRpcConfiguration config =

 new XmlRpcConfiguration(args[0]);

 // Use the Apache Xerces SAX Parser Implementation

 XmlRpc.setDriver(config.getDriverClass());

 // Connect to server

 XmlRpcClient client =

 new XmlRpcClient("http://" +

 config.getHostname() + ":" +

 config.getPortNumber());

 // Add some events

 addEvents(client);

 // List events

 listEvents(client);

 } catch (Exception e) {

 System.out.println(e.getMessage());

 }

 }

}

javaxml/ch11/xmlrpc.xml

 localhost
 8585

 org.apache.xerces.parsers.SAXParser

 hello
 HelloHandler

 scheduler
 Scheduler

javaxml/ch12/com/oreilly/xml/XmlRpcConfiguration.java

javaxml/ch12/com/oreilly/xml/XmlRpcConfiguration.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

package com.oreilly.xml;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.InputStream;

import java.io.IOException;

import java.io.OutputStream;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Iterator;

import java.util.List;

import org.jdom.DocType;

import org.jdom.Document;

import org.jdom.Element;

import org.jdom.JDOMException;

import org.jdom.Namespace;

import org.jdom.input.Builder;

import org.jdom.input.DOMBuilder;

import org.jdom.output.XMLOutputter;

/**

 * <code>XmlRpcConfiguration</code> is a utility class

 * that will load configuration information for XML-RPC servers

 * and clients to use.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class XmlRpcConfiguration {

 /** The stream to read the XML configuration from */

 private InputStream in;

 /** Port number server runs on */

 private int portNumber;

 /** Hostname server runs on */

 private String hostname;

 /** SAX Driver Class to load */

 private String driverClass;

 /** Handlers to register in XML-RPC server */

 private Hashtable handlers;

 /** JDOM Document tied to underlying XML */

 private Document doc;

 /**

 * <p>

 * This will set a filename to read configuration

 * information from.

 * </p>

 *

 * @param filename <code>String</code> name of

 * XML configuration file.

 */

 public XmlRpcConfiguration(String filename)

 throws IOException {

 this(new FileInputStream(filename));

 }

 /**

 * <p>

 * This will set a filename to read configuration

 * information from.

 * </p>

 *

 * @param in <code>InputStream</code> to read

 * configuration information from.

 */

 public XmlRpcConfiguration(InputStream in)

 throws IOException {

 this.in = in;

 portNumber = 0;

 hostname = "";

 handlers = new Hashtable();

 // Parse the XML configuration information

 parseConfiguration();

 }

 /**

 * <p>

 * This returns the port number the server listens on.

 * </p>

 *

 * @return <code>int</code> - number of server port.

 */

 public int getPortNumber() {

 return portNumber;

 }

 /**

 * <p>

 * This will set the port number to listen to.

 * </p>

 *

 * @param portNumber <code>int</code> port to listen to.

 */

 public void setPortNumber(int portNumber) {

 this.portNumber = portNumber;

 }

 /**

 * <p>

 * This returns the hostname the server listens on.

 * </p>

 *

 * @return <code>String</code> - hostname of server.

 */

 public String getHostname() {

 return hostname;

 }

 /**

 * <p>

 * This will set the hostname for the server to listen to.

 * </p>

 *

 * @param hostname <code>String</code> name of server's host.

 */

 public void setHostname(String hostname) {

 this.hostname = hostname;

 }

 /**

 * <p>

 * This returns the SAX driver class to load.

 * </p>

 *

 * @return <code>String</code> - name of SAX driver class.

 */

 public String getDriverClass() {

 return driverClass;

 }

 /**

 * <p>

 * This will set the driver class for parsing.

 * </p>

 *

 * @param driverClass <code>String</code> name of parser class.

 */

 public void setDriverClass(String driverClass) {

 this.driverClass = driverClass;

 }

 /**

 * <p>

 * This returns the handlers the server should register.

 * </p>

 *

 * @return <code>Hashtable</code> of handlers.

 */

 public Hashtable getHandlers() {

 return handlers;

 }

 /**

 * <p>

 * This will set the handlers to register.

 * </p>

 *

 * @param handlers <code>Hashtable</code> of handler to register.

 */

 public void setHandlers(Hashtable handlers) {

 this.handlers = handlers;

 }

 /**

 * <p>

 * Parse the XML configuration information and

 * make it available to clients.

 * </p>

 *

 * @throws <code>IOException</code> when errors occur.

 */

 private void parseConfiguration() throws IOException {

 try {

 // Request DOM Implementation and Xerces Parser

 Builder builder =

 new DOMBuilder("org.jdom.adapters.XercesDOMAdapter");

 // Get the Configuration Document, with validation

 doc = builder.build(in);

 // Get the root element

 Element root = doc.getRootElement();

 // Get the JavaXML namespace

 Namespace ns = Namespace.getNamespace("JavaXML",

 "http://www.oreilly.com/catalog/javaxml/");

 // Load the hostname, port, and handler class

 hostname = root.getChild("hostname", ns).getContent();

 driverClass = root.getChild("parserClass", ns).getContent();

 portNumber =

 Integer.parseInt(root.getChild("port", ns).getContent());

 // Get the handlers

 List handlerElements =

 root.getChild("xmlrpc-server", ns)

 .getChild("handlers", ns)

 .getChildren("handler", ns);

 Iterator i = handlerElements.iterator();

 while (i.hasNext()) {

 Element current = (Element)i.next();

 handlers.put(current.getChild("identifier", ns).getContent(),

 current.getChild("class", ns).getContent());

 }

 } catch (JDOMException e) {

 throw new IOException(e.getMessage());

 }

 }

 /**

 * <p>

 * This will save the current state out to the XML-RPC configuration

 * file.

 * </p>

 *

 * @throws <code>IOException</code> - when errors occur in saving.

 */

 public synchronized void saveConfiguration(String filename)

 throws IOException {

 saveConfigurationFromScratch(new FileOutputStream(filename));

 }

 /**

 * <p>

 * This will save the current state out to the specified

 * <code>OutputStream</code>.

 * </p>

 *

 * @throws <code>IOException</code> - when errors occur in saving.

 */

 public synchronized void saveConfiguration(OutputStream out)

 throws IOException {

 try {

 Element root = doc.getRootElement();

 // Get the JavaXML namespace

 Namespace ns = Namespace.getNamespace("JavaXML",

 "http://www.oreilly.com/catalog/javaxml/");

 // Update the hostname

 root.getChild("hostname", ns)

 .setContent(hostname);

 // Update the SAX driver class

 root.getChild("parserClass", ns)

 .setContent(driverClass);

 // Update the port number

 root.getChild("port", ns)

 .setContent(portNumber + "");

 // Easier to remove and re-add handlers

 Element handlersElement =

 root.getChild("xmlrpc-server", ns)

 .getChild("handlers", ns);

 handlersElement.removeChildren("handler", ns);

 // Add new handlers

 Enumeration handlerIDs = handlers.keys();

 while (handlerIDs.hasMoreElements()) {

 String handlerID =

 (String)handlerIDs.nextElement();

 // Ensure we don't register any blank string

 if (handlerID.trim().equals("")) {

 continue;

 }

 String handlerClass =

 (String)handlers.get(handlerID);

 handlersElement.addChild(

 new Element("handler", ns)

 .addChild(

 new Element("identifier", ns)

 .setContent(handlerID))

 .addChild(

 new Element("class", ns)

 .setContent(handlerClass))

);

 }

 // Output the document, use standard formatter

 XMLOutputter fmt = new XMLOutputter();

 fmt.output(doc, out);

 } catch (JDOMException e) {

 // Log an error

 throw new IOException(e.getMessage());

 }

 }

 /**

 * <p>

 * This will save the current state out to the specified

 * <code>OutputStream</code>.

 * </p>

 *

 * @throws <code>IOException</code> - when errors occur in saving.

 */

 public synchronized void saveConfigurationFromScratch(OutputStream out)

 throws IOException {

 // Get the JavaXML namespace

 Namespace ns = Namespace.getNamespace("JavaXML",

 "http://www.oreilly.com/catalog/javaxml/");

 // Create the root element

 Element root = new Element("xmlrpc-config", ns);

 Document doc = new Document(root);

 doc.setDocType(new DocType("JavaXML:xmlrpc-config",

 "DTD/XmlRpc.dtd"));

 root.addChild(new Element("hostname", ns)

 .setContent(hostname))

 .addChild(new Element("port", ns)

 .addAttribute("type", "unprotected")

 .setContent(portNumber + ""))

 .addChild(new Element("parserClass", ns)

 .setContent(driverClass));

 Element handlersElement = new Element("handlers", ns);

 Enumeration e = handlers.keys();

 while (e.hasMoreElements()) {

 String handlerID = (String)e.nextElement();

 String handlerClass = (String)handlers.get(handlerID);

 handlersElement.addChild(new Element("handler", ns)

 .addChild(new Element("identifier", ns)

 .setContent(handlerID))

 .addChild(new Element("class", ns)

 .setContent(handlerClass))

);

 }

 root.addChild(new Element("xmlrpc-server", ns)

 .addChild(handlersElement));

 // Output the document, use standard formatter

 XMLOutputter fmt = new XMLOutputter();

 fmt.output(doc, out);

 }

}

javaxml/ch12/DTD/XmlRpc.dtd

<!ELEMENT JavaXML:xmlrpc-config (JavaXML:hostname,
 JavaXML:port,
 JavaXML:parserClass,
 JavaXML:xmlrpc-server)>
<!ATTLIST JavaXML:xmlrpc-config
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:hostname (#PCDATA)>
<!ELEMENT JavaXML:port (#PCDATA)>
<!ATTLIST JavaXML:port
 type (protected|unprotected) "unprotected"
>
<!ELEMENT JavaXML:parserClass (#PCDATA)>
<!ELEMENT JavaXML:xmlrpc-server (JavaXML:handlers)>
<!ELEMENT JavaXML:handlers (JavaXML:handler)+>
<!ELEMENT JavaXML:handler (JavaXML:identifier,
 JavaXML:class)>
<!ELEMENT JavaXML:identifier (#PCDATA)>
<!ELEMENT JavaXML:class (#PCDATA)>

javaxml/ch12/xmlrpc.xml

 localhost
 8585

 org.apache.xerces.parsers.SAXParser

 hello
 HelloHandler

 scheduler
 Scheduler

javaxml/ch12/XmlRpcConfigurationServlet.java

javaxml/ch12/XmlRpcConfigurationServlet.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Enumeration;

import java.util.Hashtable;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import com.oreilly.xml.XmlRpcConfiguration;

/**

 * <code>XmlRpcConfigurationServlet</code> is an

 * administration tool that allows configuration changes

 * to be saved to the XML configuration file.

 *

 * @author Brett McLaughlin

 * @version 1.0

 */

public class XmlRpcConfigurationServlet extends HttpServlet {

 /** Store the XML-RPC configuration file as a constant */

 private static final String CONFIG_FILENAME =

 "/usr/local/projects/javaxml/xmlrpc/xmlrpc.xml";

 /**

 * Point action back at this servlet (and the

 * <code>{@link #doPost()}</code> method).

 * In Servlet API 2.1 or 2.2, this can be done programmatically,

 * but this example allows this to work in Servlet 2.0 as well

 */

 private static final String FORM_ACTION =

 "/javaxml/servlet/XmlRpcConfigurationServlet";

 /** Configuration object to work with */

 XmlRpcConfiguration config;

 /**

 * <p>

 * GET requests are received when the client wants to see the current

 * configuration information. This provides a view-only look at the

 * data. The generated HTML form then submits back to this servlet

 * through POST, which causes the <code>{@link #doPost}</code> method

 * to be invoked.

 * </p>

 */

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 // Load the configuration information with our utility class

 config = new XmlRpcConfiguration(CONFIG_FILENAME);

 // Output HTML user interface

 out.println("<html><head>");

 out.println("<title>XML-RPC Configurations</title>");

 out.println("</head><body>");

 out.println("<h2 align=\"center\">XML-RPC Configuration</h2>");

 out.println("<form action=\"" + FORM_ACTION + "\" " +

 "method=\"POST\">");

 out.println("Hostname: ");

 out.println("<input type=\"text\" " +

 "name=\"hostname\" " +

 "value=\"" + config.getHostname() +

 "\" />");

 //out.println("
");

 out.println(" ");

 out.println("Port Number: ");

 out.println("<input type=\"text\" " +

 "name=\"port\" " +

 "value=\"" + config.getPortNumber() +

 "\" />");

 out.println("
");

 out.println("SAX Driver Class: ");

 out.println("<input type=\"text\" " +

 "name=\"driverClass\" size=\"50\"" +

 "value=\"" + config.getDriverClass() +

 "\" />");

 out.println("
");

 out.println("
");

 out.println("<h3 align=\"center\">XML-RPC handlers</h3>");

 // Display current handlers

 Hashtable handlers = config.getHandlers();

 Enumeration keys = handlers.keys();

 int index = 0;

 while (keys.hasMoreElements()) {

 String handlerID =

 (String)keys.nextElement();

 String handlerClass =

 (String)handlers.get(handlerID);

 out.println("Identifier: ");

 out.println("<input type=\"text\" " +

 "value=\"" + handlerID + "\" " +

 "name=\"handlerID\" /> ");

 out.println("Class: ");

 out.println("<input type=\"text\" " +

 "value=\"" + handlerClass + "\" " +

 "size=\"30\" " +

 "name=\"handlerClass\" /> ");

 out.println("
");

 index++;

 }

 // Display empty boxes for additional handlers

 for (int i=0; i<3; i++) {

 out.println("Identifier: ");

 out.println("<input type=\"text\" " +

 "name=\"handlerID\" /> ");

 out.println("Class: ");

 out.println("<input type=\"text\" " +

 "size=\"30\" " +

 "name=\"handlerClass\" /> ");

 out.println("
");

 index++;

 }

 out.println("
<center>");

 out.println("<input type=\"submit\" value=\"Save Changes\" />");

 out.println("</center>");

 out.println("</form></body></html>");

 out.close();

 }

 /**

 * <p>

 * This method receives requests for modification of the

 * XML-RPC configuration information, all from the

 * <code>{@link #doGet}</code> method. This will again

 * use the utility class to update the configuration

 * file, letting the <code>{@link XmlRpcConfiguration}</code>

 * object handle the actual writing to a file.

 * </p>

 */

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException {

 // Update the configuration information

 if (config == null) {

 config = new XmlRpcConfiguration(CONFIG_FILENAME);

 }

 // Save the hostname

 String hostname =

 req.getParameterValues("hostname")[0];

 if ((hostname != null) && (!hostname.equals(""))) {

 config.setHostname(hostname);

 }

 // Save the port number

 int portNumber;

 try {

 portNumber =

 Integer.parseInt(

 req.getParameterValues("port")[0]);

 } catch (Exception e) {

 portNumber = 0;

 }

 if (portNumber > 0) {

 config.setPortNumber(portNumber);

 }

 // Save the SAX driver class

 String driverClass =

 req.getParameterValues("driverClass")[0];

 if ((driverClass != null) && (!driverClass.equals(""))) {

 config.setDriverClass(driverClass);

 }

 // Save the handlers

 String[] handlerIDs =

 req.getParameterValues("handlerID");

 String[] handlerClasses =

 req.getParameterValues("handlerClass");

 Hashtable handlers = new Hashtable();

 for (int i=0; i<handlerIDs.length; i++) {

 handlers.put(handlerIDs[i], handlerClasses[i]);

 }

 config.setHandlers(handlers);

 try {

 // Request the changes be written to the configuration store

 config.saveConfiguration(CONFIG_FILENAME);

 } catch (IOException e) {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println(e.getMessage());

 return;

 }

 // Output a confirmation message

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("Changes saved
");

 out.println("<a href=\"" + FORM_ACTION +

 "\">Return to Configuration Administration" +

 "");

 out.close();

 }

}

javaxml/ch13/cgi/addBook.pl

#!/usr/local/bin/perl

$baseDir = "/usr/local/projects/javaxml/foobar/books/";
$filename = "books.txt";
$bookFile = $baseDir . $filename;

Get the user's input
use CGI;
$query = new CGI;

$title = $query->param('title');
$author = $query->param('author');
$subject = $query->param('subject');
$publisher = $query->param('publisher');
$isbn = $query->param('isbn');
$price = $query->param('price');
$numPages = $query->param('numPages');
$description = $query->param('description');

Save the book to a file in XML
if (open(FILE, ">>" . $bookFile)) {
 print FILE "<book subject=\"" . $subject . "\">\n";
 print FILE " <title><![CDATA[" . $title . "]]></title>\n";
 print FILE " <author><![CDATA[" . $author . "]]></author>\n";
 print FILE " <publisher><![CDATA[" . $publisher . "]]></publisher>\n";
 print FILE " <numPages>" . $numPages . "</numPages>\n";
 print FILE " <saleDetails>\n";
 print FILE " <isbn>" . $isbn . "</isbn>\n";
 print FILE " <price>" . $price . "</price>\n";
 print FILE " </saleDetails>\n";
 print FILE " <description><![CDATA[" . $description . "]]></description>\n";
 print FILE "</book>\n\n";

 # Give the user a confirmation
 print <<"EOF";
Content-type: text/html

 <html>
 <head>
 <title>Foobar Public Library: Confirmation</title>
 </head>
 <body>
 <h1 align="center">Book Added</h1>
 <p align="center">
 Thank you. The book you submitted has been added to the Library.
 </p>
 </body>
 </html>
EOF

} else {
 print <<"EOF";
Content-type: text/html

 <html>
 <head>
 <title>Foobar Public Library: Error</title>
 </head>
 <body>
 <h1 align="center">Error in Adding Book</h1>
 <p align="center">
 We're sorry. The book you submitted has <i>not</i> been added to the Library.
 </p>
 </body>
 </html>
EOF
}
close (FILE);

javaxml/ch13/cgi/supplyBooks.pl

#!/usr/local/bin/perl

$baseDir = "/usr/local/projects/javaxml/foobar/books/";
$filename = "books.txt";
$bookFile = $baseDir . $filename;

First open the file
open(FILE, $bookFile) || die "Could not open $bookFile.\n";

Let browser know what is coming
print "Content-type: text/plain\n\n";

Print out XML header and root element
print "<?xml version=\"1.0\"?>\n";
print "<books>\n";

Print out books
while (<FILE>) {
 print "$_";
}

Close root element
print "</books>\n";

close(FILE);

javaxml/ch13/com/techbooks/GetRSSChannelServlet.java

javaxml/ch13/com/techbooks/GetRSSChannelServlet.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

package com.techbooks;

import java.io.FileInputStream;

import java.io.InputStream;

import java.io.IOException;

import java.io.PrintWriter;

import java.net.URL;

import java.util.Iterator;

import java.util.List;

import javax.servlet.*;

import javax.servlet.http.*;

// JDOM

import org.jdom.Document;

import org.jdom.Element;

import org.jdom.JDOMException;

import org.jdom.input.Builder;

import org.jdom.input.SAXBuilder;

public class GetRSSChannelServlet extends HttpServlet {

 /** Host to connect to for books list */

 private static final String hostname = "newInstance.com";

 /** Port number to connect to for books list */

 private static final int portNumber = 80;

 /** File to request (URI path) for books list */

 private static final String file = "/cgi/supplyBooks.pl";

 public void service(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 // Connect and get XML listing of books

 URL getBooksURL = new URL("http", hostname, portNumber, file);

 InputStream in = getBooksURL.openStream();

 try {

 // Request SAX Implementation and use default parser

 Builder builder = new SAXBuilder();

 // Create the document

 Document doc = builder.build(in);

 // Output XML

 out.println(generateRSSContent(doc));

 } catch (JDOMException e) {

 out.println("Error: " + e.getMessage());

 } finally {

 out.close();

 }

 }

 /**

 * <p>

 * This will generate an RSS XML document using the supplied

 * JDOM <code>Document</code>.

 * </p.

 *

 * @param doc <code>Document</code> to use for input.

 * @return <code>String</code> - RSS file to output.

 * @throws <code>JDOMException</code> when errors occur.

 */

 private String generateRSSContent(Document doc) throws JDOMException {

 StringBuffer rss = new StringBuffer();

 rss.append("<?xml version=\"1.0\"?>\n")

 .append("<!DOCTYPE rss PUBLIC ")

 .append("\"-//Netscape Communications//DTD RSS 0.91//EN\" ")

 .append("\"http://my.netscape.com/publish/formats/rss-0.91.dtd\">\n")

 .append("<rss version=\"0.91\">\n")

 .append(" <channel>\n")

 .append(" <title>Technical Books</title>\n")

 .append(" <link>http://newInstance.com/javaxml/techbooks</link>\n")

 .append(" <description>\n")

 .append(" Your online source for technical materials, computers, ")

 .append("and computing books!\n")

 .append(" </description>\n")

 .append(" <language>en-us</language>\n")

 .append(" \n");

 // Add an item for each new title with Computers as subject

 List books = doc.getRootElement().getChildren("book");

 for (Iterator i = books.iterator(); i.hasNext();) {

 Element book = (Element)i.next();

 if (book.getAttribute("subject")

 .getValue().equals("Computers")) {

 // Output an item

 rss.append("<item>\n")

 // Add title

 .append(" <title>")

 .append(book.getChild("title").getContent())

 .append("</title>\n")

 // Add link to buy book

 .append(" <link>")

 .append("http://newInstance.com/javaxml/techbooks/buy.xsp?isbn=")

 .append(book.getChild("saleDetails")

 .getChild("isbn")

 .getContent())

 .append("</link>\n")

 .append(" <description>")

 // Add description

 .append(book.getChild("description").getContent())

 .append("</description>\n")

 .append("</item>\n");

 }

 }

 rss.append(" </channel>\n")

 .append("</rss>");

 return rss.toString();

 }

}

javaxml/ch13/com/techbooks/ListBooksServlet.java

javaxml/ch13/com/techbooks/ListBooksServlet.java

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-

 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions, the disclaimer that follows these conditions,

 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may

 "Java and XML" appear in their name, without prior written permission from

 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.

 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

 or <http://www.newInstance.com>.

 */

package com.techbooks;

import java.io.FileInputStream;

import java.io.InputStream;

import java.io.IOException;

import java.io.PrintWriter;

import java.net.URL;

import javax.servlet.*;

import javax.servlet.http.*;

// Import Xalan XSLT Processor components

import org.apache.xalan.xslt.XSLTInputSource;

import org.apache.xalan.xslt.XSLTProcessor;

import org.apache.xalan.xslt.XSLTProcessorFactory;

import org.apache.xalan.xslt.XSLTResultTarget;

public class ListBooksServlet extends HttpServlet {

 /** Host to connect to for books list */

 private static final String hostname = "newInstance.com";

 /** Port number to connect to for books list */

 private static final int portNumber = 80;

 /** File to request (URI path) for books list */

 private static final String file = "/cgi/supplyBooks.pl";

 /** Stylesheet to apply to XML */

 private static final String stylesheet =

 "d:\\prod\\Java and XML\\content\\computerBooks.xsl";

 //"/home/client/java/newinstance/www/javaxml/techbooks/XSL/computerBooks.xsl";

 public void service(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 // Connect and get XML listing of books

 //URL getBooksURL = new URL("http", hostname, portNumber, file);

 URL getBooksURL = new URL("http://newInstance.com/cgi/supplyBooks.pl");

 InputStream in = getBooksURL.openStream();

 try {

 XSLTProcessor processor = XSLTProcessorFactory.getProcessor();

 // Transform XML with XSL stylesheet

 processor.process(new XSLTInputSource(in),

 new XSLTInputSource(new FileInputStream(stylesheet)),

 new XSLTResultTarget(res.getOutputStream()));

 } catch (Exception e) {

 PrintWriter out = res.getWriter();

 out.println("Error: " + e.getMessage());

 out.close();

 }

 }

}

javaxml/ch13/foobar/addBooks.html

 			

 Options

 Main Menu

 Catalog

 Add Books

 Log Out

			
 The Foobar Public Library

 - Add Books -

 			
 Title

			Author

 			Subject
 Fiction
Biography
Science
Industry
Computers

			Publisher

 			ISBN

			Price

 			Pages

			
 Description

javaxml/ch13/techbooks/XSL/computerBooks.xsl

 Tech Books - Your Computer Bookstore

 <techbooks.com>

 Your source on the Web for computing and technical books.

 New Listings

 Home

 Current Listings

 New Listings

 Contact Us

 Welcome to techbooks.com,
 your source on the Web for computing and technical books.
 Our newest offerings are listed on the left. To purchase any of these fine books,
 simply click on the "Buy this Book!" link, and you will be taken to
 the shopping cart for our store. Enjoy!

 You should also check out our current listings, information about the
 store, and you can call us with your questions. Use the links on the
 menu to the left to access this information. Thanks for shopping!

 Author:
 Publisher:
 Pages:
 Price:

 http://newInstance.com/javaxml/techbooks/buy.xsp?isbn=

 Buy the Book!

javaxml/LICENSE.txt

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-
 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions, the disclaimer that follows these conditions,
 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may
 "Java and XML" appear in their name, without prior written permission from
 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.
 For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>
 or <http://www.newInstance.com>.

 */

root
javaxml.zip

com/oreilly/xml/LightweightXmlRpcServer.java

com/oreilly/xml/LightweightXmlRpcServer.java

package com.oreilly.xml;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.util.Enumeration;

import java.util.Hashtable;

import helma.xmlrpc.XmlRpc;

import helma.xmlrpc.WebServer;

/**

 * <code>LightweightXmlRpcServer</code> is a utility class

 * that will start an XML-RPC server listening for HTTP requests

 * and register a set of handlers, defined in a configuration file.

 *

 * @author

 * Brett McLaughlin

 * @version 1.0

 */

public class LightweightXmlRpcServer {

 /** The XML-RPC server utility class */

 private WebServer server;

 /** Configuration file to use */

 private XmlRpcConfiguration config;

 /**

 * <p>

 * This will store the configuration file for the server to use.

 * </p>

 *

 * @param configFile <code>String</code> filename to read for

 * configuration information.

 * @throws <code>IOException</code> when the server cannot read

 * it's configuration information.

 */

 public LightweightXmlRpcServer(String configFile)

 throws IOException {

 config = new XmlRpcConfiguration(configFile);

 }

 /**

 * <p>

 * This will start up the server.

 * </p>

 *

 * @throws <code>IOException</code> when problems occur.

 */

 public void start() throws IOException {

 try {

 // Use Apache Xerces SAX Parser

 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 System.out.println("Starting up XML-RPC Server...");

 server = new WebServer(config.getPortNumber());

 // Register handlers

 registerHandlers(config.getHandlers());

 } catch (ClassNotFoundException e) {

 throw new IOException("Error loading SAX parser: " +

 e.getMessage());

 }

 }

 /**

 * <p>

 * Provide a static entry point.

 * </p>

 */

 public static void main(String[] args) {

 if (args.length < 1) {

 System.out.println(

 "Usage: " +

 "java com.oreilly.xml.LightweightXmlRpcServer " +

 "[configFile]");

 System.exit(-1);

 }

 try {

 // Load configuration information

 LightweightXmlRpcServer server =

 new LightweightXmlRpcServer(args[0]);

 // Start the server

 server.start();

 } catch (IOException e) {

 System.out.println(e.getMessage());

 }

 }

 /**

 * <p>

 * This will register the handlers supplied in the XML-RPC

 * server (typically from <code>{@link #getHandlers()}</code>.

 * </p>

 *

 * @param handlers <code>Hashtable</code> of handlers to register.

 */

 private void registerHandlers(Hashtable handlers) {

 Enumeration handlerNames = handlers.keys();

 // Loop through the requested handlers

 while (handlerNames.hasMoreElements()) {

 String handlerName = (String)handlerNames.nextElement();

 String handlerClass = (String)handlers.get(handlerName);

 // Add this handler to the server

 try {

 server.addHandler(handlerName,

 Class.forName(handlerClass).newInstance());

 System.out.println("Registered handler " + handlerName +

 " to class " + handlerClass);

 } catch (Exception e) {

 System.out.println("Could not register handler " +

 handlerName + " with class " +

 handlerClass);

 }

 }

 }

}

com/oreilly/xml/PrettyPrinter.java

com/oreilly/xml/PrettyPrinter.java

package com.oreilly.xml;

import java.io.File;

import org.jdom.Document;

import org.jdom.input.SAXBuilder;

import org.jdom.output.XMLOutputter;

/**

 * <code>PrettyPrinter</code> will output the XML document at a

 * given URI

 *

 * @author

 * Brett McLaughlin

 * @author Jason Hunter

 * @version 1.0

 */

public class PrettyPrinter {

 /**

 * <p>

 * Pretty prints a given XML URI

 * </p>

 */

 public static void main(String[] args) {

 if (args.length != 1) {

 System.out.println("Usage: " +

 "java com.oreilly.xml.PrettyPrinter [XML_URI]");

 return;

 }

 String filename = args[0];

 try {

 // Build the Document with SAX and Xerces, no validation

 SAXBuilder builder = new SAXBuilder();

 // Create the document (with validation)

 Document doc = builder.build(new File(filename));

 // Output the document, use standard formatter

 XMLOutputter fmt = new XMLOutputter();

 fmt.output(doc, System.out);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

com/oreilly/xml/XmlRpcConfiguration.java

com/oreilly/xml/XmlRpcConfiguration.java

package com.oreilly.xml;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.InputStream;

import java.io.IOException;

import java.io.OutputStream;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Iterator;

import java.util.List;

import org.jdom.DocType;

import org.jdom.Document;

import org.jdom.Element;

import org.jdom.JDOMException;

import org.jdom.Namespace;

import org.jdom.input.DOMBuilder;

import org.jdom.output.XMLOutputter;

/**

 * <code>XmlRpcConfiguration</code> is a utility class

 * that will load configuration information for XML-RPC servers

 * and clients to use.

 *

 * @author

 * Brett McLaughlin

 * @version 1.0

 */

public class XmlRpcConfiguration {

 /** The stream to read the XML configuration from */

 private InputStream in;

 /** Port number server runs on */

 private int portNumber;

 /** Hostname server runs on */

 private String hostname;

 /** SAX Driver Class to load */

 private String driverClass;

 /** Handlers to register in XML-RPC server */

 private Hashtable handlers;

 /** JDOM Document tied to underlying XML */

 private Document doc;

 /**

 * <p>

 * This will set a filename to read configuration

 * information from.

 * </p>

 *

 * @param filename <code>String</code> name of

 * XML configuration file.

 */

 public XmlRpcConfiguration(String filename)

 throws IOException {

 this(new FileInputStream(filename));

 }

 /**

 * <p>

 * This will set a filename to read configuration

 * information from.

 * </p>

 *

 * @param in <code>InputStream</code> to read

 * configuration information from.

 */

 public XmlRpcConfiguration(InputStream in)

 throws IOException {

 this.in = in;

 portNumber = 0;

 hostname = "";

 handlers = new Hashtable();

 // Parse the XML configuration information

 parseConfiguration();

 }

 /**

 * <p>

 * This returns the port number the server listens on.

 * </p>

 *

 * @return <code>int</code> number of server port.

 */

 public int getPortNumber() {

 return portNumber;

 }

 /**

 * <p>

 * This will set the port number to listen to.

 * </p>

 *

 * @param portNumber <code>int</code> port to listen to.

 */

 public void setPortNumber(int portNumber) {

 this.portNumber = portNumber;

 }

 /**

 * <p>

 * This returns the hostname the server listens on.

 * </p>

 *

 * @return <code>String</code> hostname of server.

 */

 public String getHostname() {

 return hostname;

 }

 /**

 * <p>

 * This will set the hostname for the server to listen to.

 * </p>

 *

 * @param hostname <code>String</code> name of server's host.

 */

 public void setHostname(String hostname) {

 this.hostname = hostname;

 }

 /**

 * <p>

 * This returns the SAX driver class to load.

 * </p>

 *

 * @return <code>String</code> - name of SAX driver class.

 */

 public String getDriverClass() {

 return driverClass;

 }

 /**

 * <p>

 * This will set the driver class for parsing.

 * </p>

 *

 * @param driverClass <code>String</code> name of parser class.

 */

 public void setDriverClass(String driverClass) {

 this.driverClass = driverClass;

 }

 /**

 * <p>

 * This returns the handlers the server should register.

 * </p>

 *

 * @return <code>Hashtable</code> of handlers.

 */

 public Hashtable getHandlers() {

 return handlers;

 }

 /**

 * <p>

 * This will set the handlers to register.

 * </p>

 *

 * @param handlers <code>Hashtable</code> of handler to register.

 */

 public void setHandlers(Hashtable handlers) {

 this.handlers = handlers;

 }

 /**

 * <p>

 * Parse the XML configuration information and

 * make it available to clients.

 * </p>

 *

 * @throws <code>IOException</code> when errors occur.

 */

 private void parseConfiguration() throws IOException {

 try {

 // Request DOM Implementation and Xerces Parser

 DOMBuilder builder =

 new DOMBuilder("org.jdom.adapters.XercesDOMAdapter");

 Namespace ns = Namespace.getNamespace("JavaXML", "http://www.oreilly.com/catalog/javaxml/");

 // Get the Configuration Document, with validation

 doc = builder.build(in);

 // Get the root element

 Element root = doc.getRootElement();

 // Load the hostname, port, and handler class

 hostname =

 root.getChild("hostname", ns).getText();

 driverClass =

 root.getChild("parserClass", ns).getText();

 portNumber =

 Integer.parseInt(

 root.getChild("port", ns).getText());

 // Get the handlers

 List handlerElements =

 root.getChild("xmlrpc-server", ns)

 .getChild("handlers", ns)

 .getChildren("handler", ns);

 Iterator i = handlerElements.iterator();

 while (i.hasNext()) {

 Element current = (Element)i.next();

 handlers.put(current.getChild("identifier", ns)

 .getText(),

 current.getChild("class", ns)

 .getText());

 }

 } catch (JDOMException e) {

 throw new IOException(e.getMessage());

 }

 }

 /**

 * <p>

 * This will save the current state out to the XML-RPC configuration

 * file.

 * </p>

 *

 * @throws <code>IOException</code> - when errors occur in saving.

 */

 public synchronized void saveConfiguration(String filename)

 throws IOException {

 saveConfiguration(new FileOutputStream(filename));

 }

 /**

 * <p>

 * This will save the current state out to the specified

 * <code>OutputStream</code>.

 * </p>

 *

 * @throws <code>IOException</code> - when errors occur in saving.

 */

 public synchronized void saveConfiguration(OutputStream out)

 throws IOException {

 Namespace ns = Namespace.getNamespace("JavaXML", "http://www.oreilly.com/catalog/javaxml/");

 Element root = doc.getRootElement();

 // Update the hostname

 root.getChild("hostname", ns)

 .setText(hostname);

 // Update the SAX driver class

 root.getChild("parserClass", ns)

 .setText(driverClass);

 // Update the port number

 root.getChild("port", ns)

 .setText(portNumber + "");

 // Easier to remove and re-add handlers

 Element handlersElement =

 root.getChild("xmlrpc-server", ns)

 .getChild("handlers", ns);

 handlersElement.removeChildren("handler", ns);

 // Add new handlers

 Enumeration handlerIDs = handlers.keys();

 while (handlerIDs.hasMoreElements()) {

 String handlerID =

 (String)handlerIDs.nextElement();

 // Ensure we don't register any blank string

 if (handlerID.trim().equals("")) {

 continue;

 }

 String handlerClass =

 (String)handlers.get(handlerID);

 handlersElement.addContent(

 new Element("handler", ns)

 .addContent(

 new Element("identifier", ns)

 .setText(handlerID))

 .addContent(

 new Element("class", ns)

 .setText(handlerClass))

);

 }

 // Output the document, use standard formatter

 XMLOutputter fmt = new XMLOutputter();

 fmt.output(doc, out);

 }

 /**

 * <p>

 * This will save the current state out to the specified

 * <code>OutputStream</code>.

 * </p>

 *

 * @throws <code>IOException</code> - when errors occur in saving.

 */

/**

 public synchronized void saveConfiguration(OutputStream out)

 throws IOException {

 // Create the root element

 Namespace ns = Namespace.getNamespace("JavaXML", "http://www.oreilly.com/catalog/javaxml/");

 Element root = new Element("xmlrpc-config", ns);

 Document doc = new Document(root);

 doc.setDocType(new DocType("JavaXML:xmlrpc-config",

 "DTD/XmlRpc.dtd"));

 root.addContent(new Element("hostname", ns)

 .setText(hostname))

 .addContent(new Element("port", ns)

 .addAttribute("type", "unprotected")

 .setText(portNumber + ""))

 .addContent(new Element("parserClass", ns)

 .setText(driverClass));

 Element handlersElement = new Element("handlers", ns);

 Enumeration e = handlers.keys();

 while (e.hasMoreElements()) {

 String handlerID = (String)e.nextElement();

 String handlerClass = (String)handlers.get(handlerID);

 handlersElement.addContent(new Element("handler", ns)

 .addContent(new Element("identifier", ns)

 .setText(handlerID))

 .addContent(new Element("class", ns)

 .setText(handlerClass))

);

 }

 root.addContent(new Element("xmlrpc-server", ns)

 .addContent(handlersElement));

 // Output the document, use standard formatter

 XMLOutputter fmt = new XMLOutputter();

 fmt.output(doc, out);

 }

 */

}

root
oraxml.zip

Java and XML

 page 2

Java and XML

Copyright © 2000 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

The Java™ Series is a trademark of O'Reilly & Associates, Inc. Java™ and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. O'Reilly & Associates, Inc. is independent of Sun Microsystems.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc. Many of the designations
used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between the image
of a Tupperware SHAPE-O® and Java™ and XML is a trademark of O'Reilly & Associates, Inc.
SHAPE-O® is a registered trademark of Dart Industries Inc. (Tupperware Worldwide) and is used
with permission.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

© 2001, O'Reilly & Associates, Inc.

Preface 5...
Organization 6...
Who Should Read This Book? 8..
Software and Versions 8..
Conventions Used in This Book 9......................................
Comments and Questions 9..
Acknowledgments 10...

Chapter 1. Introduction 11..
What Is It? 12...
How Do I Use It? 19...
Why Should I Use It? 21..
What’s Next? 33..

Chapter 2. Creating XML 33..
An XML Document 34..
An XML Document 35..
The Content 36..
What’s Next? 43..

Chapter 3. Parsing XML 43..
Getting Prepared 43..
SAX Readers 45..
Content Handlers 49..
Error Handlers 64..
Error Handlers 70..
"Gotcha!" 76...
What’s Next? 79..

Chapter 4. Constraining XML 79...
Why Constrain XML Data? 79...
Document Type Definitions 82...
XML Schema 94..
What’s Next? 106..

Chapter 5. Validating XML 106..
Configuring the Parser 106..
Output of XML Validation 110..
The DTDHandler Interface 114..
"Gotcha!" 116...
What’s Next? 118..

Chapter 6. Transforming XML 118..
The Purpose 119...

The Components 120..
The Syntax 123..
What’s Next? 140..

Chapter 7. Traversing XML 140..
Getting the Output 141..
Getting the Input 143...
The Document Object Model (DOM) 144..............................
"Gotcha!" 158...
What’s Next? 160..

Chapter 8. JDOM 160...
Parsers and the Java API for XML Parsing 161....................
JDOM: Another API? 164..

What’s in a Name? 164..
Getting a Document 166..
Using a Document 169..
Outputting a Document 177...
What’s Next? 184..

Chapter 9. Web Publishing Frameworks 184........................
Selecting a Framework 185...
Installation 187...
Using a Publishing Framework 193.......................................
XSP 204...
Cocoon 2.0 and Beyond 217...
What’s Next? 219..

Chapter 10. XML-RPC 219...
RPC Versus RMI 220..
Saying Hello 222..
Putting the Load on the Server 232.......................................
The Real World 246...
What’s Next? 249..

Chapter 11. XML for Configurations 249...............................
EJB Deployment Descriptors 250..
Creating an XML Configuration File 252................................
Reading an XML Configuration File 257................................
The Real World 265...
What’s Next? 273..

Chapter 12. Creating XML with Java 273...............................
Loading the Data 273..

Modifying the Data 282..
XML from Scratch 287...
The Real World 288...
What’s Next? 295..

Chapter 13. Business-to-Business 295..................................
The Foobar Public Library 296..
mytechbooks.com 304...
Push Versus Pull 311..
The Real World 322...
What’s Next? 322..

Chapter 14. XML Schema 323...
To DTD or Not To DTD 323...
Java Parallels 325...
What’s Next? 332..

Appendix A. API Reference 332..
A.1 SAX 2.0 332..
A.2 DOM Level 2 343..
A.3 JAXP 1.0 349..
A.4 JDOM 1.0 351...

Appendix B. SAX 2.0 Features and Properties 358..............
B.1 Core Features 358..
B.2 Core Properties 360..

Java and XML

 page 5

Preface
XML, XML, XML, XML. You can see it on hats and t-shirts, read about it on the cover of every
technical magazine on the planet, and hear it on the radio or the occasional Gregorian chant album. .
. . Well, maybe it hasn't gone quite that far yet, but don't be surprised if it does. XML, the
Extensible Markup Language, has seemed to take over every aspect of technical life, particularly in
the Java™ community. An application is no longer considered an enterprise-level product if XML
isn't being used somewhere. Legacy systems are being accessed at a rate never before seen, and
companies are saving millions and even billions of dollars on system integration, all because of
three little letters. Java developers wake up with fever sweats wondering how they are going to
absorb yet another technology, and the task seems even more daunting when embarked upon; the
road to XML mastery is lined with acronyms: XML, XSL, XPath, RDF, XML Schema, DTD, PI,
XSLT, XSP, JAXP™, SAX, DOM, and more. And there isn't a development manager in the world
who doesn't want his or her team learning about XML today!

When XML became a formal specification at the World Wide Web Consortium in early 1998,
relatively few were running in the streets claiming that the biggest thing since Java itself (arguably
bigger!) had just made its way onto the technology stage. Barely two years later, XML and a
barrage of related technologies for manipulating and constraining XML have become the mainstay
of data representation for Java systems. XML promises to bring to a data format what Java brought
to a programming language: complete portability. In fact, it is only with XML that the promise of
Java is realized; Java's portability has been seriously compromised as proprietary data formats have
been used for years, enabling an application to run on multiple platforms, but not across businesses
in a standardized way. XML promises to fill this gap in complete interoperability for Java programs
by removing these proprietary data formats and allowing systems to communicate using a standard
means of data representation.

This is a book about XML, but it is geared specifically towards Java developers. While both XML
and Java are powerful tools in their own right, it is their marriage that this book is concerned with,
and that gives XML its true power. We will cover the various XML vocabularies, look at creating,
constraining, and transforming XML, and examine all of the APIs for handling XML from Java
code. Additionally, we cover the hot topics that have made XML such a popular solution for
dynamic content, messaging, e-business, and data stores. Through it all, we take a very narrow
view: that of the developer who has to put these tools to work. A candid look at the tools XML
provides is given, and if something is not useful (even if it is popular!), we will address it and move
on. If a particular facet of XML is a hidden gem, we will extract the value of the item and put it to
use. Java and XML is meant to serve as a handbook to help you, and is neither a reference nor a
book geared towards marketing XML.

Finally, the back half of this book is filled with working, practical code. Although available for
download, the purpose of this code is to walk you through creating several XML applications, and
you are encouraged to follow along with the examples rather than skimming the code. We introduce
a new API for manipulating XML from Java as well, and complete coverage and examples are
included. This book is for you, the Java developer, and it is about the real world; it is not a
theoretical or fanciful flight through what is "cool" in the industry. We abandon buzzwords when
possible, and define them clearly when not. All of the code and concepts within this book have been
entered by hand into an editor, prodded and tested, and are intended to aid you on the path to
mastering Java and XML.

Java and XML

 page 6

Organization

This book is structured in a very particular way: the first half of the book (Chapter 1 through
Chapter 7) focuses on getting you grounded in XML and the core Java APIs for handling XML.
Although these chapters are not glamorous, they should be read in order, and at least skimmed even
if you are familiar with XML. We cover the basics, from creating XML to transforming it. Chapter
8 serves as a halfway point in the book, covering an exciting new API for handling XML within
Java, JDOM. This chapter is a must-read, as the API is being publicly released as this book goes to
production, and this is the reference for JDOM 1.0 (as I wrote the API with Jason Hunter
specifically for solving problems in using Java and XML!). The remainder of the book, Chapter 9
through Chapter 14, focuses on specific XML topics that continually are brought up at conferences
and tutorials I am involved with, and seeks to get you neck-deep in using XML in your applications,
now! Finally, there are two appendixes to wrap up the book. Here's a summary of the contents:

Chapter 1

We look at what all the hype is about, examine the XML alphabet soup, and spend time
discussing why XML is so important to the present and future of enterprise development.

Chapter 2

We start looking at XML by building an XML document from the ground up. Examination
of the major XML constructs, such as elements, attributes, entities, and processing
instructions is included.

Chapter 3

The Simple API for XML (SAX), our first Java API for handling XML, is introduced and
covered in this chapter. The parsing lifecycle is detailed, and the events that can be reported
by SAX and used by developers are demonstrated.

Chapter 4

In this chapter, we look at the two ways to impose constraints on XML documents:
Document Type Definitions (DTDs) and XML Schema. We will dissect the differences and
analyze when one should be used over the other.

Chapter 5

Complementing Chapter 4, this chapter looks at how to use the SAX skills previously
learned to enforce validation constraints, as well as how to react when constraints are not
met by XML documents.

Chapter 6

In this chapter, the Extensible Stylesheet Language (XSL) and the other critical components
for transforming XML from one format into another are introduced. We cover the various
methods available for converting XML into other textual formats, and look at using
formatting objects to convert XML into binary formats.

Chapter 7

Java and XML

 page 7

Continuing to look at transforming XML documents, we discuss XSL transformation
processors and how they can be used to convert XML into other formats. We also examine
the Document Object Model (DOM) and how it can be used for handling XML data.

Chapter 8

We begin by looking at the Java API for XML Parsing (JAXP), and discuss the importance
of vendor-independence when using XML. I then introduce the JDOM API, discuss the
motivation behind its development, and detail its use, comparing it to SAX and DOM.

Chapter 9

This chapter looks at what a web publishing framework is, why it matters to you, and how to
choose a good one. We then cover the Apache Cocoon framework, taking an in-depth look
at its feature set and how it can be used to serve highly dynamic content over the Web.

Chapter 10

In this chapter, we cover Remote Procedure Calls (RPC), their relevance in distributed
computing as compared to RMI, and how XML makes RPC a viable solution for some
problems. We then look at using XML-RPC Java libraries and building XML-RPC clients
and servers.

Chapter 11

In this chapter, we look at using configuration data in an XML format and why that format
is so important to cross-platform applications, particularly as it relates to distributed
systems.

Chapter 12

Although this topic is covered in part in other chapters, here we look at the process of
generating and mutating XML from Java and how to perform these modifications from
server-side components such as Java servlets, and outline concerns when mutating XML.

Chapter 13

This chapter details a "case study" of creating inter- and intra-business communication
channels using XML as a portable data format. Using multiple languages, we build several
application components for different companies that all interact with each other using XML.

Chapter 14

We revisit XML Schema here, looking at why the XML Schema specification has garnered
so much attention and how reality measures up to the promise of the XML Schema concept,
and examining why Java and XML Schema are such complementary technologies.

Appendix A

This appendix details all the classes, interfaces, and methods available for use in the SAX,
DOM, JAXP, and JDOM APIs.

Java and XML

 page 8

Appendix B

This appendix details the features and properties available to SAX 2.0 parser
implementations.

Who Should Read This Book?

This entire book is based on the premise that XML is quickly becoming an essential part of Java
programming. The chapters are written to instruct you in the use of XML and Java, and other than
in the introduction, they do not focus on if you should use XML. I believe that if you are a Java
developer, you should use XML, without question. For this reason, if you are a Java programmer,
want to be a Java programmer, manage Java programmers, or are responsible for or associated with
a Java project, this book is for you. If you want to advance, want to become a better developer, want
to write cleaner code, want to have projects succeed on time and under budget, need to access
legacy data, need to distribute system components, or just want to know what the XML hype is
about, this book is for you.

I tried to make as few assumptions about you as possible; I don't believe in setting the entry point
for XML so high that it is impossible to get started. However, I also believe that if you spent your
money on this book, you want more than the basics. For this reason, I assumed only that you know
the Java language and understand some server-side programming concepts (such as Java servlets
and Enterprise JavaBeans™). If you have never coded Java before or are just getting started with
the language, you may want to read through Learning Java, by Pat Niemeyer and Jonathan
Knudsen (O'Reilly & Associates), before starting this book. I do not assume that you know anything
about XML, and so I start with the basics. However, I do assume that you are willing to work hard
and learn quickly; for this reason, we move rapidly through the basics so that the bulk of the book
can deal with advanced concepts. Material is not repeated unless appropriate, so you may need to
re-read previous sections or be prepared to flip back and forth, as previously covered concepts are
used in later chapters. If you want to learn XML, know some Java, and are prepared to enter some
example code into your favorite editor, you should be able to get through this book without any real
problem.

Software and Versions

This book covers XML 1.0 and the various XML vocabularies in their latest form as of April 2000.
Because various XML specifications that are covered are not final, minor inconsistencies may be
present between printed publications of this book and the current version of the specification in
question.

All of the Java code used is based on the Java 1.1 platform, with the exception of the JDOM 1.0
coverage. This variance with regard to JDOM is noted in the text in Chapter 8, and addressed there.
The Apache Xerces parser, Apache Xalan processor, and Apache FOP libraries were the latest
stable versions available as of April 2000, and the Apache Cocoon web publishing framework used
was Version 1.7.3. The XML-RPC Java libraries used were Version 1.0 beta 3. All software used is
freely available and can be obtained online from http://java.sun.com, http://xml.apache.org, and
http://www.xml-rpc.com.

The source code for the examples in this book, including the com.oreilly.xml utility classes, is
contained completely within the book itself. Both source and binary forms of all examples
(including extensive Javadoc not necessarily included in the text) are available online from
http://www.oreilly.com/catalog/javaxml and http://www.newInstance.com. All of the examples that

Java and XML

 page 9

could run as servlets, or be converted to run as servlets, can be viewed and used online at
http://www.newInstance.com.

The complete JDOM 1.0 distribution, including the specification, reference implementation, source
code, API documentation, and binary release, is available for download online at
http://www.jdom.org. Additionally, a CVS tree is being set up to host the JDOM code and allow
community contribution and comment. See http://www.jdom.org for details on accessing JDOM
from CVS.

Conventions Used in This Book

I use the following font conventions in this book.

Italic is used for:

• Unix pathnames, filenames, and program names
• Internet addresses, such as domain names and URLs
• New terms where they are defined

Constant Width is used for:

• Command lines and options that should be typed verbatim
• Names and keywords in Java programs, including method names, variable names, and class

names
• XML element names and tags, attribute names, and other XML constructs that appear as

they would within an XML document

Constant Width Bold
is used for:

• Additions to code examples
• Parts of code examples that are discussed specifically in the text

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

You can also send us messages electronically. To be put on our mailing list or to request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Java and XML

 page 10

We have a web site for the book, where we'll list errata and any plans for future editions. You can
access this page at:

http://www.oreilly.com/catalog/javaxml

For more information about this book and others, see the O'Reilly web site at:

http://www.oreilly.com

Acknowledgments

As I look at the stack of pages that comprise the manuscript of this book, it seems absurd to try and
thank all the people involved in making this book in only a few paragraphs. However, as this is
arguably simpler than covering the entire realm of Java and XML in just under 500 pages, I am
certainly willing to attempt it; for those of you I forget, please forgive me in advance!

This book was initiated by a call on Thanksgiving weekend, 1999, from my editor, Mike Loukides,
which came as I was feverishly writing another book for O'Reilly. I was a bit dubious about putting
a book I was very passionate about on hold for six months, but Mike was as adept at convincing me
of the importance of this book as he has been at editing my words and making them useful. As I
look back, this was easily the most enjoyable and exciting thing I have ever done in my technical
career, and I owe much of that experience to Mike; he guided me through a very difficult first few
chapters, allowed me to vent when I had to revise the XML Schema chapter three (yes, three!) times
due to revisions of the specification coming out, and was also an all-around musical guy when I
needed to take a break. Without him, this would certainly not be the high-quality book we both
believe it is.

Additionally, I had a supporting cast of family and friends that made the amount of time and effort
needed to make this book happen possible, and even enjoyable. My mom and dad, who corrected
my grammar daily for eighteen years of my life; my aunt, who was always excited for me even
when she didn't know what I was talking about; Jody Durrett, Carl Henry, and Pam Merryman, who
spent more time making me a good writer than I had any right to expect; Gary and Shirley
Greathouse, who always reminded me to never settle; and my grandparents, Dean and Gladys
McLaughlin, who were always there in the wings supporting me.

I had an incredible group of technical reviewers, who made this book both accurate and relevant:
Marc Loy, Don Weiss, George Reese (who managed to get an entire chapter added in response to
his comments!), Matthew Merlo, and James Duncan Davidson. James in particular was helpful, as
his willingness to correct minor errors and be brutally honest with me was instrumental in
reminding me that I am a developer before I am a writer.

I also owe an incredible debt of gratitude to Jason Hunter, author of Java Servlet Programming
(O'Reilly & Associates). This book, though started in November of 1999, experienced a rebirth in
March of 2000 as Jason and I spent an entire afternoon sitting on a lawn in Santa Clara griping
about the current Java API offerings for XML. The result of this discussion was twofold: first, we
developed the JDOM API, covered in this book (with help and encouragement from James
Davidson at Sun Microsystems). We believe that this API will be instrumental in bringing Java and
XML more in line with each other, as well as keeping the focus of using XML on the Java
programming language and usability, rather than on vague concepts and obscurity. Second, Jason
has become an invaluable friend, and has helped me through the often confusing process of
completing a book and being an O'Reilly author. We spent entirely too many evenings talking for

Java and XML

 page 11

hours into the night across the country about how to make JDOM and other code samples work in
an intuitive way.

Most importantly, I owe everything in these pages to my wife, Leigh. Miraculously, she has
managed to not kick me out of the house over the last six months, as I have been tired, inaccessible,
and extremely busy almost constantly. The few moments I had with her away from writing and my
full-time consulting job have been what made everything worthwhile. I have missed her terribly,
and am anxious to return to spending time with her, my three basset hounds (Charlie, Molly, and
Daisy), and my labs (Seth and Moses).

And to my grandfather, Robert Earl Burden, who didn't get to see this, you are everything that I
have ever wanted to be; thanks for teaching me that other people's expectations were always lower
than I should be satisfied with.

Chapter 1. Introduction
XML. These three letters have brought shivers to almost every developer in the world today at some
point in the last two years. While those shivers were often fear at another acronym to memorize,
excitement at the promise of a new technology, or annoyance at another source of confusion for
today's developer, they were shivers all the same. Surprisingly, almost every type of response was
well merited with regard to XML. It is another acronym to memorize, and in fact brings with it a
dizzying array of companions: XSL, XSLT, PI, DTD, XHTML, and more. It also brings with it a
huge promise: what Java did for portability of code, XML claims to do for portability of data. Sun
has even been touting the rather ambitious slogan "Java + XML = Portable Code + Portable Data"
in recent months. And yes, XML does bring with it a significant amount of confusion. We will seek
to unravel and demystify XML, without being so abstract and general as to be useless, and without
diving in so deeply that this becomes just another droll specification to wade through. This is a
book for you, the Java developer, who wants to understand the hype and use the tools that XML
brings to the table.

Today's web application now faces a wealth of problems that were not even considered ten years
ago. Systems that are distributed across thousands of miles must perform quickly and flawlessly.
Data from heterogeneous systems, databases, directory services, and applications must be
transferred without a single decimal place being lost. Applications must be able to communicate not
only with other business components, but other business systems altogether, often across companies
as well as technologies. Clients are no longer limited to thick clients, but can be web browsers that
support HTML, mobile phones that support the Wireless Application Protocol (WAP), or handheld
organizers with entirely different markup languages. Data, and the transformation of that data, has
become the crucial centerpiece of every application being developed today.

XML offers a way for programmers to meet all of these requirements. In addition, Java developers
have an arsenal of APIs that enable them to use XML and its many companions without ever
leaving a Java Integrated Development Environment (IDE). If this sounds a little too good to be
true, keep reading. You will walk through the pitfalls of the various Java APIs as well as look at
some of the bleeding-edge developments in the XML specification and the Java APIs for XML.
Through it all, we will take a developer's view. This is not a book about why you should use XML,
but rather how you should use it. If there are offerings in the specification that are not of much use,
details of why will be clearly given and we will move on; if something is of great value, we'll spend
some extra time on it. Throughout, we will focus on using XML as a tool, not using it as a
buzzword or for the sake of having the latest toy. With that in mind, let's begin to talk about what
XML is.

Java and XML

 page 12

1.1 What Is It?

XML is the Extensible Markup Language . Like its predecessor SGML, XML is a meta-language
used to define other languages. However, XML is much simpler and more straightforward than
SGML. XML is a markup language that specifies neither the tag set nor the grammar for that
language. The tag set for a markup language defines the markup tags that have meaning to a
language parser. For example, HTML has a strict set of tags that are allowed. You may use the tag
<TABLE> but not the tag <CHAIR>. While the first tag has a specific meaning to an application using
the data, and is used to signify the start of a table in HTML, the second tag has no specific meaning,
and although most browsers will ignore it, unexpected things can happen when it appears. That is
because when HTML was defined, the tag set of the language was defined with it. With each new
version of HTML, new tags are defined. However, if a tag is not defined, it may not be used as part
of the markup language without generating an error when the document is parsed. The grammar of
a markup language defines the correct use of the language's tags. Again, let's use HTML as an
example. When using the <TABLE> tag, several attributes may be included, such as the width, the
background color, and the alignment. However, you cannot define the TYPE of the table because the
grammar of HTML does not allow it.

XML, by defining neither the tags nor the grammar, is completely extensible; thus its name. If you
choose to use the tag <TABLE> and then nest within that tag several <CHAIR> tags, you may do so. If
you wish to define a TYPE attribute for the <CHAIR> tag, you may do that also. You could even use
tags named after your children or co-workers if you so desired! To demonstrate, let's take a look at
the XML file shown in Example 1.1.

Example 1.1. A Sample XML File
<?xml version="1.0"?>

<dining-room>
 <table type="round" wood="maple">
 <manufacturer>The Wood Shop</manufacturer>
 <price>$1999.99</price>
 </table>

 <chair wood="maple">
 <quantity>2</quantity>
 <quality>excellent</quality>
 <cushion included="true">
 <color>blue</color>
 </cushion>
 </chair>

 <chair wood="oak">
 <quantity>3</quantity>
 <quality>average</quality>
 </chair>
</dining-room>

If you have never looked at an XML file, but are familiar with HTML or another markup language,
this may look a bit strange to you. That's because the tags and grammar being used are completely
made up. No web page or specification defines the <table>, <chair>, or <cushion> tags (although
one could, just as the XHTML specification defines HTML tags in XML); they are completely
concocted. This is the power of XML: it allows you to define the content of your data in a variety of
ways as long as you conform to the general structure that XML requires. Later we will go into detail
on some additional constraints, but for now it is sufficient to realize that XML is built to allow
flexibility of data formatting.

Java and XML

 page 13

Although this flexibility is one of XML's strongest points, it also creates one of its greatest
weaknesses: because XML documents can be processed in so many different ways and for so many
different purposes, there are a large number of XML-related standards to handle translation and
specification of data. These additional acronyms, and their constant pairing with XML itself, often
confuse what XML is and what it is not. More often than not, when you hear "XML," the speaker is
not referring specifically to the Extensible Markup Language, but to all or part of the suite of XML
tools. Although sometimes these will be referred to separately, be aware that "XML" does not just
mean XML; more often it means "XML and all the great ways there are to manipulate and use it."
With those preliminaries out of the way, we are ready to define some of the most common XML
acronyms and give short descriptions of each. These will be fundamental to everything else in the
book, so keep this chapter marked for reference. These descriptions should start to help you
understand how the XML suite of tools fits together, what XML is, and what it isn't. Discussion of
publishing engines, applications, and tools for XML is avoided; these are discussed later when we
talk about specific XML topics. Rather, this section only refers to specifications and
recommendations in various stages of consideration. Most of these are initiatives of the W3C, the
World Wide Web Consortium. This group defines standards for the XML community that help
provide a common base of knowledge for this technology, much as Sun provides standards for Java
and related APIs. For more on the W3C, visit http://www.w3.org on the Web.

1.1.1 XML

XML, of course, is the root of all these three- and four-letter acronyms. It defines the core language
itself and provides a metadata-type framework. XML by itself is of limited value; it defines only
that framework. However, all of the various technologies that rest upon XML provide developers
and content managers unprecedented flexibility in data management and transmission. XML is
currently a completed W3C Recommendation, meaning it is final and will not change until another
version is released. For the complete XML 1.0 Specification, see http://www.w3.org/TR/REC-xml/.
As this specification is tough to read through for even the XML-savvy, an excellent annotated
version of the specification is available at http://www.xml.com.

As we will spend lots of time going into detail on this subject in future chapters, there are only two
basic concepts you need to understand about XML documents right now. The first is that any XML
document must be well-formed to be of any use and to be parsed correctly. A well-formed
document is one that has every tag closed that is opened, has no tags nested out of order, and is
syntactically correct in regard to the specification. You may be wondering: didn't we say that XML
has no syntax rules? Not exactly; we said that it did not have any grammatical rules. While the
document can define its own tags and attributes, it still must conform to a general set of principles.
These principles are then used by XML-aware applications and parsers to make sense of the
document and perform some action with the data, such as finding the price of a chair or creating a
PDF file from the data within a document. We will discuss these details in greater depth in Chapter
2.

The second basic concept concerning XML documents is that they can be, but are not required to
be, valid. A valid document is one that conforms to its document type definition (DTD), which we'll
talk about in a moment. Simply put, a DTD defines the grammar and tag set for a specific XML
formatting. If a document specifies a DTD and follows that DTD's rules, it is said to be a valid
XML document. XML documents can also be constrained by a schema, a new way of dictating
XML format that will replace DTDs. When a document conforms to a schema, it can be said to be
schema valid. Don't worry if this isn't all clear yet; we have a long way to go, and we will look at
each of these XML-related specifications. First, though, there are some acronyms and specifications
that are used within an XML document. Let's take a look at these now.

Java and XML

 page 14

1.1.1.1 PI

A PI in an XML document is a processing instruction . A processing instruction tells an application
to perform some specific task. While PIs are a small portion of the XML specification, they are
important enough to warrant a section in our discussion of XML acronyms. A PI is distinguished
from other XML data because it represents a command to either the XML parser or a program that
would use the XML document. For example, in our sample XML document in Example 1.1, the
first line, which indicates the version of XML, is a processing instruction. It indicates to the parser
what version of XML is being used. Processing instructions are of the form <?target
instructions?>. Any PI that has the target XML is part of the XML standard set of PIs that parsers
should recognize, often called XML instructions, but PIs can also specify information to be used by
applications that may be wrapping the parsing behavior; in this case, the wrapping application
might have a keyword (such as "cocoon") that could be used as the PI's target.

Processing instructions become extremely important when XML data is used in XML-aware
applications. As a more salient example, consider the application that might process our sample
XML file and then create advertisements for a furniture store based on what stock is available and
listed in the XML document. A processing instruction could let the application know that some
furniture is on a "want" list and must be routed to another application, such as an application that
sends requests for more inventory, and should not be included in the advertisement, or other
application-specific instructions. An XML parser will see PIs with external targets and pass them on
unchanged to the external application.

1.1.1.2 DTD

A DTD is a document type definition. A DTD establishes a set of constraints for an XML document
(or a set of documents). DTD is not a specification on its own, but is defined as part of the XML
specification. Within an XML document, a document type declaration can both include markup
constraints and refer to an external document with markup constraints. The sum of these two sets of
constraints is the document type definition. A DTD defines the way an XML document should be
constructed. Consider the XML document in Example 1.1 again. Although we were able to create
our own tags, this document is useless to another application, or even another human, who does not
understand what our tags mean. Although some common sense can help in determining what the
tags mean, there are still ambiguities. Can the <quantity> tag tell us how many chairs are in stock?
Can a wood attribute be specified within a <chair> tag? These questions must be answered for the
XML document to be properly validated by an XML parser. A document is considered valid when
it follows the constraints that the DTD lays out for the formatting of XML data. This is particularly
important when trying to transfer data between applications, as there must be an agreed-upon
formatting and syntax for different systems to understand each other.

Remember that earlier we said a DTD defined the constraints for a specific XML document or set
of documents. A developer or content author also creates this DTD as an additional document
referenced in his or her XML files, or includes it within the XML file itself, so it does not in any
way limit the XML documents. In fact, the DTD is what gives XML data its portability. It might
define that for the wood attribute, only "maple", "pine", "oak", and "mahogany" are acceptable
values. This allows a parser to determine if the document is acceptable in its content, preventing
data errors. A DTD also defines the order of nesting in tags. It might dictate that the <cushion> tag
can only appear nested within the <chair> tag. This allows another application receiving our
example XML file to know how to process and search within the received file. The DTD is what
adds portability to an XML document's extensibility, resulting not only in flexible data, but data that
can be processed and validated by any machine that can locate the document's DTD.

Java and XML

 page 15

1.1.2 Namespaces

Namespaces is one of the few XML-related concepts that has not been converted into an acronym.
It even has a name that describes its purpose! A namespace is a mapping between an element prefix
and a URI. This mapping is used for handling namespace collisions and defining data structures that
allow parsers to handle collisions. As an example of a possible namespace collision, consider an
XML document that might include a <price> tag for a chair, between a <chair> and </chair>
tag. However, we also include in the chair definition a <cushion> tag, which might also have a
<price> tag. Also consider that the document may reference another XML document for copyright
information. Both documents could reasonably have <date> or possibly <company> tags.
Conflicting tags such as these result in ambiguity as to which tag means what. This ambiguity
creates significant problems for an XML parser. Should the <price> tag be interpreted differently
depending on which element is it within? Or did the content author make a mistake in using it in
two contexts? Without additional namespace information, it is impossible to decide if this was an
error in the XML document construction, and if not, how to use the data within the conflicting tags.

The XML namespace Recommendation defines a mechanism to qualify these names. This
mechanism uses URIs to perform this task, although this is a little beyond what we need to know
right now. In qualifying both the correct usage and placement of tags like the <price> tag in our
example, an XML document is not forced to use rather foolish naming such as <chair-price> and
<cushion-price>. Instead, a namespace is associated with a prefix to an XML element, and results
in tags such as <chair:price> and <cushion:price>. An XML parser can then distinguish
between these two namespaces without having to use entirely different element names. Namespaces
are most often used within XML documents, but are also used in schemas and XSL stylesheets, as
well as other XML-related specifications. The Recommendation for namespaces can be found at
http://www.w3.org/TR/REC-xml-names.

1.1.3 XSL and XSLT

XSL is the Extensible Stylesheet Language. XSL transforms and translates XML data from one
XML format into another. Consider, for example, that the same XML document may need to be
displayed in HTML, PDF, and Postscript form. Without XSL, the XML document would have to be
manually duplicated, and then converted into each of these three formats. Instead, XSL provides a
mechanism of defining stylesheets to accomplish these types of tasks. Rather than having to change
the data because of a different representation, XSL provides a complete separation of data, or
content, and presentation. If an XML document needs to be mapped to another representation, then
XSL is an excellent solution. It provides a method comparable to writing a Java program to
translate data into a PDF or HTML document, but supplies a standard interface to accomplish the
task.

To perform the translation, an XSL document can contain formatting objects . These formatting
objects are specific named tags that can be replaced with appropriate content for the target
document type. A common formatting object might define a tag that some processor uses in the
transformation of an XML document into PDF; in this case, the tag would be replaced by PDF-
specific information. Formatting objects are specific XSL instructions, and although we will lightly
discuss them, they are largely beyond the scope of this book. Instead, we will focus more on XSLT,
a completely text-based transformation process. Through the process of XSLT (Extensible
Stylesheet Language Transformation), an XSL textual stylesheet and a textual XML document are
"merged" together, and what results is the XML data formatted according to the XSL stylesheet. To
help clarify this difficult concept further, let's look at another sample XML file, shown in Example
1.2.

Java and XML

 page 16

Example 1.2. Another Sample XML File
<?xml version="1.0"?>
<?xml-stylesheet href="hello.xsl" type="text/xsl"?>

<!-- Here is a sample XML file -->

<page>
 <title>Test Page</title>
 <content>
 <paragraph>What you see is what you get!</paragraph>
 </content>
</page>

This document defines itself as XML version 1.0, and then defines the location of a corresponding
XSL stylesheet, hello.xsl. This is similar to the way in which DTDs are used; just as a DTD can
be referenced in XML to define how the data can be structured, an XSL file can be referenced to
determine how the data is presented and displayed. Example 1.3 looks at the XSL stylesheet that is
referred to.

Example 1.3. The Stylesheet for Example 1.2
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >

 <xsl:template match="page">
 <html>
 <head>
 <title>
 <xsl:value-of select="title"/>
 </title>
 </head>
 <body bgcolor="#ffffff">
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="paragraph">
 <p align="center">
 <i>
 <xsl:apply-templates/>
 </i>
 </p>
 </xsl:template>

</xsl:stylesheet>

This stylesheet is designed to convert our basic XML document and its data into HTML suitable for
a web browser. While most of these details are things we will discuss later, concentrate on the
<xsl:template match="[element name]"> tags. Any time this type of tag occurs, the element at
the matching tag, for example, paragraph, is replaced by the contents of the XSL stylesheet, which
in this case results in a <p> tag with italicized font encoding. What results from the transformation
of the XML document by the XSL stylesheet is shown in Example 1.4.

Example 1.4. HTML Result from Examples Example 1.2 and Example 1.3
<html>
 <head>
 <title>
 Test Page
 </title>
 </head>

Java and XML

 page 17

 <body bgcolor="#ffffff">
 <p align="center">
 <i>
 What you see is what you get!
 </i>
 </p>
 </body>
</html>

Don't worry about understanding all of the specifics of XSL and XSLT yet; just realize that using
XML and XSL, highly flexible document formats can result from the same set of underlying XML
data. We will spend more time on XSL in Chapter 6. XSL is currently a W3C Working Draft. The
Recommendations related to XSL may be viewed online at http://www.w3.org/Style/XSL.

1.1.4 XPath

XPath (XML Path Language) is a specification in its own right, but is used heavily by XSLT. The
XPath specification defines how a specific item within an XML document can be located. This is
accomplished through referencing specific nodes in the XML document; here, node refers to any
piece of XML data, including elements, attributes, or textual data. In the XPath specification, an
XML document is considered a tree of these nodes, where each node can be accessed by specifying
the location in the tree at which it is located. We won't get into details about using XPath until we
discuss XSL and XSLT more, but expect to use it anytime you must obtain a reference to a specific
piece of data within an XML document. To let you know what to expect, here is a sample XPath
expression:

*[not(self::JavaXML:Title)]

This particular expression evaluates to all child elements of the current element, where the child's
name is not JavaXML:Title. For this document fragment:

<JavaXML:Book>
 <JavaXML:Title>Java and XML</JavaXML:Title>

 <JavaXML:Content>
 <!-- Chapters go here -->
 </JavaXML:Content>

 <JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>
</JavaXML:Book>

evaluating the expression when the current node is the JavaXML:Book element would yield the
JavaXML:Content and JavaXML:Copyright elements. The complete XPath specification is online
at http://www.w3.org/TR/xpath.

1.1.5 XML Schema

XML Schema is designed to replace and amplify DTDs. XML Schema offers an XML-centric
means to constrain XML documents. Though we have only looked briefly at DTDs so far, they have
some rather critical limitations: they have no knowledge of hierarchy, they have difficulty handling
namespace conflicts, and they have no means of specifying allowed relationships between XML
documents. This is understandable, as the members of the working group who wrote the
specification certainly had no idea that XML would be used in so many different ways! However,
the limitations of DTDs have become constricting to XML authors and developers.

Java and XML

 page 18

The most significant fact about XML Schema is that it brings DTDs back into line with XML itself.
That may sound confusing; consider, though, that every acronym we have talked about uses XML
documents to define its purpose. XSL stylesheets, namespaces, and the rest all use XML to define
specific uses and properties of XML. But a DTD is entirely different. A DTD does not look like
XML, it does not share XML's hierarchical structure, and it does not even represent data in the same
way. This makes the DTD a bit of an oddball in the XML world, and because DTDs currently
define how XML documents must be constructed, this has been causing some confusion. XML
Schema corrects this problem by returning to using XML itself to define XML. We have been
talking about "defining data about data" a lot, and XML Schema does this as well. The XML
Schema specification moves XML a lot closer to having all of its constructs in the same language,
rather than having DTDs as an aberration that has to be dealt with.

Wisely, the W3C and XML contributors realized that to refine DTD would be somewhat of a
wasted effort. Instead, XML Schema is being developed to replace DTD, allowing these
contributors to correct problems that DTD could not handle, as well as add enhancements in line
with the various ways in which XML is currently being used. To learn more about this important
W3C draft, visit http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/. A
helpful primer on XML Schema is located at http://www.w3.org/TR/xmlschema-0/.

1.1.6 XQL

XQL is a query language designed to allow XML document formats to easily represent database
queries. Although not yet formally adopted by the W3C, XQL's popularity and usefulness will
almost certainly make it the de facto method for specifying access to data stored in a database from
an XML document. The structure of a query is defined using XPath concepts, and the result set is
defined using standard XML with XQL-specific tags. For example, the following XQL expression
would search through the books table and return all records where the title contains "Java"; for each
record, the author records (from the authors table) would be displayed:

//book[title contains "Java"] (.//authors)

The result set from this query might look like the following:

<xql:result>
 <book>
 <author name="Richard Monson-Haefel" location="Minnesota" />
 </book>
 <book>
 <author name="Jason Hunter" location="California" />
 <author name="William Crawford" location="Massachusetts" />
 </book>
</xql:result>

There will most likely be quite a bit of change as the specification matures and is hopefully adopted
by the W3C, but XQL is a technology worth keeping an eye on. The current proposal for XQL is at
http://metalab.unc.edu/xql/xql-proposal.html. This proposal made its way to the W3C in January of
2000, and current requirements for the XML Query language can be found at
http://www.w3.org/TR/xmlquery-req.

1.1.7 And All the Rest . . .

You have now been sped through a very brief introduction of some of the major XML-related
specifications we will cover. You can probably think of one or two acronyms we didn't cover, if not
more. We have selected only the particular acronyms that are especially relevant to our discussions

Java and XML

 page 19

on handling XML within Java. There are quite a few more, and they are listed here with the URLs
for the appropriate recommendations or working drafts:

• Resource Description Framework (RDF): http://www.w3.org/TR/PR-rdf-schema/
• XML Link Language (XLL)

• XLink: http://www.w3.org/TR/xlink/

• XPointer: http://www.w3.org/TR/xptr/

• XHTML: http://www.w3.org/TR/xhtml-basic/

This list will probably be outdated by the time you read this chapter, as more XML-based ideas are
being examined and proposed every day. Just because these are not given significant time or space
in this book, it should not make you think they are somehow less important; they are just not as
critical to our discussions on manipulating XML data within Java. A complete understanding and
mastery of XML certainly would require these specifications to be absorbed as well as those we
have discussed in more detail. We still are likely to run across some of the specifications we have
listed here; when that occurs, a definition and discussion will be provided in the text to help you
understand what we are talking about.

.2 How Do I Use It?

All of the great ideas XML has brought to us are not much use without some tools to use these ideas
within our familiar programming environments. Luckily, XML has been paired with Java since its
inception, and Java boasts the most complete set of APIs available to allow use of XML directly
within Java code. While C, C++, and Perl are quickly catching up, Java continues to set the standard
on how to use XML from applications. There are two basic stages that occur in an XML document's
lifecycle from an application point of view, as shown in Figure 1.1. First, the document is parsed,
and then the data within it is manipulated.

Figure 1.1. The application view of an XML document lifecycle

As Java developers, we are fortunate to have simple ways to handle these tasks and more.

1.2.1 SAX

SAX is the Simple API for XML. It provides an event-based framework for parsing XML data,
which is the process of reading through the document and breaking down the data into usable parts;
at each step of the way, SAX defines events that can occur. For example, SAX defines an
org.xml.sax.ContentHandler interface that defines methods such as startDocument() and

Java and XML

 page 20

endElement(). Implementing this interface allows complete control over these portions of the
XML parsing process. There is a similar interface for handling errors and lexical constructs. A set
of errors and warnings is defined, allowing handling of the various situations that can occur in XML
parsing, such as an invalid document, or one that is not well-formed. Behavior can be added to
customize the parsing process, resulting in very application-specific tasks being available for
definition, all with a standard interface into XML documents. For the SAX API documentation and
other information on SAX, visit http://www.megginson.com/SAX.

Before continuing, it is important to clear up a common misconception about SAX. SAX is often
mistaken for an XML parser. We even discuss SAX here as providing a means to parse XML data.
However, SAX provides a framework for parsers to use, and defines events within the parsing
process to monitor. A parser must be supplied to SAX to perform any XML parsing. This has
resulted in many excellent parsers being made available in Java, such as Sun's Project X, the
Apache Software Foundation's Xerces, Oracle's XML Parser, and IBM's XML4J. These can all be
plugged into the SAX APIs and result in parsed XML data. SAX APIs provide the means to parse a
document, not the XML parser itself.

1.2.2 DOM

DOM is an API for the Document Object Model. While SAX only provides access to the data
within an XML document, DOM is designed to provide a means of manipulating that data. DOM
provides a representation of an XML document as a tree. Because a tree is an age-old data
representation, traversal and manipulation of tree structures are easy to accomplish in programming
languages, Java being no exception. DOM also reads an entire XML document into memory,
storing all the data in nodes, so the entire document is very fast to access; it is all in memory for the
length of its existence in the DOM tree. Each node represents a piece of the data pulled from the
original document.

There is a significant drawback to DOM, however. Because DOM reads an entire document into
memory, resources can become very heavily taxed, often slowing down or even crippling an
application. The larger and more complex the document, the more pronounced this performance
degradation becomes. Keep in mind that while DOM is a good, prevalent means of manipulating
XML data, it is not the only means of accomplishing this task. We will spend time using DOM, and
we will also write code that manipulates data straight from SAX. Your application requirements
will most likely define which solution is correct for your specific development project. To read the
DOM recommendations at W3C, go to http://www.w3.org/DOM in your web browser.

1.2.3 JAXP

JAXP is Sun's Java API for XML Parsing. A relatively new addition to the XML developer's
arsenal, it attempts to provide cohesiveness to the SAX and DOM APIs. While it does not compete
with or replace either of these APIs, it does add some convenience methods to try to make the XML
APIs easier to use for Java developers. It conforms to the SAX and DOM specifications, as well as
adhering to the namespace Recommendation we discussed earlier. JAXP does not redefine SAX or
DOM behavior, but ensures that all XML-conformant parsers can be accessed within Java
applications through a standard pluggability layer.

It is expected that JAXP will continue to evolve as both SAX and DOM go through revision. It is
also assumed that JAXP will eventually be part of other Sun specifications, as both the Tomcat
servlet engine and the EJB 1.1 specification require XML-formatted configuration and deployment
files. Although the J2EE™ 1.3 and J2SE™ 1.4 specifications do not mention JAXP explicitly, they

Java and XML

 page 21

are expected to have integrated JAXP support as well. For the complete JAXP specification, go to
http://java.sun.com/xml .

These three APIs make up the Java developers toolkit for handling XML. While this is not a formal
designation, these three APIs do provide us the mechanism to get XML data and manipulate it, all
within normal Java code. These APIs will be our workhorses throughout the book, and we will learn
to use every aspect of the classes that each provides.

1.3 Why Should I Use It?

So now you've managed to sort through the alphabet soup of XML-related technologies. You even
have realized that there may be more to XML than just another way to build a presentation layer.
But you aren't quite sure where XML fits in with the applications you are building at work. You
aren't positive that you could convince your boss to let you spend time learning more about XML,
because you don't know how it could help make a better application. You even are thinking about
trying to evaluate some tools to use XML, but you aren't sure where to start.

If this is the situation you find yourself in, excited about a new technology but confused as to where
to go next, then read on! In this section, we begin to cast XML in the light of real-world
applications, and give you a reason to use XML in your applications today. We will first look at
how XML is being used today in applications, and we'll give you the information to convince that
boss of yours that "everybody's doing it." Next we will take a look at support for XML and related
technologies, all in light of Java applications. In Java, there is a wealth of available parsers,
transformers, publishing engines, and frameworks designed specifically for XML. Finally, we will
spend some time looking at where XML is going and try to anticipate how it will affect applications
six months and a year from now. This is the information to use to convince your boss's boss that
XML can not only keep you even with your competitors, but give your company the leading edge in
your industry, and help get you that next promotion!

1.3.1 Java and XML: A Perfect Match

Even if you have been convinced that XML is a great technology, and that it is taking the world by
storm, we have yet to mention why this book is about Java and XML, rather than just XML alone.
Java is, in fact, the ideal counterpart for XML, and the reason can be summed up in a single phrase:
Java is portable code, and XML is portable data. Taken separately, both technologies are wonderful,
but have limitations. Java requires the developer to dream up formats for network data and formats
for presentation, and to use technologies like JavaServer Pages™ (JSP) that do not provide a real
separation of content and presentation layers. XML is simply metadata, and without programs like
parsers and XSL processors, is essentially "vapor-ware." However, Java and XML matched
together fill in the gaps in the application development picture.

Writing Java code assures that any operating system and hardware with a Java™ Virtual Machine (
JVM) can run your compiled bytecode. Add to this the ability to represent input and output to your
applications with a system-independent, standards-based data layer, and your data is now portable.
Your application is completely portable, and can communicate with any other application using the
same (widely accepted) standards. If this isn't enough, we've already mentioned that Java provides
the most robust set of APIs, parsers, processors, publishing frameworks, and tools for XML use of
any programming language. With this synergy in mind, let's look at how these two technologies fit
together, both today and tomorrow.

Java and XML

 page 22

1.3.2 XML Today

Many developers and technology-driven companies are under the impression that while XML is
certainly a hot topic, and has reached "buzzword" status, it is not yet ready for the mission-critical
applications that companies rely on so heavily. Nothing could be further from the truth. XML and
the related technologies we have been discussing have gained a firmer place in the application space
in a shorter amount of time than even Java was able to achieve when it was announced several years
ago. In fact, XML is possibly the only announcement in the development world to rival the impact
of the Java platform. It is fortunate for us as developers that these are complementary technologies
rather than competing ones. With Java and XML, portability of applications and data is at an all-
time high, and is being used heavily, right now, as you read this chapter.

1.3.2.1 XML for presentation

The most popular use for XML is to create a separation of content and presentation. In this
situation, we are defining application content as the data that needs to be displayed to a client, and
application presentation as the formatting of that data. For example, a user's name and address in an
administrative section of an ordering system would be content, while the HTML-formatted page
with images and company branding would be the presentation. The primary distinction is that
content is universal for an application, and no matter what type of client-specific formatting must
occur, the same content is valid; however, presentation is specific to the type of client (web
browser, Internet-ready phone, Java application) and that client's capabilities (HTML 4.0, the
Wireless Markup Language, Java™ Swing) to view data. XML is being used to represent the
content in this situation, while XSL and XSLT are used to provide a presentation suitable for the
client.

One of the most significant challenges that applications face today, particularly web applications, is
the variety of clients that might need to use the application. Ten years ago, users were almost
always thick clients with software installed on their desktop computer to use an application; three
years ago, application clients were almost always Internet web browsers that understood HTML.
Clients today use web browsers on a multitude of operating system platforms, wireless mobile
phones with Wireless Markup Language (WML) support, and handheld organizers that support a
subset of HTML. This variety of client types often results in an application having numerous
versions, one for each type of client it supports, and still not supporting all client variations.
Although an application may not need to support a wireless phone, certainly there are advantages to
allowing employees or customers the service if they have the equipment; and while a handheld
organizer may not allow a user to perform all the operations that a web browser might, frequent
travelers who could manage their accounts online would certainly be more likely to continue to use
a service that a company provides. The shift from lots of functionality being offered to specific
types of clients to a standard set of functionality being offered to an enormous variety of client
types has left many companies and application developers scratching their heads. XML can resolve
this confusion.

Although we said earlier that XML is not a presentation technology, it can be used to generate a
presentation layer. If there doesn't seem to be much of a difference between the two, consider this:
HTML is a presentation technology. It is a markup language designed specifically to allow
graphical views of content for web browser clients. However, HTML is not by any means a good
data representation. An HTML document is not easy to parse, search, or manipulate. It follows only
a loose format, and is at least one-half presentation information, if not more, while only a small
percentage of the document is actual data. XML is substantially different, as it is a data-driven
markup language. Nearly all of an XML document is data and data structure. Only instructions to an
XML parser or wrapping application are not data-centric. XML is easily searchable and can be

Java and XML

 page 23

manipulated with APIs and tools due to the strict structure a DTD or schema can impose. This
makes it very non-presentation-oriented. However, it can be used for presentation with its
companion technologies, XSL and XSLT. XSL allows definition of presentation and formatting
constructs and instructions on how to apply these constructs to the data within an XML document.
And through XSLT, the original XML can be displayed to a client in a variety of ways, including
very complex HTML. Still, the core XML document remains separate from any presentation-
specific information and can just as easily be transformed into an entirely different style of
presentation, such as a Swing user interface, with no change to the underlying content.

Perhaps the most powerful component offered by XML and XSL for presentation is the ability to
specify multiple stylesheets to an XML document, or to impose XSL stylesheets on an XML
document externally. This adds another layer of flexibility to presentation, as not only can the same
XML document be used for multiple presentations, but the publishing framework performing
transformation can determine what type of client is requesting the XML document and select the
correct stylesheet to apply based on that information. While there is no standard way of performing
this process, and no standard set of codes for various client types, an XML publishing framework
can provide ways to accomplish this dynamic transformation. The process of specifying multiple
XSL stylesheets within an XML document is not vendor-specific, so the only framework details
your XML document should have to worry about may be an additional processing instruction or
two. Because these are simply ignored if not supported by an application, the XML documents used
remain completely portable and 100% standard XML.

1.3.2.2 XML for communication

In addition to these useful transformation capabilities, the same XML document and its data content
can be used to transfer information between applications. This communication is easily achievable
because the XML data is not tied to any type of client, or even to being used by a client. It also
provides a very simple data representation easily transmissible over a network. It is this
communication aspect of XML that is probably the most overlooked and undervalued feature of
XML documents and data representations.

To understand the importance of XML for communications, you must first widen your concept of
an application client. While talking about presentation, we made the common assumption that a
client is a user that views a portion of an application. However, this is a fairly narrow assumption in
today's applications, and we will now discard it. Instead, consider that a client is anything (yes,
anything!) that accesses data or services within an application. Clients can be users with computers
or mobile devices, other applications, data storage systems like databases or directory services, and
even, at times, the application itself making callbacks. When the view of a client is widened like
this, you will begin to see the impact that XML can have.

First, categorize these client types into two groups: one that requires a presentation layer and one
that doesn't. When you begin to do this, you may find it a little difficult to draw such a distinction.
While users certainly might view data as HTML or WML (Wireless Markup Language), data might
need to be formatted a little differently for another application, possibly filtering out some secure
content or using different element names. In fact, there will rarely be a time when a client does not
need data formatted in a manner somewhat specific to the purpose the data is being used for.

This exercise should convince you that data is almost always transformed, often multiple times.
Consider an XML document that is converted to a format usable for another application by an XSL
stylesheet (see Figure 1.2). The result remains XML. That application may then use the data to gain
a new result set, and create a new XML document. The original application then needs this

Java and XML

 page 24

information, so the new XML document is transformed back into the format used by the original
application, although it now contains different data! This scenario is a very common one.

Figure 1.2. XML/XSL transformations between applications

This repeated process of transforming a document, and always generating a new XML result, is
what makes XML such a powerful tool for communication. The same set of rules can be used at
every step, always starting with XML, applying one or more XSL stylesheets over one or more
transformations, and resulting in XML that is still usable with the same tools that initially created
the original document.

Also consider that XML is a purely textual representation of data. Because text is such a lightweight
and easily serialized data representation, XML provides a fast means of transmitting data across a
network. Although some binary data formats can be transmitted very efficiently, textual network
transmissions will typically average out as a faster means of communication.

1.3.2.3 XML-RPC

One specification concerned with using XML for communication is XML-RPC. XML-RPC is
concerned with communication not between applications, but between components within an
application, or to a shared set of services functioning across applications. RPC stands for Remote
Procedure Calls, one of the primary predecessors of Remote Method Invocation (RMI). RPC is used
for making procedural calls over a network, and receiving a response, also over the network. Note
that this is significantly different than RMI, which actually allows a client to invoke methods on an
object via stubs and skeletons loaded over the network. The primary difference is that RPC calls
generate a remote response, and the response is returned over the network; the client never interacts
directly with a remote object, but instead uses the RPC interfaces to request a method invocation.
RMI allows a client to directly interact with a remote object, and no "proxying" of requests takes
place. For a more complete discussion on exactly what XML-RPC is, you should visit
http://www.xml-rpc.com.

The point worth noting about RPC, and XML-RPC in particular, is that it has now become a viable
option for remote service calls. Because of the difficulty of providing a standard request and
response model, RPC has become almost extinct in Java applications, and has been replaced by
RMI. However, there are often times when rather than loading remote stubs and skeletons over a
network, sending and receiving textual data results in higher performance. The historical problem of
RPC has been trying to represent complex objects with nothing but textual information, both for
requests and responses. XML has solved this problem, and RPC is again a possible solution for
allowing disparate systems to communicate. With a standard in place for representing any type of
data through textual documents, an XML-RPC engine can map an object instance's parameters to
XML elements, and can easily decode this "graph" of the object on the server. A response can be

Java and XML

 page 25

generated, and again, can easily be "graphed" into XML and returned to the client (see Figure 1.3).
We will look at XML-RPC in detail in Chapter 10.

Figure 1.3. XML-RPC communication and messaging

1.3.2.4 Business-to-business

The last use of XML for communication is really not a different use or specification than those we
have already talked about; however, the rise of the phrase " business-to-business" commerce and
communication bears mentioning. Business-to business-communication generally refers to
communication not just between differing applications, but across companies and sometimes
industries. In these cases, XML is truly performing a significant service only available to extremely
large companies in the past; it is allowing communication between closed systems. Consider a
small- to medium-sized competitive local exchange carrier (CLEC), or a telecommunications
company. When a network line, such as a DSL or T1, is sold to a customer, a variety of things must
happen (see Figure 1.4). The provider of the line, such as UUNet, must be informed of the request
for a new line. A router must be configured by the CLEC and the setup of the router must be
coordinated with the Internet service provider. Then an installation must occur, which may involve
another company if this process is outsourced. This relatively common and simple sale of a network
line already involves three companies! Add to this the technical service group for the manufacturer
of the router, the phone company for the customer's other communication services, and the Internic
to register a domain, and the process becomes significant.

Figure 1.4. Setting up a customer network line using proprietary systems

Java and XML

 page 26

This rather intimidating process can be made extremely simple with the use of XML (as shown in
Figure 1.5). Imagine that the initial request for a line is input into a system that converts the request
into an XML document. This document is then transformed, via XSL, into a format that can be sent
to the line provider, UUNet in our example. UUNet then adds line-specific information,
transforming the request into yet another XML document, which is returned to the CLEC. This new
document is passed on to the installation company with additional information about where the
client is located. Upon installation, notes detailing whether or not the installation was successful are
added to the document, which is transformed again via XSL, and passed back to the original CLEC
application. The beauty of this solution is that instead of multiple systems, each using vendor-
specific formatting, the same set of XML APIs can be used at every step, allowing a standard
interface for the XML data across applications, systems, and even businesses.

Figure 1.5. Setting up a customer network line using XML-based data

Java and XML

 page 27

1.3.2.5 XML for configuration

One last significant use of XML in applications and Java technologies today is at the application
server level. The Enterprise JavaBeans (EJB) 1.1 specification requires that deployment descriptors
for Enterprise JavaBeans, which define the behavior and other information about EJBs, be XML
based. This is a replacement for the previously used serialized deployment descriptors. In the EJB
realm, this is a welcome change, as it removes vendor specificity from deployment descriptors. By
requiring deployment descriptors to conform to a predefined DTD, vendors can all use the same
XML deployment descriptors, increasing EJB portability.

XML is also used for configuration of the servlet API, version 2.2. An XML file, which specifies
the connector parameters to use, the servlet contexts to start up, and other engine-specific details,
configures the servlet engine itself. XML configuration files are also used to configure individual
servlets, allowing initial arguments, servlet aliasing, and URL matching to be accomplished for
specific servlet contexts.

Although both the EJB 1.1 specification and the Tomcat servlet engine are fairly new to the Java
world, their inclusion of XML as core to their configuration is indicative of Sun's intention to
continue to use XML for these purposes. As XML parsers become increasingly common and
marketable, XML-based configuration files are expected to increase across all server vendors and
types, including non-Java-based servers, such as HTTP and database servers.

1.3.3 Support for XML

In the middle to late months of 1999, support for XML has blossomed, particularly for the Java
platform. XML parsers, XSLT processors, publishing frameworks, XML editors and IDEs, and a
wealth of related tools have become available and are even now becoming stable and extremely
fast. Although the subject of this book is the Java APIs for directly manipulating XML, the parsers,
processors, and other components are certainly a part of the overall process of using XML, so a
reference on available components is included. Because the XML technology is changing so
rapidly, and companies are devoting more time and energy to the platform than ever before, no
versions are listed here; they would almost certainly be long out of date by the time this book gets
into your hands. In addition, it is possible, even likely, that many more tools will be available than
are listed here by the time you read this. You should consult your vendors to see if they have XML
support or tools if you do not see them listed here.

1.3.3.1 Parsers

One of the most important layers to an XML-aware application is the XML parser. This component
handles the extremely important task of taking a raw XML document as input and making sense of
the document; it will ensure that the document is well-formed, and if a DTD or schema is
referenced, it may be able to ensure that the document is valid. What results from an XML
document being parsed is typically a data structure, in our case a Java-based one, that can easily be
manipulated and handled by other XML tools or Java APIs. We will not detail these data structures
now, as they are discussed in great depth in later chapters. For now, just realize that the parser is
one of the core building blocks to using XML data.

Selecting an XML parser is not an easy task. There are no hard and fast rules, but two main criteria
are typically used. The first is the speed of the parser. As XML documents are used more often and
their complexity grows, the speed of an XML parser becomes extremely important to the overall
performance of an application. The second factor is conformity to the XML specification. Because
performance is often more of a priority than some of the obscure features in XML, some parsers

Java and XML

 page 28

may not conform to finer points of the XML specification in order to squeeze out additional speed.
You must decide on the proper balance between the two factors based on your application's needs.
In addition, some XML parsers are validating, which means they offer the option to validate your
XML with a DTD, and some are not. Make sure you use a validating parser if that capability is
needed in your applications.

Here's a list of the most commonly used XML parsers. The list does not show whether a parser is
validating or not, as there are current efforts to add validation to several of the parsers that do not
yet offer it. No overall ranking is given or suggested here, but there is a wealth of information on
the web pages for each parser:

• Apache Xerces: http://xml.apache.org
• IBM XML4J: http://alphaworks.ibm.com/tech/xml4j
• James Clark's XP: http://www.jclark.com/xml/xp
• OpenXML: http://www.openxml.org
• Oracle XML Parser: http://technet.oracle.com/tech/xml
• Sun Microsystems Project X: http://java.sun.com/products/xml
• Tim Bray's Lark and Larval: http://www.textuality.com/Lark
• The W3C has stated that they intend to release an open source schema validating parser.

The Microsoft parser has been intentionally left out of this list; from all appearances,
Microsoft does not now or in the future intend to conform to W3C standards. Instead,
Microsoft seems to be developing their own flavor of XML. We have seen this before .
. . be careful if you are forced to use Microsoft's parser, MSXML.

1.3.3.2 Processors

After an XML document is parsed, it is almost always transformed. This transformation, as we have
discussed, is accomplished through XSLT. Similar to parsing, there are a wide variety of options for
this component of the XML process. Again, the two primary considerations are speed of
transformation and conformity to XSL and XSLT specifications. At the time of this writing, XSL
has just become a full W3C Recommendation, so the level of support for all XSL constructs and
options is in great flux. The web site for each processor is the most informative location for
determining conformance and for searching for performance benchmarks.

• Apache Xalan: http://xml.apache.org
• James Clark's XT: http://www.jclark.com/xml/xt
• Lotus XSL Processor: http://www.alphaworks.ibm.com/tech/LotusXSL
• Oracle XSL Processor: http://technet.oracle.com/tech/xml
• Keith Visco's XSL:P: http://www.clc-marketing.com/xslp
• Michael Kay's SAXON: http://users.iclway.co.uk/mhkay/saxon

1.3.3.3 Publishing frameworks

An XML publishing framework is a bit of a nebulous term, and certainly is not a formal definition.
For the purposes of this book, a publishing framework for XML is considered to be a suite or set of
XML tools that allow parsing, transformations, and possibly additional options for using XML
within applications. Although the parsing and transforming is generally accomplished by using
some of the tools we have already mentioned, a publishing framework ties these tools together with
Java APIs, and provides a standard interface for using the framework. More advanced frameworks
allow for processing of both static XML documents and XML generated by Java applications, and

Java and XML

 page 29

some offer editors and component builders to ensure that generated XML fits the framework's
constraints.

Because there is no specification for how an XML application or framework should behave, there is
a tremendous amount of variety between the frameworks listed here. However, each has benefits
that are significant enough to merit you spending some time looking at and using them.
Additionally, several of these frameworks are open source software (OSS), and thus are not only
accessible, but also open in that you can see exactly how things were accomplished. When we begin
building application components later we will select a framework that best suits the examples, but
for now, that decision is deferred so that you can do your own research based on your application's
needs.

• Apache Cocoon: http://xml.apache.org
• Enhydra Application Server: http://www.enhydra.org
• Bluestone XML Server: http://www.bluestone.com/xml
• SAXON: http://users.iclway.co.uk/mhkay/saxon

1.3.3.4 XML editors and IDEs

Although there are many strong XML parsers and processors available, the same cannot be said for
XML editors. Unfortunately, XML is in a similar situation to that of HTML several years ago;
embraced by a small, highly technical group of developers, XML is most often created in text
editors like vi, emacs, and notepad. Although there have been some recent offerings in the XML
editor space, these offerings have been slow to mature, and are only now becoming usable. IBM
does seem to be making significant strides towards providing editing tools for XML, and their latest
offerings can be seen at http://alphaworks.ibm.com/. In addition, http://www.xmlsoftware.com
provides an excellent, current listing of XML products, and should be consulted for the latest
software offerings.

1.3.4 XML Tomorrow

To complete our look at how XML is being used, it seems only fair to try to anticipate where XML
will be used tomorrow. XML is often referred to as the technology of the future. In fact, many
companies and developers have held off using XML because they claim that it is not quite mature
enough, but all admit that it will change the way applications are built in the next year. While the
issue of XML's maturity is arguable, as evidenced by the many excellent uses for XML we have
already discussed, the claim that it will revolutionize application development is not. Even those
who do not use it heavily today are aware that they will have to use it eventually, and "eventually"
gets closer every day.

Despite all the hype surrounding XML, and its massive promise, trying to anticipate where XML
will be a year from now, or even six months from now, is almost impossible. It is a bit like trying to
guess where a quirky OO language called Java that was great for building applets would go about
four years ago: in other words, there is no telling! However, there are several trends in the use of
XML that can help us anticipate what we may soon see on the horizon. Next, we take a look at
some of the most significant of those ideas.

1.3.4.1 Configuration repositories

We have already discussed how XML is increasingly being used for server configuration. Because
XML provides such an easy representation of data, it is ideal for configuration files; these files have

Java and XML

 page 30

historically been cryptic, difficult to use and modify, and very vendor-specific. For example, look at
a portion of the configuration file for an Apache HTTP server, shown in Example 1.5.

Example 1.5. Apache HTTP Server Configuration File
ServerType standalone
ServerRoot "e:/java/server/apache/http"

PidFile logs/httpd.pid
ScoreBoardFile logs/apache_status

Timeout 300
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 15
MaxRequestsPerChild 0
ThreadsPerChild 50

Listen 80
Listen 85

While this is fairly straightforward, it is radically different from the configuration file for a
Weblogic server, shown in Example 1.6.

Example 1.6. Weblogic Server Configuration File
weblogic.security.ssl.enable=true

weblogic.system.SSLListenPort=7002

weblogic.httpd.register.authenticated=
 weblogic.t3.srvr.ClientAuthenticationServlet

weblogic.security.certificateCacheSize=3

weblogic.httpd.register.T3AdminCaptureRootCA=admin.T3AdminCaptureRootCA

weblogic.security.clientRootCA=SecureServerCA.pem
weblogic.security.certificate.server=democert.pem
weblogic.security.key.server=demokey.pem
weblogic.security.certificate.authority=ca.pem

weblogic.httpd.register.Certificate=utils.certificate
weblogic.allow.execute.weblogic.servlet.Certificate=system

weblogic.httpd.enable=false

These two configuration files use entirely different syntax. Although different services will usually
define their own DTDs and element names, XML allows formalization and standardization of file
formatting, producing a universal configuration language. This can only help system and network
administrators, as well as developers, over time.

You may be thinking that we have already covered configurations; why are we going through this
again? Currently, each server has a local configuration file (or files). Although some servers are
moving to using directory services for configuration, this has been slow in adoption, and requires
knowledge of the directory service protocol, typically the Lightweight Directory Access Protocol
(LDAP). A growing trend is the concept of creating an XML repository for configuration (see
Figure 1.6). There is also growing support for a Java Naming and Directory Interface™ (JNDI)
provider for XML, similar to a file provider. In this situation, XML could either function separately
from a directory service or as an abstraction layer over a directory service, allowing applications to

Java and XML

 page 31

need only an XML parser to obtain configuration information. This is substantially easier and more
powerful than providing LDAP libraries with servers. In addition, as more servers become XML
aware, the ability to store configurations in a central location allows interoperability between
components. HTTP servers can discover what servlet engines are available and self-configure
connectors. Enterprise JavaBean containers can locate directory services on the network and
register beans with those directories, as well as discover databases that can be used for object
persistence. These are just a few of the options available when standalone servers are discarded for
networked servers, all using a common XML repository for configuration information .

Figure 1.6. XML configuration repository

1.3.4.2 XSP

XSP stands for Extensible Server Pages, and is yet another XML-related acronym that has the
potential to throw the Java community into excited action. XSP is currently a working draft
authored by Ricardo Rocha and Stefano Mazzocchi, the lead developers on the Apache Cocoon
project. Although not adopted by the W3C or any other formal organization at the time of this
writing, it is possible that the XSP draft may make its way to one of those committees by the time
you are reading this chapter. In a nutshell, XSP seeks to provide the frontend portion of an XML
framework, providing dynamic XML pages that are parsed and transformed by the framework and
allow application interoperability, yet are constructed and stored as static files on a filesystem.

To those of you familiar with Java server-side components, you probably realize that this sounds a
lot like JSP, or at least an XML version of JSP. To some degree, you are right. XSP offers an XML,
and therefore language-independent, alternative to a scripting language for building web pages and
web sites. Much as enterprise applications in Java are aimed at providing a clear separation of
content from application and business logic, XSP seeks to provide the same for XML-based
applications. Although many of the currently available XML frameworks allow this separation of
layers within compiled code, changes to the formatting of actual data in an XML document still
require changes to Java code and a subsequent recompilation. This is in addition to any changes that
might result from changing the actual presentation and related XSL stylesheet. In addition, XSP
defines a process of allowing XSLT transformations to take place within the document, but allows

Java and XML

 page 32

programmatic transformations as well as presentation ones. For example, consider the sample XSP
document (based on an example from the XSP working draft) shown in Example 1.7.

Example 1.7. A Simple XSP Page
<?xml version="1.0"?>

<xsp:page
 language="java"
 xmlns:xsp="http://www.apache.org/1999/XSP/Core"
>
 <title>A Simple XSL Page</title>
 <p>Hi, I've been hit <counter/> times.</p>
</xsp:page>

In addition to being well-formed and easily validated XML, there is no programming logic within
the XSP page. This is where XSP diverges from JSP; logic, and therefore coding structures, are
defined in an associated logicsheet (analogous to an XSL stylesheet) rather than within the XSP
page itself. This allows complete language independence within XSP, and the abstraction of
language-specific constructs in the logicsheet. The following logicsheet in Example 1.8 would
handle the transformation of the <counter/> tag and the rest of the XSP page into actual content.

Example 1.8. XSP Logicsheet
<?xml version="1.0"?>
<xsl:transform
 xmlns:xsl="http://www.w3.org/1999/XSL/Tranform"
 xmlns:xsp="http://www.apache.org/1999/XSP/Core"
>

 <xsl:template match="xsp:page">
 <xsp:page language="java">

 <xsp:structure>
 <xsp:include>java.lang.*</xsp:include>
 </xsp:structure>

 <xsp:logic>
 private static int counter = 0;

 private synchronized int currentCount() {
 return ++counter;
 }
 </xsp:logic>

 <xsp:content>
 <page>
 <xsl:apply-templates/>
 </page>
 </xsp:content>
 </xsp:page>
 </xsl:template>

 <xsl:template match="counter">
 <xsp:expr>currentCount()</xsp:expr>
 </xsl:template>

 <!-- Transcribe everything else verbatim -->
 <xsl:template match="*|@*|comment()|pi()|text()">
 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>

Java and XML

 page 33

 </xsl:template>
</xsl:transform>

You should be able to understand what is happening here with very little explanation. Although
XSP does offer some new constructs, such as <xsp:structure> and <xsp:logic>, the remainder
of the document looks like a standard XSL stylesheet. The XSP tags are also very clear and
understandable, allowing inline coding of Java in this example.

Although XSP is currently available only as part of the Apache Cocoon project, it is an extremely
well thought out draft, and will very likely provide XML-aware applications with the ability to
remain abstracted from presentation details much more efficiently than possible today. It also offers
an easier entry path into XML, much as JSP has encouraged many developers not familiar with Java
to learn JSP and then move on to more complex Java APIs. XSP may further the spread of XML in
addition to offering the advantages we've already discussed. For more information on XSP and to
view the complete Layer 1 Working Draft, visit http://xml.apache.org/cocoon/xsp.html on the Web.

1.4 What's Next?

With our whirlwind tour of XML technologies and the Java APIs to manipulate them complete, we
are ready to dive into more detail. We will spend the next two chapters detailing XML syntax and
how XML can be used in web applications. This will give us the understanding of XML data that
we need in order to create, format, parse, and manipulate it within our applications. In the next
chapter, creating an XML document will be detailed, and further definition will be given of what it
means for an XML document to be well-formed.

One last important note before we begin; if you skimmed the rest of the chapter, please take a
moment and read this paragraph carefully. XML has been surrounded with confusion and
misinformation since its inception. This book proceeds with the assumption that you are taking
XML at face value, and not carrying any of those assumptions around with you, particularly ones
about XML being designed for presentation. In other words, we are going to focus on XML as data.
We will not refer to XML documents as data that is about to be presented, or information we can
transform, but rather as simple data. This important concept may surprise you a bit, as most people
still think of presentation when they think of XML. However, as Java developers, we need to treat
XML as data and nothing more. We will spend the larger portion of this book not formatting XML,
but merely parsing and manipulating it. The power of XML is transmitting data from system to
system, application to application, and business to business. Trying to remove any preconceptions
about what XML can do for you can help make this book more enjoyable, as well as show you a
few ways to use XML you may not have considered.

Chapter 2. Creating XML
Now that you have a greater understanding of XML, how it can be used, and some of the Java APIs
available, it's time to turn concepts into practice. Although this book is not by any means a
definitive guide to XML syntax, or even an XML reference, it would be impossible to discuss how
to parse and manipulate XML documents without first being able to create those documents. In
addition, the Java APIs for handling XML all assume a fair amount of familiarity with XML syntax
and structure, as well as with the design patterns that go into creating an XML document,
constraining it, and transforming it. Therefore we look at each of these tasks before discussing the
corresponding Java APIs.

To begin, we will take a closer look at XML syntax in this chapter. Starting with the very basic
XML constructs, we will discuss what a well-formed XML document is and how to create one. The

Java and XML

 page 34

various XML rules and syntactical "gotchas" will be covered to help you build XML documents
that are not only legal, but can be used in realistic applications. All this work will set the stage for
writing our first Java program in the next chapter to understand how parsing XML works, and how
Java provides callbacks into the parsing process.

If you have ever read a chapter or even a book on a programming language's syntax, you probably
realize it is usually pretty dry reading. To try and avoid this, we will look at syntax in a bit of a
different light than you may be used to. Rather than starting with a simple one- or two-line XML
file and adding to it, which typically makes for a lengthy, useless file at the end of the exercise, we
will look at a complete, usable, relatively complex XML file. The file we will use is a portion of the
actual XML document that represents the table of contents page for this book. We will walk
through this document line by line, examining the different constructs. What a lot of syntactical
discussions ignore is that in the real world, you almost never get to see the simple files that are so
often used as examples; instead, you see complex files that don't make any sense to you, even after
reading a book. You should get used to seeing an XML file with all its constructs, and begin to
learn its structure through practical examples. Hopefully this makes the discussion at least a little
more applicable for you, if not somewhat less dry.

Before we begin, one final observation: this chapter doesn't try to be a reference. In other words, it
doesn't have each term with a definition, and it doesn't have a nutshell-type entry system. Instead, it
is a progressive chapter. Definitions are given in context of the examples and what has already been
said about other constructs, rather than each definition standing alone. You should have a good
XML reference nearby for the rest of this book, as we will not explain constructs we go over in this
chapter again in the latter part of the book, so we can get to more advanced topics. You might want
to pick up the XML Pocket Reference by Robert Eckstein (O'Reilly & Associates) for this purpose.

2.1 An XML Document

As promised, we begin with a practical, real-world example of an XML document that represents a
portion of this book's table of contents, shown in Example 2.1.

Example 2.1. An XML File
<?xml version="1.0"?>
<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>
<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 <JavaXML:Title>Java and XML</JavaXML:Title>
 <JavaXML:Contents>

 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Introduction</JavaXML:Heading>
 <JavaXML:Topic subSections="7">What Is It?</JavaXML:Topic>
 <JavaXML:Topic subSections="3">How Do I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Why Should I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Creating XML</JavaXML:Heading>
 <JavaXML:Topic subSections="0">An XML Document</JavaXML:Topic>
 <JavaXML:Topic subSections="2">The Header</JavaXML:Topic>

Java and XML

 page 35

 <JavaXML:Topic subSections="6">The Content</JavaXML:Topic>
 <JavaXML:Topic subSections="1">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:Chapter focus="Java">
 <JavaXML:Heading>Parsing XML</JavaXML:Heading>
 <JavaXML:Topic subSections="3">Getting Prepared</JavaXML:Topic>
 <JavaXML:Topic subSections="3">SAX Readers</JavaXML:Topic>
 <JavaXML:Topic subSections="9">Content Handlers</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Error Handlers</JavaXML:Topic>
 <JavaXML:Topic subSections="0">
 A Better Way to Load a Parser
 </JavaXML:Topic>
 <JavaXML:Topic subSections="4">"Gotcha!"</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:SectionBreak/>

 <JavaXML:Chapter focus="Java">
 <JavaXML:Heading>Web Publishing Frameworks</JavaXML:Heading>
 <JavaXML:Topic subSections="4">Selecting a Framework</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Installation</JavaXML:Topic>
 <JavaXML:Topic subSections="3">
 Using a Publishing Framework
 </JavaXML:Topic>
 <JavaXML:Topic subSections="2">XSP</JavaXML:Topic>
 <JavaXML:Topic subSections="3">Cocoon 2.0 and Beyond</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 </JavaXML:Contents>

 <JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>

</JavaXML:Book>

2.1 An XML Document

As promised, we begin with a practical, real-world example of an XML document that represents a
portion of this book's table of contents, shown in Example 2.1.

Example 2.1. An XML File
<?xml version="1.0"?>
<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>
<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 <JavaXML:Title>Java and XML</JavaXML:Title>
 <JavaXML:Contents>

 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Introduction</JavaXML:Heading>
 <JavaXML:Topic subSections="7">What Is It?</JavaXML:Topic>
 <JavaXML:Topic subSections="3">How Do I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Why Should I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>

Java and XML

 page 36

 </JavaXML:Chapter>

 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Creating XML</JavaXML:Heading>
 <JavaXML:Topic subSections="0">An XML Document</JavaXML:Topic>
 <JavaXML:Topic subSections="2">The Header</JavaXML:Topic>
 <JavaXML:Topic subSections="6">The Content</JavaXML:Topic>
 <JavaXML:Topic subSections="1">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:Chapter focus="Java">
 <JavaXML:Heading>Parsing XML</JavaXML:Heading>
 <JavaXML:Topic subSections="3">Getting Prepared</JavaXML:Topic>
 <JavaXML:Topic subSections="3">SAX Readers</JavaXML:Topic>
 <JavaXML:Topic subSections="9">Content Handlers</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Error Handlers</JavaXML:Topic>
 <JavaXML:Topic subSections="0">
 A Better Way to Load a Parser
 </JavaXML:Topic>
 <JavaXML:Topic subSections="4">"Gotcha!"</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:SectionBreak/>

 <JavaXML:Chapter focus="Java">
 <JavaXML:Heading>Web Publishing Frameworks</JavaXML:Heading>
 <JavaXML:Topic subSections="4">Selecting a Framework</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Installation</JavaXML:Topic>
 <JavaXML:Topic subSections="3">
 Using a Publishing Framework
 </JavaXML:Topic>
 <JavaXML:Topic subSections="2">XSP</JavaXML:Topic>
 <JavaXML:Topic subSections="3">Cocoon 2.0 and Beyond</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 </JavaXML:Contents>

 <JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>

</JavaXML:Book>

2.3 The Content

With our header worked out, we now can move on to the actual data content in our XML document.
This consists of all the elements, attributes, and textual data within these constructs.

2.3.1 The Root Element

The root element is the highest-level element in the XML document, and must be the first opening
tag and the last closing tag within the document. It provides a reference point that enables an XML
parser or XML-aware application to recognize a beginning and end to an XML document. In our
example, the root element is <JavaXML:Book>:

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/" >

 <!-- Content of XML Document -->

</JavaXML:Book>

Java and XML

 page 37

This tag and its matching closing tag surround all other data content within the XML document.
XML specifies that there may only be one root element in a document. In other words, the root
element must enclose all other elements within the document. Aside from this requirement, a root
element does not differ from any other XML element. It's important to understand this, because
XML documents can reference and include other XML documents. In these cases, the root element
of the referenced document becomes an enclosed element in the referring document, and must be
handled normally by an XML parser. Defining root elements as standard XML elements without
special properties or behavior allows document inclusion to work seamlessly.

2.3.2 Identifying XML with Namespaces

Although we will not delve deeply into XML namespaces here, you should note the use of a
namespace in the root element. You probably observed that all of the XML elements' names are
prefixed with JavaXML. In our XML example, it may be necessary later to include portions of other
O'Reilly books. Because each of these books may also have <Chapter>, <Heading>, or <Topic>
tags, the document must be designed and constructed in a way to avoid namespace collision
problems with other documents. The XML namespaces specification nicely solves this problem.
Because our XML document represents a specific book, and no other XML document should
represent the same book, using a prefix like JavaXML can associate the element to a namespace. The
namespace specification requires that a unique URI be associated with the prefix to distinguish the
elements in the namespace from elements in other namespaces. A URL is recommended, which is
what is supplied here (http://www.oreilly.com/catalog/javaxml, the web site for the book):

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/" >

Once the namespace is defined like this, it can then be referenced by any other element within the
XML document. In our case, we use it for all of the elements because they are all part of the book's
namespace. The proper way to associate an element with a namespace is to prefix the name of the
element with the namespace prefix and a colon:

<JavaXML:Chapter focus="XML" >
 <JavaXML:Heading>Introduction</JavaXML:Heading>
 <JavaXML:Topic subSections="7">What Is It?</JavaXML:Topic>
 <JavaXML:Topic subSections="3">How Do I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Why Should I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

Each of these elements is treated by the XML parser as part of the
http://www.oreilly.com/catalog/javaxml/ namespace, and will not result in collisions with
any other elements named Chapter, Heading, or Topic within other namespaces. Multiple
namespace declarations can be included in the same document, all within the same element:

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
 xmlns:Cocoon="http://xml.apache.org/cocoon/">

Although this is a legal declaration, be very careful when using multiple namespaces within one
document. Often, the benefits of using namespaces can be outweighed by the additional clutter and
textual data they add to the document. Generally, a single namespace for a single document
provides a clear, clean XML document while still avoiding namespace collisions; the only notable
exception is when another XML specification (such as XML Schema) is used and that namespace
must be referenced.

Java and XML

 page 38

A final interesting (and somewhat confusing) point: XML Schema, which we will talk about more
in Chapter 4, requires the schema of an XML document to be specified in a manner that looks very
similar to a set of namespace declarations; see Example 2.2.

Example 2.2. XML Document Using XML Schema
<?xml version="1.0"?>
<addressBook xmlns:xsi="http://www.w3.org/1999/XMLSchema/instance"
 xmlns="http://www.oreilly.com/catalog/javaxml"
 xsi:schemaLocation="http://www.oreilly.com/catalog/javaxml
 mySchema.xsd"
>
 <person>
 <name>
 <firstName>Brett</firstName>
 <lastName>McLaughlin</lastName>
 </name>
 <email>brettmclaughlin@earthlink.net</email>
 </person>
 <person>
 <name>
 <firstName>Eddie</firstName>
 <lastName>Balucci</lastName>
 </name>
 <email>eddieb@freeworld.net</email>
 </person>
</addressBook>

Several things happen here, and it is important to understand each. First, the XML Schema instance
namespace is defined and associated with a URL. This namespace, abbreviated xsi, is used for
specifying information in XML documents about a schema, exactly as we are doing here. Thus, our
first line makes the elements in the XML Schema instance available to our document for use. The
next line defines the namespace for the XML document itself. Because the document does not use
an explicit namespace, like JavaXML in earlier examples, the default namespace is declared. The
XML namespaces specification dictates that every element in an XML document is in a namespace;
the default namespace is the namespace that an element is associated with if no other namespace is
specified. This means that all elements without an explicit namespace and associated prefix (all of
them, in this example) will be associated with this default namespace.

With both the document and XML Schema instance namespaces defined like this, we can then
actually do what we want, which is to associate a schema with this document. The schemaLocation
attribute, which belongs to the XML Schema instance namespace, is used to accomplish this. We
preface this attribute with its namespace (xsi), which we just defined. The argument to this
attribute is actually two URIs: the first specifying the namespace being associated with a schema,
and the second the URI of the schema to refer to. In our example, this results in the first URI being
the default namespace we just declared, and the second a file on the local filesystem called
mySchema.xsd. Like any other XML attribute, this entire pair is enclosed in a single set of quotation
marks. And as simple as that, you have referenced a schema in your XML document!

Seriously, this is not simple, and is to date one of the most misunderstood portions of using
namespaces and XML Schema. We will look more at the mechanics used here as we continue. For
now, try to understand how namespaces allow elements from various groupings to be used, yet
remain identified as a part of their specific grouping.

Java and XML

 page 39

2.3.3 XML Data Elements

So far we have glossed over defining what an actual element is. Now we will take an in-depth look
at elements, which are represented by arbitrary names and must be enclosed in angle brackets.
There are several different variations of elements in the sample document, as shown here:

<!-- Standard element opening tag -->
 <JavaXML:Contents>

 <!-- Standard element with attribute -->
 <JavaXML:Chapter focus="XML">

 <!-- Element with textual data -->
 <JavaXML:Heading>Web Publishing Frameworks</JavaXML:Heading>

 <!-- Empty element -->
 <JavaXML:SectionBreak/>

 <!-- Standard element closing tag -->
 </JavaXML:Contents>

The first rule in creating elements is that their names must start with a letter or underscore, and then
may contain any number of letters, numbers, underscores, hyphens, or periods. They may not
contain embedded spaces; the following is not well-formed XML:

<!-- Embedded spaces are not allowed -->
<my element name>

XML element names are also case-sensitive. Generally, using the same rules that govern Java
variable naming will result in sound XML element naming. Using an element named <tcbo> to
represent Telecommunications Business Object not a good idea because it is cryptic, while an
overly verbose tag name like <beginningOfNewChapter> just clutters up a document. Keep in
mind that your XML documents will probably be seen by other developers and content authors, so
self-documentation through good naming is essential.

Every opened element must in turn be closed. There are no exceptions to this rule as there are in
many other markup languages, like HTML. An ending element tag consists of the forward slash and
then the element name: </JavaXML:Content>. Between an opening and closing tag, there can be
any number of additional elements or textual data. However, you cannot mix the order of nested
tags: the first opened element must always be the last closed element. If any of the rules for XML
syntax are not followed in an XML document, the document is not well-formed . A well-formed
document is one in which all XML syntax rules are followed, and all elements and attributes are
correctly positioned. However, a well-formed document is not necessarily valid , which means that
it follows the constraints set upon a document by its DTD or schema. There is a significant
difference between a well-formed document and a valid one; the rules we discuss in this chapter
ensure that your document is well-formed, while the rules discussed in Chapter 4 allow your
document to be valid.

As an example of a document that is not well-formed, consider this XML fragment:

<tag1>
 <tag2>
</tag1>
 </tag2>

Java and XML

 page 40

The order of nesting of tags is incorrect, as the opened <tag2> is not followed by a closing </tag2>
within the surrounding tag1 element. However, if these syntax errors are corrected, there is no
guarantee that the document will be valid. This is an important difference to understand, and we
will revisit the subject in Chapter 4.

While this example of a document that is not well-formed may seem silly and trivial, remember that
this would be acceptable HTML, and commonly occurs in large tables within an HTML document.
In other words, HTML and many other markup languages do not require well-formed XML
documents. XML's strict adherence to ordering and nesting rules allows data to be parsed and
handled much more quickly than when using markup languages without these constraints.

The last rule we look at is the slightly odd case of empty elements. We already said that XML tags
must always be paired; an opening tag and a closing tag constitute a complete XML element. There
are cases where an element is used purely by itself, like a flag stating a chapter is incomplete, or
where an element has attributes but no textual data, like an image declaration in HTML. These
would have to be represented as:

<chapterIncomplete></chapterIncomplete>

This is obviously a bit silly, and also adds more clutter to what can often be very large XML
documents. The XML specification provides a means to signify both an opening and closing
element tag within one element:

<chapterIncomplete/>

This nicely solves the problem of unnecessary clutter, and still follows the rule that every XML
element must have a matching end tag; it simply consolidates both start and end tag into a single
tag.

2.3.4 Element Attributes

In addition to text contained within an element's tags, an element can also have attributes. Attributes
are included with their respective values within the element's opening declaration (which can also
be its closing declaration!). For example, in the JavaXML:Chapter tag, the focus of the chapter was
part what of was noted in an attribute:

<JavaXML:Chapter focus="XML" >
 <!-- Chapter Information -->
 </JavaXML:Chapter>

 <JavaXML:Chapter focus="Java">
 <!-- Chapter Information -->
 </JavaXML:Chapter>

In this example, focus is the attribute name; the value is the focus of the chapter, XML and Java,
respectively. Attribute names must follow the same rules as XML element names, and attribute
values must be within quotation marks. Although both single and double quotes are allowed, using
double quotes is a widely used standard and results in XML documents that model Java
programming practices. Additionally, single and double quotation marks may be used in attribute
values; surrounding the value in double quotes allows single quotes to be used as part of the value,
and surrounding the value in single quotes allows double quotes to be used as part of the value. This
is not good practice, though, as XML parsers and processors often uniformly convert the quotes

Java and XML

 page 41

around an attribute's value to all double (or all single) quotes, possibly introducing unexpected
results.

In addition to how to use attributes, there is an issue of when to use attributes. Because XML allows
such a variety of data formatting, it is rare that an attribute cannot be represented by an element, or
that an element could not easily be converted to an attribute. Although there is no specification or
widely accepted standard for determining when to use an attribute and when to use an element,
there is a good rule of thumb: use elements for presentable data and attributes for system data. If
you have a piece of data that is going to be presented to a client, or an application, or used as part of
a formula, the data most likely belongs in an element. It can then be treated primarily as application
data, and is easily searchable and usable. Examples are the titles of a book's chapters, the price of a
piece of furniture, or the URL of a company's web site. However, if the data is used as a grouping,
or to let an application know how to handle a portion of data, or is never directly visible to a client
or XML-aware application, it most likely belongs as an attribute. Examples of good candidates for
attributes are the section of a chapter; while the section item itself might be an element and have its
own title, the grouping of chapters within a section is easily represented by a section attribute
within the JavaXML:Chapter element. This attribute would allow easy grouping and indexing of
chapters, but would never be directly displayed to the user. Another good example of a piece of data
that could be represented in XML as an attribute is if a particular table or chair is on layaway. This
instruction could let an XML application used to generate a brochure or flyer know not to include
items on layaway in current stock. Again, the application client would never directly see this
information, but the data would be used in processing and handling the XML document. If after all
of this analysis you are still unsure, you can always play it safe and use an element.

You may have already come up with alternate ways to represent these various examples, using
different approaches. For example, rather than using a section attribute, it might make sense to nest
JavaXML:Chapter elements within a JavaXML:Section element. Perhaps an empty tag,
<layaway/>, might be more useful to mark furniture that is on layaway. In XML, there is rarely
only one way to perform data representation, and often several good ways to accomplish the same
task. Most often the application and use of the data dictates what makes the most sense. Rather than
try to tell you how to write XML, which would be difficult, we will use XML, and in that use you
will hopefully gain insight into how different data formats can be handled and used. This will then
give you the knowledge to make your own decisions about formatting XML documents.

2.3.5 Referring to XML "Constants"

One item we have not discussed is escaping characters, or referring to other constant type data
values. For example, a common way to represent a path to an installation directory is <path-to-
Cocoon> or <Cocoon-Root>. In both these cases, the user would replace the text with the
appropriate choice of installation directory. In our example, the chapter that discusses web
applications needs to give some details on installing and using Apache Cocoon, and might need to
represent this data within an element:

<JavaXML:Topic>
 <JavaXML:Heading>Installing Cocoon</JavaXML:Heading>
 <JavaXML:Content>
 Locate the Cocoon.properties file in the <path-to-Cocoon>/bin
 directory.
 </JavaXML:Content>
 </JavaXML:Topic>

The problem with this is that XML parsers will attempt to handle this data as an XML tag, and then
generate an error because there is no closing tag. This is a common problem, as any use of angle

Java and XML

 page 42

brackets results in this behavior. Entity references provide a way to overcome these problems. An
entity reference is a special data type in XML that is used to refer to another piece of data. The
entity reference consists of a unique name, preceded by an ampersand and followed by a semicolon:
&[entity name];. When an XML parser sees an entity reference, the substitution value specified
is inserted and no processing of that value occurs. XML defines five entities to address the problem
discussed in the example: < for the less-than bracket, > for the greater-than bracket, &
for the ampersand sign itself, " for a double quotation mark, and ' for a single
quotation mark or apostrophe. Using these special references, we could then accurately represent
our installation directory reference as:

<JavaXML:Topic>
 <JavaXML:Heading>Installing Cocoon</JavaXML:Heading>
 <JavaXML:Content>
 Locate the Cocoon.properties file in the
 <path-to-Cocoon>/bin directory.
 </JavaXML:Content>
 </JavaXML:Topic>

Once this document is parsed, the data will be interpreted as <path-to-Cocoon> and the document
will still be considered well-formed.

Also be aware that entity references are user-definable. This allows a sort of shortcut markup; in the
XML example we have been walking through, we reference an external shared copyright text.
Because the copyright is used for multiple O'Reilly books, we don't want to include the text within
this XML document; however, if the copyright is changed, our document should reflect these
changes. You may notice that the syntax used in the XML document looks like the predefined XML
entity references:

<JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>

Although we won't see how the XML parser is told what to reference when it sees
&OReillyCopyright; until our section on DTDs, you should see that there are more uses of entity
references than just representing difficult or unusual characters within data.

2.3.6 Unparsed Data

The last XML construct to look at is the CDATA section marker. A CDATA section is used when a
significant amount of data should be passed on to the calling application without any XML parsing.
This can be used when an unusually large amount of characters would have to be escaped using
entity references, or when spacing must be preserved. In an XML document, a CDATA section looks
like this:

<unparsed-data>
 <![CDATA[Diagram:
 <Step 1>Install Cocoon to "/usr/lib/cocoon"
 <Step 2>Locate the correct properties file.
 <Step 3>Download Ant from "http://jakarta.apache.org"
 -----> Use CVS for this <----
]]>
 </unparsed-data>

In this example, all of the information within the CDATA section does not have to use entity
references or other mechanisms to alert the parser that reserved characters are being used; instead,
the XML parser passes them unchanged to the wrapping program or application.

Java and XML

 page 43

At this point, we have looked at the major components of XML documents. Although each has only
been looked at somewhat in passing, this should give you enough comfort and familiarity to
recognize XML tags when you see them and know their general purpose. As you use XML data and
documents throughout this book, you will gain additional knowledge about these constructs through
their use, which is a much more effective teacher than any amount of dry documentation.

2.4 What's Next?

With this primer on creating XML documents, we are ready to begin writing our first Java code. In
the next chapter, we will take a look at using the Simple API for XML (SAX). Starting with a
simple program to parse through our XML document, we will learn how PIs, elements, attributes,
and other XML constructs are handled within the XML parsing process. Along with each step, we
will provide Java code to perform specific actions, beginning with a simple program to print out our
XML document. This will start the extensive process of learning how to manipulate all of the
various components of an XML document, and how to use this information within Java
applications.

Chapter 3. Parsing XML
With two solid chapters of introduction behind us, we are ready to code! By now you have seen the
numerous acronyms that make up the world of XML, you have delved into the language itself, and
you should be familiar with an XML document. This chapter takes the next step, and the first on our
path of Java programming, by demonstrating how an XML document is parsed and how we can
access the parsed data from within Java code.

One of the first things you will have to do when dealing with XML programmatically is take an
XML document and parse it. As the document is parsed, the data in the document becomes
available to the application using the parser, and suddenly we are within an XML-aware
application! If this all sounds a little too simple to be true, it almost is. In this chapter, we will look
closely at how an XML document is parsed. Using a parser within an application and how to feed
that parser your document's data will be covered. Then we will look at the various callbacks that are
available within the parsing lifecycle. These events are the points where application-specific code
can be inserted and data manipulation can occur.

In addition to looking at how parsers work, we will also begin our exploration of the Simple API for
XML (SAX) in this chapter. SAX is what makes these parsing callbacks available. The interfaces
provided in the SAX package will become an important part of our toolkit for handling XML. Even
though the SAX classes are small and few in number, everything else in our discussions of XML is
based on these classes. A solid understanding of how they help us access XML data is critical to
effectively leveraging XML in your Java programs.

3.1 Getting Prepared

There are several items that we should take care of before beginning to code. First, you must obtain
an XML parser. Writing a parser for XML is a serious task, and there are several efforts going on to
provide excellent XML parsers. We are not going to detail the process of actually writing an XML
parser here; rather, we will discuss the applications that wrap this parsing behavior, focusing on
using existing tools to manipulate XML data. This results in better and faster programs, as we do
not seek to reinvent what is already available. After selecting a parser, we must ensure that a copy
of the SAX classes is on hand. These are easy to locate, and are key to our Java code being able to
process XML. Finally, we will need an XML document to parse. Then, on to the code!

Java and XML

 page 44

3.1.1 Obtaining a Parser

The first step in getting ready to code Java that uses XML is locating and obtaining the parser you
want to use. We briefly talked about this process in Chapter 1, and listed various XML parsers that
could be used. To ensure that your parser works with all of the examples in the book, you should
verify your parser's compliance with the XML specification. Because of the variety of parsers
available and the rapid pace of change within the XML community, all of the details about which
parsers have what compliance levels are beyond the scope of this book. You should consult the
parser's vendor and visit the web sites previously given for this information.

In the spirit of the open source community, all of the examples in this book will use the Apache
Xerces parser. Freely available in binary and source form at http://xml.apache.org, this C- and Java-
based parser is already one of the most widely contributed-to parsers available. In addition, using an
open source parser such as Xerces allows you to send questions or bug reports to the parser's
authors, resulting in a better product, as well as helping you use the software quickly and correctly.
To subscribe to the general list and request help on the Xerces parser, send a blank email to xerces-
dev-subscribe@xml.apache.org. The members of this list can help if you have questions or
problems with a parser not specifically covered in this book. Of course, the examples in this book
all run normally on any parser that uses the SAX implementation covered here.

Once you have selected and downloaded an XML parser, make sure that your Java environment,
whether it be an IDE (Integrated Development Environment) or a command line, has the XML
parser classes in its class path. This will be a basic requirement for all further examples.

3.1.2 Getting the SAX Classes and Interfaces

Once you have your parser, you need to locate the SAX classes. These classes are almost always
included with a parser when downloaded, and Xerces is no exception. If this is the case with your
parser, you should be sure not to download the SAX classes explicitly, as your parser is probably
packaged with the latest version of SAX that is supported by the parser. At the time of this writing,
SAX 2.0 had just gone final. The SAX 2.0 classes are used throughout this book, and should come
bundled with the latest version of the Apache Xerces parser.

If you are not sure whether you have the SAX classes, look at the jar file or class structure used by
your parser. The SAX classes are packaged in the org.xml.sax structure. The latest version of
these includes 17 classes in this root directory, as well as 9 classes in org.xml.sax.helpers and 2
in org.xml.sax.ext. If you are missing any of these classes, you should try to contact your
parser's vendor to see why the classes were not included with your distribution. It is possible that
some classes may have been left out if they are not supported in whole.[1] These class counts are for
SAX 2.0 as well; fewer classes may appear if only SAX 1.0 is supported.

[1] Supporting SAX in whole is a very important item for a parser. Although you are certainly welcome to use any parser you like, if your parser does not have
complete SAX 2.0 support, many of the examples in this book will not work. In addition, your parser is not keeping up with the latest XML developments. For
either or both reasons, you may want to consider at least trying the Xerces parser for the duration of this book.

Finally, you may want to either download or bookmark the SAX API Javadocs on the Web. This
documentation is extremely helpful in using the SAX classes, and the Javadoc structure provides a
standard, simple way to find out additional information about the classes and what they do. This
documentation is located at http://www.megginson.com/SAX/SAX2/javadoc/index.html. You may
also generate Javadoc from the SAX source if you wish, by using the source included with your
parser, or by downloading the complete source from http://www.megginson.com/SAX/SAX2.

Java and XML

 page 45

3.1.3 Have an XML Document on Hand

You should also make sure that you have an XML document to parse. The output shown in the
examples is based on parsing the XML document we discussed in Chapter 2. Save this file as
contents.xml somewhere on your local hard drive. We highly recommend that you follow what
we're doing in this file. You can simply type the file in from the book, or you may download the
XML file from the book's web site, http://www.oreilly.com/catalog/javaxml. You are encouraged to
take the time to type in the example, though, as it will almost certainly familiarize you with XML
syntax more than a quick download will.

In addition to downloading or creating the XML file, you need to make a couple of small
modifications. Because we haven't covered or discussed how to constrain and transform documents,
our programs only parse XML in this chapter. To prevent errors, we need to remove the references
within the XML document to an external DTD, which constrains the XML, and the XSL stylesheets
that transform it. You should comment out these two lines in the XML document, as well as the
processing instruction to Cocoon requesting XSL transformation:

<?xml version="1.0"?>

<!-- We don't need these yet
 <?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
 <?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
 <?cocoon-process type="xslt"?>
 <!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">
-->

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">

Once these lines are commented, note the full path to the XML document. You will need to supply
that path to our programs in this and later chapters.

Finally, we need to comment out our reference to the OReillyCopyright external entity that would
be used to load a file from the filesystem with the needed copyright information. Without a DTD to
define how to resolve this entity reference, we will receive unwanted errors. In the next chapter, we
will look at how to resolve this reference for the XML document.

</JavaXML:Contents>

<!-- Leave out until DTD Section
 <JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>
-->

</JavaXML:Book>

3.2 SAX Readers

Without spending any further time on the preliminaries, let's begin to code. Our first program will
be able to take an XML file as a command-line parameter, and parse that file. We will build
document callbacks into the parsing process so that we can display events in the parsing process as
they occur, which will give us a better idea of what exactly is going on "under the hood."

Java and XML

 page 46

The first thing we need to do is get an instance of a class that conforms to the SAX
org.xml.sax.XMLReader interface. This interface defines parsing behavior and allows us to set
features and properties, which we will look at in Chapter 5. For those of you familiar with SAX 1.0,
this interface replaces the org.xml.sax.Parser interface.

3.2.1 Instantiating a Reader

SAX provides an interface that all SAX-compliant XML parsers should implement. This allows
SAX to know exactly what methods are available for callback and use within an application. For
example, the Xerces main SAX parser class, org.apache.xerces.parsers.SAXParser,
implements the org.xml.sax.XMLReader interface. If you have access to the source of your parser,
you should see the same interface implemented in your parser's main SAX parser class. Each XML
parser must have one class (sometimes more!) that implements this interface, and that is the class
we need to instantiate to allow us to parse XML:

XMLReader parser =
 new SAXParser();

// Do something with the parser
parser.parse(uri);

For those of you new to SAX entirely, it may be a bit confusing not to see the instance variable we
used named reader or XMLReader. While that would be a normal convention, the SAX 1.0 classes
defined the main parsing interface as Parser, and a lot of legacy code has variables named parser
because of that naming. This interface was deprecated because of the large number of changes
required for namespace and feature and properties support, but the naming convention is still a good
one, as parser does indicate the purpose of the instance variable.

With that in mind, let's look at a small program to start up and instantiate a SAX parser. This
program, shown in Example 3.1, won't actually parse a document, but sets up the skeleton within
which we can work for the rest of the chapter; we will add the actual parsing behavior in the next
chapter.

Example 3.1. SAX Parser Example
import org.xml.sax.XMLReader;

// Import your vendor's XMLReader implementation here
import org.apache.xerces.parsers.SAXParser;

/**
 * <code>SAXParserDemo</code> will take an XML file and parse it
 * using SAX, displaying the callbacks in the parsing lifecycle.
 *
 * @author
 * Brett McLaughlin
 * @version 1.0
 */
public class SAXParserDemo {

 /**
 * <p>
 * This parses the file, using registered SAX handlers, and outputs
 * the events in the parsing process cycle.
 * </p>
 *
 * @param uri <code>String</code> URI of file to parse.
 */

Java and XML

 page 47

 public void performDemo(String uri) {
 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Instantiate a parser
 XMLReader parser =
 new SAXParser();
 }

 /**
 * <p>
 * This provides a command-line entry point for this demo.
 * </p>
 */
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java SAXParserDemo [XML URI]");
 System.exit(0);
 }

 String uri = args[0];
 SAXParserDemo parserDemo = new SAXParserDemo();
 parserDemo.performDemo(uri);
 }
}

You should be able to load and compile this program if you made the preparations talked about
earlier to ensure the SAX classes are in your class path. This simple program doesn't do much yet;
in fact, if you run it and supply a bogus filename or URI as an argument, it should happily grind
away and do nothing, other than print out the initial "Parsing XML file" message. That's because we
have only instantiated a parser, not requested that our XML document be parsed.

If you have trouble compiling this source file, you most likely have problems with your IDE or system's
class path. First, make sure you obtained the Apache Xerces parser (or your vendor's parser). For Xerces,
this involves downloading a jar file. This archive can then be extracted, and will contain a xerces.jar file;
it is this jar file that contains the compiled class files for the program. Add this archive to your class
path. You should then be able to compile the source file listing.

3.2.2 Parsing the Document

Once a parser is loaded and ready for use, we can instruct it to parse our document. This is
conveniently handled by the parse() method of org.xml.sax.XMLReader, and this method can
accept either an org.xml.sax.InputSource, or a simple string URI. For now, we will defer talking
about using an InputSource and look at passing in a simple URI. Although this URI could be a
network-accessible address, we will use the full path to the XML document we prepared for this use
earlier. If you did choose to use a URL for network-accessible XML documents, you should be
aware that the application would have to resolve the URL before passing it to the parser (generally
this requires only some form of network connectivity).

We need to add the parse() method to our program, as well as two exception handlers. Because
the document must be loaded, either locally or remotely, a java.io.IOException can result, and
must be caught. In addition, the org.xml.sax.SAXException can be thrown if problems occur
while parsing the document. So we can add two more import statements and a few lines of code,
and have an application that parses XML ready to use:

import java.io.IOException;

import org.xml.sax.SAXException;

Java and XML

 page 48

import org.xml.sax.XMLReader;

// Import your vendor's XMLReader implementation here
import org.apache.xerces.parsers.SAXParser;

...

 /**
 * <p>
 * This parses the file, using registered SAX handlers, and outputs
 * the events in the parsing process cycle.
 * </p>
 *
 * @param uri <code>String</code> URI of file to parse.
 */
 public void performDemo(String uri) {
 System.out.println("Parsing XML File: " + uri + "\n\n");

 try {
 // Instantiate a parser
 XMLReader parser =
 new SAXParser();

 // Parse the document
 parser.parse(uri);

 } catch (IOException e) {
 System.out.println("Error reading URI: " + e.getMessage());
 } catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }
 }

Compile these changes and you are ready to execute the parsing example. You should specify the
full path to your file as the first argument to the program:

D:\prod\JavaXML> java SAXParserDemo D:\prod\JavaXML\contents\contents.xml
Parsing XML File: D:\prod\JavaXML\contents\contents.xml

This rather uninteresting output may make you doubt that anything has happened. However, if you
lean nice and close, you may hear your hard drive spin briefly (or you can just have faith in our
bytecode). In fact, the XML document is parsed, and if you pass in an invalid file URI, the parser
will throw an exception letting you know it couldn't locate a file to parse. However, we have not set
up any callbacks to tell SAX to take action during the parsing process and let us know what is going
on. Without these callbacks, a document is parsed quietly and without application intervention. Of
course, we want to intervene in that process, so we must next look at creating some parser callback
methods. This intervention is the most important part of using SAX. Parser callbacks let us insert
action into the program flow, and turn our rather boring, quiet parsing of an XML document into an
application that can react to the data, elements, attributes, and structure of the document being
parsed, as well as interact with other programs and clients along the way.

3.2.3 Using an InputSource

Instead of using a full URI, the parse() method may also be invoked with an
org.xml.sax.InputSource as an argument. There is actually remarkably little to comment on in
regard to this class; it is used as a helper and wrapper class more than anything else. An
InputSource simply encapsulates information about a single object. While this isn't very helpful in
our example, in situations where a system identifier, public identifier, or a stream may all be tied to

Java and XML

 page 49

one URI, using an InputSource for encapsulation can become very handy. The class has accessor
and mutator methods for its system ID and public ID, a character encoding, a byte stream
(java.io.InputStream), and a character stream (java.io.Reader). Passed as an argument to the
parse() method, SAX also guarantees that the parser will never modify the InputSource. This
ensures that the original input to a parser is still available unchanged after its use by a parser or
XML-aware application. While we do not spend any further time looking at this utility class here,
many of the applications we look at later in the book use the InputSource class as input to SAX
parsers rather than a specific URI.

3.3 Content Handlers

In order to let our application do something useful with XML data as it is being parsed, we must
register handlers with the SAX parser. A handler is nothing more than a set of callbacks that SAX
defines to let us interject application code at important events within a document's parsing. Realize
that these events will take place as the document is parsed, not after the parsing has occurred. This
is one of the reasons that SAX is such a powerful interface: it allows a document to be handled
sequentially, without having to first read the entire document into memory. We will later look at the
Document Object Model (DOM), which has this limitation.

There are four core handler interfaces defined by SAX 2.0: org.xml.sax.ContentHandler ,
org.xml.sax.ErrorHandler, org.xml.sax.DTDHandler, and org.xml.sax.EntityResolver. In
this chapter, we discuss ContentHandler, which allows standard data-related events within an
XML document to be handled, and take a first look at ErrorHandler, which receives notifications
from the parser when errors in the XML data are found. DTDHandler will be examined in Chapter 5.
We briefly discuss EntityResolver at various points in the text; it is enough for now to understand
that EntityResolver works just like the other handlers, and is built specifically for resolving
external entities specified within an XML document. Custom application classes that perform
specific actions within the parsing process can implement each of these interfaces. These
implementation classes can be registered with the parser with the methods setContentHandler(
), setErrorHandler(), setDTDHandler(), and setEntityResolver(). Then the parser
invokes the callback methods on the appropriate handlers during parsing.

For our example, we want to implement the ContentHandler interface. This interface defines
several important methods within the parsing lifecycle that our application can react to. First we
need to add the appropriate import statements to our source file (including the
org.xml.sax.Locator and org.xml.sax.Attributes class and interface, which we will discuss
in a moment), as well as a new class that will implement these callback methods. This new class can
be added at the end of your source file, SAXParserDemo.java :

import java.io.IOException;

import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;

// Import your vendor's XMLReader implementation here
import org.apache.xerces.parsers.SAXParser;

...

/**
 * <code>MyContentHandler</code> implements the SAX
 * <code>ContentHandler</code> interface and defines callback

Java and XML

 page 50

 * behavior for the SAX callbacks associated with an XML
 * document's content.
 */
class MyContentHandler implements ContentHandler {

 /** Hold onto the locator for location information */
 private Locator locator;

 /**
 * <p>
 * Provide reference to <code>Locator</code> which provides
 * information about where in a document callbacks occur.
 * </p>
 *
 * @param locator <code>Locator</code> object tied to callback
 * process
 */
 public void setDocumentLocator(Locator locator) {
 }

 /**
 * <p>
 * This indicates the start of a Document parse--this precedes
 * all callbacks in all SAX Handlers with the sole exception
 * of <code>{@link #setDocumentLocator}</code>.
 * </p>
 *
 * @throws <code>SAXException</code> when things go wrong
 */
 public void startDocument() throws SAXException {
 }

 /**
 * <p>
 * This indicates the end of a Document parse--this occurs after
 * all callbacks in all SAX Handlers.</code>.
 * </p>
 *
 * @throws <code>SAXException</code> when things go wrong
 */
 public void endDocument() throws SAXException {
 }

 /**
 * <p>
 * This indicates that a processing instruction (other than
 * the XML declaration) has been encountered.
 * </p>
 *
 * @param target <code>String</code> target of PI
 * @param data <code>String</code containing all data sent to the PI.
 * This typically looks like one or more attribute value
 * pairs.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void processingInstruction(String target, String data)
 throws SAXException {
 }

 /**
 * <p>
 * This indicates the beginning of an XML Namespace prefix
 * mapping. Although this typically occurs within the root element
 * of an XML document, it can occur at any point within the

Java and XML

 page 51

 * document. Note that a prefix mapping on an element triggers
 * this callback <i>before</i> the callback for the actual element
 * itself (<code>{@link #startElement}</code>) occurs.
 * </p>
 *
 * @param prefix <code>String</code> prefix used for the namespace
 * being reported
 * @param uri <code>String</code> URI for the namespace
 * being reported
 * @throws <code>SAXException</code> when things go wrong
 */
 public void startPrefixMapping(String prefix, String uri) {
 }

 /**
 * <p>
 * This indicates the end of a prefix mapping, when the namespace
 * reported in a <code>{@link #startPrefixMapping}</code> callback
 * is no longer available.
 * </p>
 *
 * @param prefix <code>String</code> of namespace being reported
 * @throws <code>SAXException</code> when things go wrong
 */
 public void endPrefixMapping(String prefix) {
 }

 /**
 * <p>
 * This reports the occurrence of an actual element. It includes
 * the element's attributes, with the exception of XML vocabulary
 * specific attributes, such as
 * <code>xmlns:[namespace prefix]</code> and
 * <code>xsi:schemaLocation</code>.
 * </p>
 *
 * @param namespaceURI <code>String</code> namespace URI this element
 * is associated with, or an empty
 * <code>String</code>
 * @param localName <code>String</code> name of element (with no
 * namespace prefix, if one is present)
 * @param rawName <code>String</code> XML 1.0 version of element name:
 * [namespace prefix]:[localName]
 * @param atts <code>Attributes</code> list for this element
 * @throws <code>SAXException</code> when things go wrong
 */
 public void startElement(String namespaceURI, String localName,
 String rawName, Attributes atts)
 throws SAXException {
 }

 /**
 * <p>
 * Indicates the end of an element
 * (<code></[element name]></code>) is reached. Note that
 * the parser does not distinguish between empty
 * elements and non-empty elements, so this occurs uniformly.
 * </p>
 *
 * @param namespaceURI <code>String</code> URI of namespace this
 * element is associated with
 * @param localName <code>String</code> name of element without prefix
 * @param rawName <code>String</code> name of element in XML 1.0 form
 * @throws <code>SAXException</code> when things go wrong

Java and XML

 page 52

 */
 public void endElement(String namespaceURI, String localName,
 String rawName)
 throws SAXException {
 }

 /**
 * <p>
 * This reports character data (within an element).
 * </p>
 *
 * @param ch <code>char[]</code> character array with character data
 * @param start <code>int</code> index in array where data starts.
 * @param end <code>int</code> index in array where data ends.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void characters(char[] ch, int start, int end)
 throws SAXException {
 }

 /**
 * <p>
 * This reports whitespace that can be ignored in the
 * originating document. This is typically invoked only when
 * validation is ocurring in the parsing process.
 * </p>
 *
 * @param ch <code>char[]</code> character array with character data
 * @param start <code>int</code> index in array where data starts.
 * @param end <code>int</code> index in array where data ends.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void ignorableWhitespace(char[] ch, int start, int end)
 throws SAXException {
 }

 /**
 * <p>
 * This reports an entity that is skipped by the parser. This
 * should only occur for non-validating parsers, and then is still
 * implementation-dependent behavior.
 * </p>
 *
 * @param name <code>String</code> name of entity being skipped
 * @throws <code>SAXException</code> when things go wrong
 */
 public void skippedEntity(String name) throws SAXException {
 }
}

We have added empty implementations for all the methods defined in the ContentHandler
interface, which allows our source file to compile. Of course, these empty implementations don't
provide any feedback for us, so we will walk through each of these required methods now.

3.3.1 The Document Locator

The first method we need to define is one that sets an org.xml.sax.Locator for any SAX event.
When a callback event occurs, a class that implements a handler often needs access to the location
within an XML file of the SAX parser. This can then be used to help the application make decisions
about the event and its location within the XML document. The Locator class has several useful
methods such as getLineNumber() and getColumnNumber() that return the current location

Java and XML

 page 53

within an XML file when invoked. Because this location is only valid for the current parsing
lifecycle, the Locator should only be used within the scope of the ContentHandler
implementation. Since we may want to use this later, we save the provided Locator instance to a
member variable, as well as printing out a message indicating that the callback has occurred. This
will help outline the order and occurrence of SAX events:

/** Hold onto the locator for location information */
private Locator locator;

/**
 * <p>
 * Provide reference to <code>Locator</code>, which provides
 * information about where in a document callbacks occur.
 * </p>
 *
 * @param locator <code>Locator</code> object tied to callback
 * process
 */
public void setDocumentLocator(Locator locator) {
 System.out.println(" * setDocumentLocator() called");
 // We save this for later use if desired.
 this.locator = locator;
}

Later, we can add details to this method if we need to act upon information about the origin of
events; in this example, we merely want to show information about what is occurring in the parsing
process. However, if we wanted to show information about where in the document events were
occurring, such as the line number an element appeared on, we would want to assign this Locator
to a member variable for later use within the class.

3.3.2 The Start and the End of a Document

In any lifecycle process, there must always be a beginning and an end. These important events
should both occur once, the former before all other events, and the latter after all other events. This
obvious fact is critical to applications, as it allows them to know exactly when parsing begins and
exactly when it ends. SAX provides callback methods for each of these events, startDocument()
and endDocument() .

The first method, startDocument(), is called before any other callbacks, including the callback
methods within other SAX handlers, such as DTDHandler. In other words, startDocument() is
not only the first method called within ContentHandler, but also within the entire parsing process,
aside from the setDocumentLocator() method we just discussed. This ensures a finite beginning
to parsing, and lets the application perform any tasks it needs to before parsing takes place.

The second method, endDocument(), is always the last method called, again across all handlers.
This includes situations in which errors occur that cause parsing to halt. We will discuss errors later,
but there are both recoverable errors and unrecoverable errors. If an unrecoverable error occurs, the
ErrorHandler's callback method will be invoked, and then a final call to endDocument()
completes the attempted parsing.

In our example, we want to output to the console when both these events occur to further illustrate
the parsing lifecycle:

/**
 * <p>

Java and XML

 page 54

 * This indicates the start of a Document parse--this precedes
 * all callbacks in all SAX Handlers with the sole exception
 * of <code>{@link #setDocumentLocator}</code>.
 * </p>
 *
 * @throws <code>SAXException</code> when things go wrong
 */
public void startDocument() throws SAXException {
 System.out.println("Parsing begins...");
}

/**
 * <p>
 * This indicates the end of a Document parse - this occurs after
 * all callbacks in all SAX Handlers.</code>.
 * </p>
 *
 * @throws <code>SAXException</code> when things go wrong
 */
public void endDocument() throws SAXException {
 System.out.println("...Parsing ends.");
}

Both of these callback methods can throw SAXException s. These are the only types of exceptions
that SAX events ever throw, and they provide another standard interface to the parsing behavior.
However, these exceptions often wrap other exceptions that are indicative of what problems occur.
For example, if an XML file was being parsed over the network via a URL, and the connection
suddenly became invalid, an IOException would result. However, an application using the SAX
classes should not have to catch this exception, because it should not have to know where the XML
resource is located. Instead, the application can catch the single SAXException. Within the SAX
parser, the original exception is caught and re-thrown as a SAXException, with the originating
exception stuffed inside the new one. This allows applications to have one standard exception to
trap for, while allowing specific details of what errors occurred within the parsing process to be
wrapped and made available to the calling program through this standard exception. The
SAXException class provides a method, getException() , which returns the underlying
Exception.

3.3.3 Processing Instructions

You should recall that we talked about processing instructions (PIs) within XML as a bit of a
special case. They were not considered XML elements, and were handled differently by being
passed to the calling application. Because of these special characteristics, SAX defines a specific
callback for handling processing instructions. This method receives the target of the processing
instruction and any data sent to the PI. For our example, we want to echo this information to the
screen to notify us when a callback is made:

/**
 * <p>
 * This indicates that a processing instruction (other than
 * the XML declaration) has been encountered.
 * </p>
 *
 * @param target <code>String</code> target of PI
 * @param data <code>String</code containing all data sent to the PI.
 * This typically looks like one or more attribute-value
 * pairs.
 * @throws <code>SAXException</code> when things go wrong
 */

Java and XML

 page 55

public void processingInstruction(String target, String data)
 throws SAXException {

 System.out.println("PI: Target:" + target + " and Data:" + data);
}

In a real application that is using XML data, this is where an application could receive instructions
and set variable values or execute methods to perform application-specific processing. For example,
the Apache Cocoon publishing framework might set flags to perform transformations on the data
once it is parsed, or to display the XML as a specific content type. This method, like the other SAX
callbacks, throws a SAXException when errors occur.

You may also remember that in our discussion of PIs we mentioned the XML declaration. This
special processing instruction gives the version and optional information about the encoding of the
document and whether it is a standalone document:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

This instruction is specifically for the XML parser, allowing the parser to report an error, like a
version that is not supported, at the outset of parsing. Because this instruction is only intended to be
used by the parser, it does not initiate a callback to processingInstruction(). Be sure not to
build application code that expects this instruction or version information, because the application
will never receive a callback for this PI. In fact, it is only the parser that should have much interest
in the encoding and version of an XML document, as these items are used in parsing. Once the data
is available to you through Java APIs, these details are generally irrelevant.

3.3.4 Namespace Callbacks

By the amount of discussion (and confusion) we have already encountered about namespaces in
XML, you should be starting to realize their importance and impact on parsing and handling XML.
Alongside XML Schema, XML Namespaces is easily the most significant concept added to XML
since the original XML 1.0 Recommendation. With SAX 2.0, support for namespaces was
introduced at the element level. This allows a distinction to be made between the namespace of an
element, signified by an element prefix and an associated namespace URI, and the local name of an
element. In this case, we use local name to refer to the unprefixed name of an element. For
example, the local name of JavaXML:Book is simply Book. The namespace prefix is JavaXML, and
the namespace URI (in our example) is declared as http://www.oreilly.com/catalog/javaxml.

There are two SAX callbacks specifically dealing with namespaces (although the element callbacks
use them as well). These callbacks are invoked when the parser reaches the start and end of a prefix
mapping. Although this is a new term, it is not a new concept; a prefix mapping is simply an
element that uses the xmlns attribute to declare a namespace. This is often the root element (which
may have multiple mappings), but can be any element within an XML document that declares an
explicit namespace. For example:

<root>
 <element1>
 <myNamespace:element2 xmlns:myNamespace="http://myUrl.com">
 <myNamespace:element3>Here is some data</myNamespace:element3>
 </myNamespace:element2>
 </element1>
</root>

In this case, an explicit namespace is declared several element nestings deep within the document.

Java and XML

 page 56

The startPrefixMapping() callback is given the namespace prefix as well as the URI associated
with that prefix. The mapping is considered "closed" or "ended" when the element that declared the
mapping is closed. The only twist to this callback is that it doesn't quite behave in the sequential
manner in which SAX usually is structured; the prefix mapping callback occurs directly before the
callback for the element that declares the namespace. We look at this callback now:

/**
 * <p>
 * This will indicate the beginning of an XML Namespace prefix
 * mapping. Although this typically occurs within the root element
 * of an XML document, it can occur at any point within the
 * document. Note that a prefix mapping on an element triggers
 * this callback <i>before</i> the callback for the actual element
 * itself (<code>{@link #startElement}</code>) occurs.
 * </p>
 *
 * @param prefix <code>String</code> prefix used for the namespace
 * being reported
 * @param uri <code>String</code> URI for the namespace
 * being reported
 * @throws <code>SAXException</code> when things go wrong
 */
public void startPrefixMapping(String prefix, String uri) {
 System.out.println("Mapping starts for prefix " + prefix +
 " mapped to URI " + uri);
}

In our document, the only mapping we have is declared as an attribute of the root element. That
means we should expect to see this callback invoked before the first element callback (which we
look at next), although still after the startDocument() callback as well as any PIs we have at the
top of our document. The other half of this namespace pair of callbacks is invoked to signify the
end of the mapping, and appears directly after the closing tag of the element declaring the mapping:

/**
 * <p>
 * This indicates the end of a prefix mapping, when the namespace
 * reported in a <code>{@link #startPrefixMapping}</code> callback
 * is no longer available.
 * </p>
 *
 * @param prefix <code>String</code> of namespace being reported
 * @throws <code>SAXException</code> when things go wrong
 */
public void endPrefixMapping(String prefix) {
 System.out.println("Mapping ends for prefix " + prefix);
}

For the XML document fragment above, we could then expect the following output when the
element2 element was reached:

Mapping starts for prefix myNamespace mapped to URI http://myUrl.com

This lets us know the prefix being mapped, and what URI that prefix is associated with.

3.3.5 Element Callbacks

By now you are probably ready to actually get to the data in our XML document. It is true that over
half of the SAX callbacks have nothing to do with XML elements, attributes, and data. This is

Java and XML

 page 57

because the process of parsing XML is intended to do more than simply provide your application
with the XML data; it should give the application instructions from XML PIs so your application
can know what actions to take, let the application know when parsing starts and when it ends, and
even tell it when there is whitespace that can be ignored! If some of these callbacks don't make
much sense, keep reading. We'll explain more here, as well as in Chapter 5, when we look at how
validation of XML fits into the picture.

Still, there certainly are SAX callbacks intended to give you access to the XML data within your
documents. The three primary events you will concern yourself with to get that data are the start and
end of elements and the characters() callback. These tell you when an element is parsed, the
data within that element, and when the closing tag for that element is reached. The first of these,
startElement(), gives an application information about an XML element and any attributes it
may have. The parameters to this callback are the name of the element (in various forms), and an
org.xml.sax.Attributes instance (remember our import statement earlier?). This helper class
holds references to all of the attributes within an element. It allows easy iteration through the
element's attributes in a form similar to a Vector. In addition to being able to reference an attribute
by its index (used when iterating through all attributes), it is possible to reference an attribute by its
name. Of course, by now you should be a bit cautious when you see the word "name" referring to
an XML element or attribute, as it can mean various things. In this case, either the complete name
of the attribute (with a namespace prefix, if any), called its "raw" name, can be used, or the
combination of its local name and namespace URI if a namespace is used. There are also helper
methods such as getURI(int index) and getLocalName(int index) that help give additional
namespace information about an attribute. Used as a whole, the Attributes interface can be a
comprehensive set of information about an element's attributes.

In addition to the element attributes, we mentioned you get several forms of the element's name.
This again is in deference to XML namespaces. The namespace URI of the element is first supplied.
This places the element in its correct context across the complete document's set of namespaces.
Then the local name of the element is supplied, which we mentioned is the unprefixed element
name. In addition (and for backwards compatibility), the "raw" name of the element is supplied.
This is the unmodified, unchanged name of the element, which includes a namespace prefix if
present. In other words, this is exactly what was in the XML document, and so it would be
JavaXML:Book for our Book element. With these three types of names supplied, you should be able
to describe an element with or without respect to its namespace.

Now that we've seen how an element and its attributes are made available, let's look at an
implementation of the SAX callback that prints this information out to the screen when it is
invoked. In this example, we see if the element name has a namespace URI associated with it; if so,
we print out that namespace; if not, we print a message stating that the element has no namespace
associated with it:

/**
 * <p>
 * This reports the occurrence of an actual element. It will include
 * the element's attributes, with the exception of XML vocabulary
 * specific attributes, such as
 * <code>xmlns:[namespace prefix]</code> and
 * <code>xsi:schemaLocation</code>.
 * </p>
 *
 * @param namespaceURI <code>String</code> namespace URI this element
 * is associated with, or an empty
 * <code>String</code>
 * @param localName <code>String</code> name of element (with no
 * namespace prefix, if one is present)

Java and XML

 page 58

 * @param rawName <code>String</code> XML 1.0 version of element name:
 * [namespace prefix]:[localName]
 * @param atts <code>Attributes</code> list for this element
 * @throws <code>SAXException</code> when things go wrong
 */
public void startElement(String namespaceURI, String localName,
 String rawName, Attributes atts)
 throws SAXException {

 System.out.print("startElement: " + localName);
 if (!namespaceURI.equals("")) {
 System.out.println(" in namespace " + namespaceURI +
 " (" + rawName + ")");
 } else {
 System.out.println(" has no associated namespace");
 }

 for (int i=0; i<atts.getLength(); i++)
 System.out.println(" Attribute: " + atts.getLocalName(i) +
 "=" + atts.getValue(i));
}

SAX makes this process very simple and straightforward. One final thing to notice when looking at
the startElement() callback and attributes in particular is that attributes do not remain ordered.
When iterating through an Attributes implementation, the attributes will not necessarily be
available in the order in which they were parsed, which is the order in which they were written. This
means it is not a good idea to depend on the ordering of attributes, due to XML not requiring this
ordering to be maintained by XML parsers. While there are some parsers that implement an
ordering, it often is not included in a parser's feature set.

The closing half of an element callback is the endElement() method. This simple callback is
fairly self-explanatory, and only the name of the element is sent to the callback, allowing that name
to be matched with the appropriate element name passed earlier to a startElement() callback.
The main purpose of this callback is to signify the close of an element, and let an application know
that further characters are part of another scope, rather than the element now being closed. We make
note of this in our example by printing out the name of an element when it is closed:

/**
 * <p>
 * Indicates the end of an element
 * (<code></[element name]></code>) is reached. Note that
 * the parser does not distinguish between empty
 * elements and non-empty elements, so this will occur uniformly.
 * </p>
 *
 * @param namespaceURI <code>String</code> URI of namespace this
 * element is associated with
 * @param localName <code>String</code> name of element without prefix
 * @param rawName <code>String</code> name of element in XML 1.0 form
 * @throws <code>SAXException</code> when things go wrong
 */
public void endElement(String namespaceURI, String localName,
 String rawName)
 throws SAXException {

 System.out.println("endElement: " + localName + "\n");
}

Java and XML

 page 59

3.3.6 Element Data

Once the beginning and end of an element block are identified and the element's attributes are
enumerated for an application, the next piece of important information is the actual data contained
within the element itself. This generally consists of additional elements, textual data, or a
combination of the two. When other elements appear, the callbacks for those elements are initiated,
and a type of pseudo-recursion happens: elements nested within elements results in callbacks
"nested" within callbacks. At some point, textual data will be encountered. This is typically the
most important information to an XML client, as this data is usually either what is shown to the
client or what is processed to generate a client response.

In XML, textual data within elements is sent to a wrapping application via the characters()
callback. This method provides the wrapping application with an array of characters as well as a
starting and ending index from which to read the relevant textual data:

/**
 * <p>
 * This will report character data (within an element).
 * </p>
 *
 * @param ch <code>char[]</code> character array with character data
 * @param start <code>int</code> index in array where data starts.
 * @param end <code>int</code> index in array where data ends.
 * @throws <code>SAXException</code> when things go wrong
 */
public void characters(char[] ch, int start, int end)
 throws SAXException {

 String s = new String(ch, start, end);
 System.out.println("characters: " + s);
}

Seemingly a simple callback, this method often results in a significant amount of confusion because
the SAX interface and standards do not strictly define how this callback must be used for lengthy
pieces of character data. In other words, a parser may choose to return all contiguous character data
in one invocation, or split this data up into multiple method invocations. For any given element, this
method will be called not at all (if no character data is present within the element) or one or more
times. Different parsers will implement this behavior differently, often using algorithms designed to
increase parsing speed. You should never count on having all the textual data for an element within
one callback method; conversely, you should never assume that multiple callbacks would result for
one element's contiguous character data.

As you are writing your SAX event handlers, you should also be sure to keep your mind in a
hierarchical mode. In other words, you should not get in the habit of thinking that any element owns
its data and child elements, but only that it serves as a parent. Also keep in mind that the parser is
moving along, handling elements, attributes, and data as it comes across them. This can make for
some surprising results. Consider the following XML document fragment:

<parent>This is<child>embedded text</child>more text</parent>

Forgetting that SAX parses sequentially, making callbacks as it sees elements and data, and
forgetting that the XML is viewed as hierarchical, you might make the assumption that the output
here would be something like:

startElement: parent has no associated namespace

Java and XML

 page 60

characters: This is more text
startElement: child has no associated namespace
characters: embedded text
endElement: child
endElement: parent

This would seem logical, as the parent element completely "owns" the child element, right?
Wrong. What actually occurs is that a callback is made at each SAX event-point, resulting in the
following event-firing chain:

startElement: parent has no associated namespace
characters: This is
startElement: child has no associated namespace
characters: embedded text
endElement: child
characters: more text
endElement: parent

SAX does not do any reading ahead, so the result here is exactly what you would expect if you
viewed the XML document as sequential data, without all the human assumptions that we tend to
make. This is an important point to remember.

Finally, whitespace is often reported by the characters() method. This introduces additional
confusion, as another SAX callback, ignorableWhitespace() , also reports whitespace. In our
example, we are not validating our XML document; however, we may still be using a validating
(capable) parser. This subtle detail is very important, as the way in which whitespace is reported is
defined by whether the parser being used is a validating one or not. Validating parsers will report all
whitespace through the ignorableWhitespace() method, due to some validation issues we will
address in the next two chapters. Non-validating parsers can report whitespace either through the
ignorableWhitespace() method or the characters() method. To determine the difference,
you will need to consult your parser's documentation to determine if you are using a validating
parser or not. Remember, just because you are not requesting validation of your document does not
mean that your parser is non-validating; a parser that is capable of validating, even if not actively
doing so, is a validating parser.

To add to this confusion, many parsers are actually made up of dual parser implementations: one for
validation and one for parsing without validation. At runtime, the correct class is loaded
dynamically, as a non-validating parser often performs much better than a validating one, even if
validation is not occurring, due to the extra data structures that must be implemented to allow
validation to be used. This is exactly the case with the Apache Xerces parser; our example will
utilize an instance of a non-validating parser, although if a DTD or schema was specified and
validation was requested, a different parser class would be loaded and validation could occur.

The best way to avoid this confusion altogether is to not make any assumptions at all about
whitespace. You should rarely, if ever, be using whitespace as data within your XML document. If
you are forced to use whitespace, such as several spaces, non-space data, and then several more
spaces, and the number of spaces in this data is relevant to an application, a CDATA section should be
used. This ensures that your space-specific data will not be parsed at all; instead, it will be handed
to the XML wrapper application as a large "chunk" of character data. Other than that special case,
whitespace should be avoided as a data representation, and assumptions about which document
callback will report whitespace should not be made.

Java and XML

 page 61

3.3.7 Whitespace, Just the Whitespace

We have already addressed most of the issues with whitespace. We simply need to add this last
SAX callback to our MyContentHandler class. The ignor-ableWhitespace() method takes
parameters in the exact same format as the characters() method, and should use the starting and
ending indexes provided to read from the character array supplied:

/**
 * <p>
 * This will report whitespace that can be ignored in the
 * originating document. This is typically only invoked when
 * validation is occurring in the parsing process.
 * </p>
 *
 * @param ch <code>char[]</code> character array with character data
 * @param start <code>int</code> index in array where data starts.
 * @param end <code>int</code> index in array where data ends.
 * @throws <code>SAXException</code> when things go wrong
 */
public void ignorableWhitespace(char[] ch, int start, int end)
 throws SAXException {

 String s = new String(ch, start, end);
 System.out.println("ignorableWhitespace: [" + s + "]");
}

Of course, our sample will not print out any visible content, as the String created from the
character array will be made up completely of whitespace, so we enclose the output within brackets.
Whitespace is reported in the same manner as character data; it can be handled with one callback, or
a SAX parser may break up the whitespace and report it over several method invocations. In either
case, the precautions we have already discussed about not making assumptions or counting on
whitespace as textual data should be closely adhered to in order to avoid troublesome bugs in your
applications.

3.3.8 Skipped Entities

As you recall, we had one entity reference in our document, the OReillyCopyright entity. When
parsed and resolved, this results in another file being loaded, either from the local filesystem or
some other URI. However, we are not requesting that validation occur in our document. An often
overlooked facet of non-validating parsers is that they are not required to resolve entity references,
and instead may skip them. This has caused some headaches before, as parser results may simply
not include entity references that were expected. SAX 2.0 nicely accounts for this with a callback
that is issued when an entity is skipped by a non-validating parser. The callback gives the name of
the entity, which we will include in our output (although Apache Xerces does not exhibit this
behavior, your parser may):

/**
 * <p>
 * This will report an entity that is skipped by the parser. This
 * should only occur for non-validating parsers, and then is still
 * implementation-dependent behavior.
 * </p>
 *
 * @param name <code>String</code> name of entity being skipped
 * @throws <code>SAXException</code> when things go wrong
 */
public void skippedEntity(String name) throws SAXException {

Java and XML

 page 62

 System.out.println("Skipping entity " + name);
}

Before you go trying to recreate this behavior, you should note that most established parsers will
not skip entities, even if they are not validating. Apache Xerces, for example, will never invoke this
callback; instead, the entity reference will be expanded and the result will be included in the data
available after parsing. In other words, this is there for parsers to use, but you will be hard-pressed
to find a case where it crops up! If you do have a parser that exhibits this behavior, be aware that the
parameter passed does not include the leading ampersand and trailing semicolon in the entity
reference. For &OReillyCopyright;, only the name of the entity, OReillyCopyright, is passed to
skippedEntity().

3.3.9 The Results

Finally, we need to register our handler with the XMLReader we have instantiated. This is done with
setContentHandler() , which takes a ContentHandler implementation as its single argument.
Add the following lines to the demo() method of your parser example program:

/**
 * <p>
 * This parses the file, using registered SAX handlers, and outputs
 * the events in the parsing process cycle.
 * </p>
 *
 * @param uri <code>String</code> URI of file to parse.
 */
public void performDemo(String uri) {
 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Get instances of our handlers
 ContentHandler contentHandler = new MyContentHandler();

 try {
 // Instantiate a parser
 XMLReader parser =
 new SAXParser();

 // Register the content handler
 parser.setContentHandler(contentHandler);

 // Parse the document
 parser.parse(uri);

 } catch (IOException e) {
 System.out.println("Error reading URI: " + e.getMessage());
 } catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }
}

If you have entered in all of the document callbacks as we have gone along, you should be able to
compile the MyContentHandler class and the enclosing SAXParserDemo file. Once done, you may
run the SAX parser demonstration on our XML sample file created earlier. The complete Java
command should read:

D:\prod\JavaXML> java SAXParserDemo D:\prod\JavaXML\contents\contents.xml

Java and XML

 page 63

This should result in a fairly long and verbose output. If you are on a Windows machine, you may
need to increase the buffer size of your DOS window so you may scroll and view the complete
command output. The output should look similar to that in Example 3.2.[2]

[2] In this and other output examples, note that carriage returns may have been inserted to ensure that the output is formatted correctly on the printed page. As
long as the actual content is the same, you have got everything working correctly!

Example 3.2. SAXParserDemo Output
D:\prod\JavaXML>java SAXParserDemo D:\prod\JavaXML\contents.xml
Parsing XML File: D:\prod\JavaXML\contents.xml

 * setDocumentLocator() called
Parsing begins...
Mapping starts for prefix JavaXML mapped to URI
 http://www.oreilly.com/catalog/javaxml/
startElement: Book in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Book)
characters:

startElement: Title in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Title)
characters: Java and XML
endElement: Title

characters:

startElement: Contents in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Contents)
characters:

startElement: Chapter in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Chapter)
 Attribute: focus=XML
characters:

startElement: Heading in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Heading)
characters: Introduction
endElement: Heading

characters:

startElement: Topic in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Topic)
 Attribute: subSections=7
characters: What Is It?
endElement: Topic

characters:

startElement: Topic in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Topic)
 Attribute: subSections=3
characters: How Do I Use It?
endElement: Topic

characters:

startElement: Topic in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Topic)
 Attribute: subSections=4

Java and XML

 page 64

characters: Why Should I Use It?
endElement: Topic

characters:

startElement: Topic in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Topic)
 Attribute: subSections=0
characters: What's Next?
endElement: Topic
...

This output should go on quite a while, as the XML document being parsed has a number of
elements within it. You can clearly see exactly how the parser sequentially handles each element,
the element's attributes, any data within the element, nested elements, and the element's end tag.
This process repeats for each element within the document. In our example, a non-validating
instance of the Xerces parser was used (remember our rather confusing discussion on this?), so
whitespace is being reported with the characters() callback; in the next two chapters we will
discuss validation and see how this reporting changes.

You have now seen how a SAX-compliant parser handles a well-formed XML document. You
should also be getting an understanding of the document callbacks that occur within the parsing
process and how an application can use these callbacks to get information about an XML document
as it is parsed. In the next two chapters, we will spend time looking at validating an XML document
by using additional SAX classes designed for handling DTDs. Before moving on, though, we want
to address the issue of what happens when your XML document is not valid, and the errors that can
result from this condition.

3.4 Error Handlers

In addition to providing the ContentHandler interface for handling parsing events, SAX provides
an ErrorHandler interface that can be implemented to treat various error conditions that may arise
during parsing. This class works in the same manner as the document handler we have already
constructed, but only defines three callback methods. Through these three methods, all possible
error conditions are handled and reported by SAX parsers.

Each method receives information about the error or warning that has occurred through a
SAXParseException . This object holds the line number that trouble was encountered on, the URI
of the document being treated, which could be the parsed document or an external reference within
that document, and normal exception details such as a message and a printable stack trace. In
addition, each method can throw a SAXException. This may seem a bit odd at first; an exception
handler that throws an exception? Keep in mind that what each handler receives is a parsing
exception. This can be a warning that should not cause the parsing process to stop or an error that
needs to be resolved for parsing to continue; however, the callback may need to perform system I/O
or another operation that can throw an exception, and it needs to be able to bubble this exception up
the application chain. It can do this through the SAXException the method is allowed to throw.

For example, consider an error handler that receives error notifications and writes those errors to an
error log. This method needs to be able to either append to or create an error log on the local
filesystem. If a warning were to occur within the process of parsing an XML document, the warning
would be reported to this method. The intent of the warning would be to give information to the
callback and then continue parsing the document. However, if the error handler could not write to
the log file, it might need to notify the parser and application that all parsing should stop. This can
be done by catching any I/O exceptions and re-throwing these to the calling application, thus

Java and XML

 page 65

causing any further document parsing to stop. This common scenario is why error handlers must be
able to throw exceptions (see Example 3.3).

Example 3.3. Error Handler That May Throw a SAXException
public void warning(SAXParseException exception)
 throws SAXException {

 try {
 FileWriter fw = new FileWriter("error.log");
 BufferedWriter bw = new BufferedWriter(fw);
 bw.write("Warning: " + exception.getMessage() + "\n");
 bw.flush();
 bw.close();
 fw.close();
 } catch (Exception e) {
 throw new SAXException("Could not write to log file", e);
 }
}

We can now define the skeleton of our error handler and register it with our parser in the same way
we registered our document handler. First we need to add the SAXParseException class and
ErrorHandler interface to our import statements:

import java.io.IOException;
import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.ErrorHandler;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.XMLReader;

We should now create a class within the same Java file (again at the bottom, after the
MyContentHandler class) to implement the ErrorHandler interface defined by SAX. Like our
discussion of ContentHandler, empty implementations are provided here that we fill in the next
section:

/**
 * <code>MyErrorHandler</code> implements the SAX
 * <code>ErrorHandler</code> interface and defines callback
 * behavior for the SAX callbacks associated with an XML
 * document's errors.
 */
class MyErrorHandler implements ErrorHandler {

 /**
 * <p>
 * This will report a warning that has occurred; this indicates
 * that while no XML rules were broken, something appears
 * to be incorrect or missing.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void warning(SAXParseException exception)
 throws SAXException {
 }

 /**

Java and XML

 page 66

 * <p>
 * This will report an error that has occurred; this indicates
 * that a rule was broken, typically in validation, but that
 * parsing can reasonably continue.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void error(SAXParseException exception)
 throws SAXException {
 }

 /**
 * <p>
 * This will report a fatal error that has occurred; this indicates
 * that a rule has been broken that makes continued parsing either
 * impossible or an almost certain waste of time.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void fatalError(SAXParseException exception)
 throws SAXException {
 }
}

Finally, in preparation to use our custom error handler, we need to register this error handler with
our SAX parser. This is done with the setErrorHandler() method of the XMLReader interface,
and occurs in our example's demo() method. This method takes the ErrorHandler interface or an
implementation of that interface as the single parameter:

// Get instances of our handlers
 ContentHandler contentHandler = new MyContentHandler();
 ErrorHandler errorHandler = new MyErrorHandler();

 try {
 // Instantiate a parser
 XMLReader parser =
 new SAXParser();

 // Register the content handler
 parser.setContentHandler(contentHandler);

 // Register the error handler
 parser.setErrorHandler(errorHandler);

 // Parse the document
 parser.parse(uri);

 } catch (IOException e) {
 System.out.println("Error reaading URI: " + e.getMessage());
 } catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }
...

Now let's take a look at making these methods give us some feedback when they are invoked.

Java and XML

 page 67

3.4.1 Warnings

Any time a warning (as defined by the XML 1.0 specification) occurs, this method is invoked in the
registered error handler. There are several conditions that can generate a warning; however, all of
them are related to the DTD and validity of a document, and we will discuss them in the next two
chapters rather than here. For now, we need to define a simple method that prints out the line
number, URI, and warning message when a warning occurs. Because we want any warnings to stop
parsing, we throw a SAXException and let the wrapping application exit gracefully, cleaning up any
used resources:

/**
 * <p>
 * This will report a warning that has occurred; this indicates
 * that while no XML rules were "broken", something appears
 * to be incorrect or missing.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
public void warning(SAXParseException exception)
 throws SAXException {

 System.out.println("**Parsing Warning**\n" +
 " Line: " +
 exception.getLineNumber() + "\n" +
 " URI: " +
 exception.getSystemId() + "\n" +
 " Message: " +
 exception.getMessage());
 throw new SAXException("Warning encountered");
}

3.4.2 Non-Fatal Errors

Errors that occur within parsing that can be recovered from, but constitute a violation of some
portion of the XML specification, are considered non-fatal errors. An error handler should always at
least log these, as they are typically serious enough to merit informing the user or administrator of
an application, if not so critical as to cause parsing to cease. Like warnings, most non-fatal errors
are concerned with validation, and will be covered in the relevant chapters. Also like warnings, we
want our simple error handler to report information sent to the callback method and exit the parsing
process:

/**
 * <p>
 * This will report an error that has occurred; this indicates
 * that a rule was broken, typically in validation, but that
 * parsing can reasonably continue.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
public void error(SAXParseException exception)
 throws SAXException {

 System.out.println("**Parsing Error**\n" +
 " Line: " +
 exception.getLineNumber() + "\n" +

Java and XML

 page 68

 " URI: " +
 exception.getSystemId() + "\n" +
 " Message: " +
 exception.getMessage());
 throw new SAXException("Error encountered");
}

3.4.3 Fatal Errors

Fatal errors are those that necessitate stopping the parser. These are typically related to a document
not being well-formed, and make further parsing either a complete waste of time or technically
impossible. An error handler should almost always notify the user or application administrator when
a fatal error occurs; without intervention, these can bring an application to a shuddering halt. For
our example, we want to emulate the behavior of the other two callback methods and stop parsing
and write an error message to the screen when a fatal error is encountered:

/**
 * <p>
 * This will report a fatal error that has occurred; this indicates
 * that a rule has been broken that makes continued parsing either
 * impossible or an almost certain waste of time.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
public void fatalError(SAXParseException exception)
 throws SAXException {

 System.out.println("**Parsing Fatal Error**\n" +
 " Line: " +
 exception.getLineNumber() + "\n" +
 " URI: " +
 exception.getSystemId() + "\n" +
 " Message: " +
 exception.getMessage());
 throw new SAXException("Fatal Error encountered");
}

With this third error handler coded, you should be able to compile the example source file
successfully, and run it on our XML file once again. Your output should not be any different than it
was earlier, as there are no reportable errors, in the XML. We will next demonstrate some errors in
non-validated XML documents.

3.4.4 Breaking the Data

Now that we have some error handlers in place, it is possible to view some of these handlers in
action. As mentioned several times, most warnings and non-fatal errors are associated with
document validity issues, which we will address in the next few chapters. However, there is one
non-fatal error that can result from a non-validated XML document. This involves the version of
XML that a document reports. To view this error, make the following change to the XML table of
contents example:

<?xml version="1.2" ?>

<!-- We don't need these yet
 <?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
 <?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"

Java and XML

 page 69

 media="wap"?>
 <?cocoon-process type="xslt"?>
 <!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">
-->

You should now attempt to run the Java parser example program on the modified XML document.
Your output should be similar to that in Example 3.4.

Example 3.4. SAXParserDemo Output Issuing an Error
D:\prod\JavaXML>java SAXParserDemo D:\prod\JavaXML\contents.xml
Parsing XML File: D:\prod\JavaXML\contents.xml

Parsing Error
 Line: 1
 URI: file:/e:/prod/JavaXML/contents.xml
 Message: XML version "1.2" is not supported.

When an XML parser is operating upon a document that reports a version of XML greater than that
supported by the parser, a non-fatal error is reported, in accordance with the XML 1.0 Specification.
This allows an application to know that newer features expected to be utilized by the document may
not be available within the parser and the version that it supports. Because parsing is still able to
continue, this is a non-fatal error. However, because it signifies a major impact on the document
(such as newer syntax possibly generating subsequent errors), it is considered more important than a
warning. This is why our error() method is invoked and triggers the error message and parsing
halt in the example program.

All other meaningful warnings and non-fatal errors will be discussed in the next two chapters; still,
there are a variety of fatal errors that a non-validated XML document may have. These are related
to an XML document not being well-formed. There is no logic built into XML parsers to try to
resolve or estimate fixes to malformed XML, so an error in syntax results in the parsing process
halting. The easiest way to demonstrate one of these errors is to introduce problems within our
XML document. Reset the XML declaration to specify XML Version 1.0, and make the following
change to the XML document:

<?xml version="1.0" ?>

<!-- We don't need these yet
 <?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
 <?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
 <?cocoon-process type="xslt"?>
 <!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">
-->

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 </JavaXML:Title>Java and XML</JavaXML:Title>
 <!-- Note the incorrect slash before the JavaXML:Title element -->

 <JavaXML:Contents>

This is no longer a well-formed document. To see the fatal error that parsing this document
generates, run the SAXParserDemo on this modified file (the output is shown in Example 3.5).

Example 3.5. SAXParserDemo Output Issuing a Fatal Error
D:\prod\JavaXML>java SAXParserDemo D:\prod\JavaXML\contents.xml

Java and XML

 page 70

Parsing XML File: D:\prod\JavaXML\contents.xml

 * setDocumentLocator() called
Parsing begins...
startElement: Book in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Book)
 Attribute: xmlns:JavaXML=http://www.oreilly.com/catalog/javaxml/
characters:

Parsing Fatal Error
 Line: 12
 URI: file:/e:/prod/xml-book/contents.xml
 Message: The element type "JavaXML:Book" must be terminated by the
 matching end-tag "</JavaXML:Book>".

The parser reports an incorrect ending to the JavaXML:Book element. This fatal error is exactly as
we expected; parsing could not continue beyond this error. To understand the error message, you
should realize that the parser sees the slash character before the JavaXML:Title element, and
makes the assumption that the element that must be closed is the JavaXML:Book element, the
current "open" element. When it finds a closing tag for the JavaXML:Title element, it reports that
the tag is incorrect for the closing of the open element, JavaXML:Book.

With our error handler, we have begun to understand what can go wrong within the parsing process,
as well as how to handle those events. In Chapter 5, we will revisit our error handlers and look at
the problems that can be reported by the validating parser.

3.4 Error Handlers

In addition to providing the ContentHandler interface for handling parsing events, SAX provides
an ErrorHandler interface that can be implemented to treat various error conditions that may arise
during parsing. This class works in the same manner as the document handler we have already
constructed, but only defines three callback methods. Through these three methods, all possible
error conditions are handled and reported by SAX parsers.

Each method receives information about the error or warning that has occurred through a
SAXParseException . This object holds the line number that trouble was encountered on, the URI
of the document being treated, which could be the parsed document or an external reference within
that document, and normal exception details such as a message and a printable stack trace. In
addition, each method can throw a SAXException. This may seem a bit odd at first; an exception
handler that throws an exception? Keep in mind that what each handler receives is a parsing
exception. This can be a warning that should not cause the parsing process to stop or an error that
needs to be resolved for parsing to continue; however, the callback may need to perform system I/O
or another operation that can throw an exception, and it needs to be able to bubble this exception up
the application chain. It can do this through the SAXException the method is allowed to throw.

For example, consider an error handler that receives error notifications and writes those errors to an
error log. This method needs to be able to either append to or create an error log on the local
filesystem. If a warning were to occur within the process of parsing an XML document, the warning
would be reported to this method. The intent of the warning would be to give information to the
callback and then continue parsing the document. However, if the error handler could not write to
the log file, it might need to notify the parser and application that all parsing should stop. This can
be done by catching any I/O exceptions and re-throwing these to the calling application, thus
causing any further document parsing to stop. This common scenario is why error handlers must be
able to throw exceptions (see Example 3.3).

Java and XML

 page 71

Example 3.3. Error Handler That May Throw a SAXException
public void warning(SAXParseException exception)
 throws SAXException {

 try {
 FileWriter fw = new FileWriter("error.log");
 BufferedWriter bw = new BufferedWriter(fw);
 bw.write("Warning: " + exception.getMessage() + "\n");
 bw.flush();
 bw.close();
 fw.close();
 } catch (Exception e) {
 throw new SAXException("Could not write to log file", e);
 }
}

We can now define the skeleton of our error handler and register it with our parser in the same way
we registered our document handler. First we need to add the SAXParseException class and
ErrorHandler interface to our import statements:

import java.io.IOException;
import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.ErrorHandler;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.XMLReader;

We should now create a class within the same Java file (again at the bottom, after the
MyContentHandler class) to implement the ErrorHandler interface defined by SAX. Like our
discussion of ContentHandler, empty implementations are provided here that we fill in the next
section:

/**
 * <code>MyErrorHandler</code> implements the SAX
 * <code>ErrorHandler</code> interface and defines callback
 * behavior for the SAX callbacks associated with an XML
 * document's errors.
 */
class MyErrorHandler implements ErrorHandler {

 /**
 * <p>
 * This will report a warning that has occurred; this indicates
 * that while no XML rules were broken, something appears
 * to be incorrect or missing.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void warning(SAXParseException exception)
 throws SAXException {
 }

 /**
 * <p>
 * This will report an error that has occurred; this indicates
 * that a rule was broken, typically in validation, but that
 * parsing can reasonably continue.

Java and XML

 page 72

 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void error(SAXParseException exception)
 throws SAXException {
 }

 /**
 * <p>
 * This will report a fatal error that has occurred; this indicates
 * that a rule has been broken that makes continued parsing either
 * impossible or an almost certain waste of time.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void fatalError(SAXParseException exception)
 throws SAXException {
 }
}

Finally, in preparation to use our custom error handler, we need to register this error handler with
our SAX parser. This is done with the setErrorHandler() method of the XMLReader interface,
and occurs in our example's demo() method. This method takes the ErrorHandler interface or an
implementation of that interface as the single parameter:

// Get instances of our handlers
 ContentHandler contentHandler = new MyContentHandler();
 ErrorHandler errorHandler = new MyErrorHandler();

 try {
 // Instantiate a parser
 XMLReader parser =
 new SAXParser();

 // Register the content handler
 parser.setContentHandler(contentHandler);

 // Register the error handler
 parser.setErrorHandler(errorHandler);

 // Parse the document
 parser.parse(uri);

 } catch (IOException e) {
 System.out.println("Error reaading URI: " + e.getMessage());
 } catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }
...

Now let's take a look at making these methods give us some feedback when they are invoked.

3.4.1 Warnings

Any time a warning (as defined by the XML 1.0 specification) occurs, this method is invoked in the
registered error handler. There are several conditions that can generate a warning; however, all of

Java and XML

 page 73

them are related to the DTD and validity of a document, and we will discuss them in the next two
chapters rather than here. For now, we need to define a simple method that prints out the line
number, URI, and warning message when a warning occurs. Because we want any warnings to stop
parsing, we throw a SAXException and let the wrapping application exit gracefully, cleaning up any
used resources:

/**
 * <p>
 * This will report a warning that has occurred; this indicates
 * that while no XML rules were "broken", something appears
 * to be incorrect or missing.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
public void warning(SAXParseException exception)
 throws SAXException {

 System.out.println("**Parsing Warning**\n" +
 " Line: " +
 exception.getLineNumber() + "\n" +
 " URI: " +
 exception.getSystemId() + "\n" +
 " Message: " +
 exception.getMessage());
 throw new SAXException("Warning encountered");
}

3.4.2 Non-Fatal Errors

Errors that occur within parsing that can be recovered from, but constitute a violation of some
portion of the XML specification, are considered non-fatal errors. An error handler should always at
least log these, as they are typically serious enough to merit informing the user or administrator of
an application, if not so critical as to cause parsing to cease. Like warnings, most non-fatal errors
are concerned with validation, and will be covered in the relevant chapters. Also like warnings, we
want our simple error handler to report information sent to the callback method and exit the parsing
process:

/**
 * <p>
 * This will report an error that has occurred; this indicates
 * that a rule was broken, typically in validation, but that
 * parsing can reasonably continue.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
public void error(SAXParseException exception)
 throws SAXException {

 System.out.println("**Parsing Error**\n" +
 " Line: " +
 exception.getLineNumber() + "\n" +
 " URI: " +
 exception.getSystemId() + "\n" +
 " Message: " +
 exception.getMessage());
 throw new SAXException("Error encountered");

Java and XML

 page 74

}

3.4.3 Fatal Errors

Fatal errors are those that necessitate stopping the parser. These are typically related to a document
not being well-formed, and make further parsing either a complete waste of time or technically
impossible. An error handler should almost always notify the user or application administrator when
a fatal error occurs; without intervention, these can bring an application to a shuddering halt. For
our example, we want to emulate the behavior of the other two callback methods and stop parsing
and write an error message to the screen when a fatal error is encountered:

/**
 * <p>
 * This will report a fatal error that has occurred; this indicates
 * that a rule has been broken that makes continued parsing either
 * impossible or an almost certain waste of time.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
public void fatalError(SAXParseException exception)
 throws SAXException {

 System.out.println("**Parsing Fatal Error**\n" +
 " Line: " +
 exception.getLineNumber() + "\n" +
 " URI: " +
 exception.getSystemId() + "\n" +
 " Message: " +
 exception.getMessage());
 throw new SAXException("Fatal Error encountered");
}

With this third error handler coded, you should be able to compile the example source file
successfully, and run it on our XML file once again. Your output should not be any different than it
was earlier, as there are no reportable errors, in the XML. We will next demonstrate some errors in
non-validated XML documents.

3.4.4 Breaking the Data

Now that we have some error handlers in place, it is possible to view some of these handlers in
action. As mentioned several times, most warnings and non-fatal errors are associated with
document validity issues, which we will address in the next few chapters. However, there is one
non-fatal error that can result from a non-validated XML document. This involves the version of
XML that a document reports. To view this error, make the following change to the XML table of
contents example:

<?xml version="1.2" ?>

<!-- We don't need these yet
 <?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
 <?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
 <?cocoon-process type="xslt"?>
 <!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">
-->

Java and XML

 page 75

You should now attempt to run the Java parser example program on the modified XML document.
Your output should be similar to that in Example 3.4.

Example 3.4. SAXParserDemo Output Issuing an Error
D:\prod\JavaXML>java SAXParserDemo D:\prod\JavaXML\contents.xml
Parsing XML File: D:\prod\JavaXML\contents.xml

Parsing Error
 Line: 1
 URI: file:/e:/prod/JavaXML/contents.xml
 Message: XML version "1.2" is not supported.

When an XML parser is operating upon a document that reports a version of XML greater than that
supported by the parser, a non-fatal error is reported, in accordance with the XML 1.0 Specification.
This allows an application to know that newer features expected to be utilized by the document may
not be available within the parser and the version that it supports. Because parsing is still able to
continue, this is a non-fatal error. However, because it signifies a major impact on the document
(such as newer syntax possibly generating subsequent errors), it is considered more important than a
warning. This is why our error() method is invoked and triggers the error message and parsing
halt in the example program.

All other meaningful warnings and non-fatal errors will be discussed in the next two chapters; still,
there are a variety of fatal errors that a non-validated XML document may have. These are related
to an XML document not being well-formed. There is no logic built into XML parsers to try to
resolve or estimate fixes to malformed XML, so an error in syntax results in the parsing process
halting. The easiest way to demonstrate one of these errors is to introduce problems within our
XML document. Reset the XML declaration to specify XML Version 1.0, and make the following
change to the XML document:

<?xml version="1.0" ?>

<!-- We don't need these yet
 <?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
 <?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
 <?cocoon-process type="xslt"?>
 <!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">
-->

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 </JavaXML:Title>Java and XML</JavaXML:Title>
 <!-- Note the incorrect slash before the JavaXML:Title element -->

 <JavaXML:Contents>

This is no longer a well-formed document. To see the fatal error that parsing this document
generates, run the SAXParserDemo on this modified file (the output is shown in Example 3.5).

Example 3.5. SAXParserDemo Output Issuing a Fatal Error
D:\prod\JavaXML>java SAXParserDemo D:\prod\JavaXML\contents.xml
Parsing XML File: D:\prod\JavaXML\contents.xml

 * setDocumentLocator() called
Parsing begins...

Java and XML

 page 76

startElement: Book in namespace
 http://www.oreilly.com/catalog/javaxml/ (JavaXML:Book)
 Attribute: xmlns:JavaXML=http://www.oreilly.com/catalog/javaxml/
characters:

Parsing Fatal Error
 Line: 12
 URI: file:/e:/prod/xml-book/contents.xml
 Message: The element type "JavaXML:Book" must be terminated by the
 matching end-tag "</JavaXML:Book>".

The parser reports an incorrect ending to the JavaXML:Book element. This fatal error is exactly as
we expected; parsing could not continue beyond this error. To understand the error message, you
should realize that the parser sees the slash character before the JavaXML:Title element, and
makes the assumption that the element that must be closed is the JavaXML:Book element, the
current "open" element. When it finds a closing tag for the JavaXML:Title element, it reports that
the tag is incorrect for the closing of the open element, JavaXML:Book.

With our error handler, we have begun to understand what can go wrong within the parsing process,
as well as how to handle those events. In Chapter 5, we will revisit our error handlers and look at
the problems that can be reported by the validating parser.

3.6 "Gotcha!"

Before leaving our introduction to parsing XML documents, there are a few pitfalls to make you
aware of. These "gotchas" will help you avoid common programming mistakes when using SAX,
and we will discuss more of these for other APIs in the appropriate sections.

3.6.1 My Parser Doesn't Support SAX 2.0: What Can I Do?

For those of you who are unlucky enough not to have a parser with SAX 2.0 support, don't despair.
First, you always have the option of changing parsers; keeping current on SAX standards is an
important part of an XML parser's responsibility, and if your vendor is not doing this, you may have
other concerns to address with them as well. However, there are certainly cases where you are
forced to use a parser because of legacy code or applications; in these situations, you are still not
"left out in the cold."

SAX 2.0 includes a helper class, org.xml.sax.helpers.ParserAdapter , which can actually
cause a SAX 1.0 Parser implementation to behave like a SAX 2.0 XMLReader implementation.
This handy class takes in a 1.0 Parser implementation as an input parameter and then can be used
in the stead of that implementation. It allows a ContentHandler to be set, and handles all
namespace callbacks properly. The only feature loss you will see is that skipped entities will not be
reported, as this capability was not available in a 1.0 implementation in any form, and cannot be
emulated by a 2.0 adapter class. The sample class would be used as shown in Example 3.6.

Example 3.6. Using a SAX 1.0 Parser as a 2.0 XMLReader
try {
 // Register a parser with SAX
 Parser parser =
 ParserFactory.makeParser(
 "org.apache.xerces.parsers.SAXParser");

 ParserAdapter myParser = new ParserAdapter(parser);

 // Register the document handler

Java and XML

 page 77

 myParser.setContentHandler(contentHandler);

 // Register the error handler
 myParser.setErrorHandler(errHandler);

 // Parse the document
 myParser.parse(uri);

} catch (ClassNotFoundException e) {
 System.out.println(
 "The parser class could not be found.");
} catch (IllegalAccessException e) {
 System.out.println(
 "Insufficient privileges to load the parser class.");
} catch (InstantiationException e) {
 System.out.println(
 "The parser class could not be instantiated.");
} catch (ClassCastException e) {
 System.out.println(
 "The parser does not implement org.xml.sax.Parser");
} catch (IOException e) {
 System.out.println("Error reaading URI: " + e.getMessage());
} catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
}

If SAX is new to you and this example doesn't make much sense, don't worry about it; you are
using the latest and greatest version of SAX (2.0) and probably won't ever have to write code like
this. Only in cases where a 1.0 parser must be used is this code helpful.

3.6.2 The SAX XMLReader: Reused and Reentrant

One of Java's nicest features is the ease of reuse of objects, and the memory advantages of this
reuse. SAX parsers are no different. Once an XMLReader has been instantiated, it is possible to
continue using that parser, parsing several or even hundreds of XML documents. Different
documents or InputSources may be continually passed to a parser, allowing it to be used for a
variety of different tasks. However, parsers are not reentrant. Once the parsing process has started, a
parser may not be used until the parsing of the requested document or input has completed. For
those of you who are prone to coding recursive methods, this is definitely a "gotcha!" The first time
that you attempt to use a parser that is in the middle of processing another document, you will
receive a rather nasty SAXException and all parsing will stop. What is the lesson learned? Parse
one document at a time, or pay the price of instantiating multiple parser instances.

3.6.3 The Misplaced Locator

Another dangerous but seemingly innocuous feature of SAX events is the Locator instance that is
made available through the setDocumentLocator() callback method. This gives the application
the origin of a SAX event, and is useful for making decisions about the progress of parsing and how
to react to events. However, this origin point is only valid for the duration of the life of the
ContentHandler instance; once parsing is complete, the Locator is no longer valid, including in
the case when another parse begins. A "gotcha" that many XML newcomers make is to hold a
reference to the Locator object within a class member variable outside of the callback method:

public void setDocumentLocator(Locator locator) {
 // Saving the Locator to a class outside the ContentHandler
 myOtherClass.setLocator(locator);
}

Java and XML

 page 78

...

public myOtherClassMethod() {
 // Trying to use this outside of the ContentHandler
 System.out.println(locator.getLineNumber());
}

This is an extremely bad idea, as this Locator becomes meaningless as soon as the scope of the
ContentHandler implementation is left. Often, using the member variable resulting from this
operation results in not only erroneous information being supplied to an application, but corruption
of the XML document that was parsed. In other words, use this object locally, and not globally. In
our ContentHandler implementation, we saved the supplied Locator to a member variable. It
could then correctly be used (for example) to give you the line number of each element as it was
encountered:

public void startElement(String namespaceURI, String localName,
 String rawName, Attributes atts)
 throws SAXException {

 System.out.print("startElement: " + localName +
 " at line " + locator.getLineNumber());

 if (!namespaceURI.equals("")) {
 System.out.println(" in namespace " + namespaceURI +
 " (" + rawName + ")");
 } else {
 System.out.println(" has no associated namespace");
 }

 for (int i=0; i<atts.getLength(); i++)
 System.out.println(" Attribute: " + atts.getLocalName(i) +
 "=" + atts.getValue(i));
}

3.6.4 Getting Ahead of the Data

The characters() callback method accepts a character array and start and end parameters to
signify which index to start and end reading of that array from. This can cause some confusion; a
common mistake is to include code like this example to read from the character array:

public void characters(char[] ch, int start, int end)
 throws SAXException {

 for (int i=0; i<ch.length; i++)
 System.out.print(i);
}

The mistake here is in reading from the beginning to the end of the character array. This natural
"gotcha" results from years of iterating through arrays, either in Java, C, or another language.
However, in the case of a SAX event, this can cause quite a bug. SAX parsers are required to pass
in starting and ending boundaries on the character array which any loop constructs should use to
read from the array. This allows lower-level manipulation of textual data to occur to optimize parser
performance, such as reading data ahead of the current location as well as array reuse. This is all
legal behavior within SAX, as the expectation is that a wrapping application will not try to "get
ahead" of the end parameter sent to the callback.

Java and XML

 page 79

Mistakes as in the example shown can result in gibberish data being output to the screen or used
within the wrapping application, and are almost always problematic for applications. The loop
construct looks very normal and compiles without a hitch, so this "gotcha" can be a very tricky
problem to track down.

3.7 What's Next?

You should now have a solid understanding of the SAX interfaces and how they interact with an
XML parser and the parsing process, with regard to a non-validated XML document. These
interfaces are key to the rest of our discussions and Java code, as we will expand on our knowledge
of SAX and add additional SAX classes to our example program. In the next chapter, we will look
at how an XML document can be validated, and cover an XML document's DTD and schema.
These will teach you how to constrain an XML document, and then in the chapter after that, we will
look at implementing validation in our example parsing code.

Chapter 4. Constraining XML
Learning to use XML, both for data representation and within Java applications, is an iterative
process. In fact, almost every time you learn something about XML or one of its sister technologies,
you will find that it gives you tools to learn yet another subset of the XML picture. Because there
are so many XML-related projects and specifications, you will be hard-pressed to "know all there is
to know" about XML; and just when you think you do, new versions of things you had down will
come out, and you will get to start all over again! However, the more you do understand about the
various components that make up the XML technology space, the better equipped you will be to
add additional components to your programming toolkit. In keeping with this idea, we will now
drop out of the Java programming language and return to XML-related specifications.

Chapter 2 and Chapter 3 should have given you the information and skills to create a well-formed
XML document and then manipulate that document to a limited degree within Java. You also
should begin to have a basic idea of how XML documents are parsed, and how the SAX Java
classes aid in this process. In this chapter, we will discuss constraining the XML documents we
have been creating. We will look at how Java can use these constraints in the parsing process in the
next chapter.

4.1 Why Constrain XML Data?

Before assuming that you want to know about DTDs and XML Schema, it is only fair to help you
understand why we should spend time on these specifications. There are some XML users and
technologists who argue that there is never a need for constraining XML and ensuring document
validity. Remember, we have already said that an XML document that is valid meets all the
constraints that are set upon the document in the referenced DTD or schema. Also recall that a
document can be well-formed, but still not be valid. So why go to the trouble to create a DTD or
schema that does nothing but impose additional rules on your XML data?

4.1.1 Self-Documentation

As a Java developer, you have hopefully had lots of experience commenting your code, both with
Javadoc and inline comments. At some point in your career, you were probably lectured on the
importance of these comments; someone may have to read your code, someone may have to
maintain your code, someone may actually have to understand your code. If you are involved in
open source projects, the importance of commenting rises to even higher levels. And at some point,

Java and XML

 page 80

you probably rushed a project to completion to meet tight deadlines, and weren't exactly verbose in
your comments. Then about three months later, another developer left with the task of supporting
your project came to you and asked what this block of code did, or how that task was accomplished.
Hopefully, you rattled off the correct explanation, but more likely you looked at him blankly and
couldn't remember how you managed that particular feat of coding wizardry. At that point, you
learned the value of documentation.

Now XML data is certainly not code, and simply because of the element nesting and other
syntactical rules, it is almost always easier to understand than a snippet of complex Java code.
However, don't be so sure that your outlook on data representation is the same outlook that other
content authors may have. The simple XML file in Example 4.1 is an excellent example.

Example 4.1. An Ambiguous XML File
<?xml version="1.0"?>

<page>
 <screen>
 <name>Commerce</name>
 <trimColor>#CC9900</trimColor>
 <fontFace>Arial</fontFace>
 </screen>
 <content>
 <p>Lots of content would go here</p>
 </content>
</page>

The purpose of the file in Example 4.1 seems abundantly clear. It gives information to an
application about a particular screen to render to a client. The color of the page trim is given, as
well as the font to use, and then content for the screen is included. Where is the ambiguity? Well, it
only shows up when another XML document used within the same application is seen, as in
Example 4.2.

Example 4.2. A Less Ambiguous XML File
<?xml version="1.0"?>

<page>
 <screen>
 <name>Commerce</name>
 <trimColor>#CC9900</trimColor>
 <fontFace>Arial</fontFace>
 </screen>
 <screen>
 <name>Message Center</name>
 <trimColor>#9900FF</trimColor>
 <fontFace>Arial</fontFace>
 </screen>
 <screen>
 <name>News Center</name>
 <trimColor>#EECCEE</trimColor>
 <fontFace>Helvetica</fontFace>
 </screen>
 <content>
 <p>Lots of content would go here</p>
 </content>
</page>

Suddenly our interpretation of the first XML file would seem to be invalid. The screen element
cannot represent the current screen, as the second example has three screen elements. In actuality,

Java and XML

 page 81

the application is rendering links to available screens at the top of the page, and the screen
elements denote what each of these links should look like; the name of the link, the color of the
section, and the font face of the link's title. The first example happened to have only one screen to
link to, creating confusion. Only the content author or application developer could look at the first
XML document and know this.

Constraining XML documents can aid in documenting these confusing situations. If we knew that
there was only one allowed screen element within an XML page, we could safely make our first
assumption at the use of the screen element. However, if we knew that multiple screen elements
were allowed, then even with the first XML document, we could make a better estimation of the
purpose of the data. To put it another way, a well-formed XML document contains words that are
all found in the dictionary. The words have meaning, but can be used in meaningless ways: "Fox cat
run happily smear bread jelly down." Validity ensures that these "words" (elements and attributes in
XML) are put together in ways that make sense: "Foxes and cats happily run toward the bread
smeared with jelly."

Documenting the "correct," or "valid," combinations of elements and attributes is the job of the
DTD or schema. This is an important use of DTDs and schemas, in that they offer self-
documentation of XML data in a meaningful way (and one that you can remember when your co-
worker wants to know what your XML data means!).

4.1.2 Portability

In addition to helping viewers of your XML documents understand how and what data is being
represented, constraining XML aids other applications in understanding XML data. We touched on
this earlier; given any two arbitrary applications, the two cannot be assumed to have shared
resources. In other words, the program that created an XML document for one application may not
be available to the other application, hiding the logic by which data was generated in XML. This
leaves the second application with the task of determining what type of data is being received in a
transmitted XML document. Without any aid, the second application can only make assumptions
about what is meant, often incorrectly.

This is somewhat similar to the problems that the C language has had, and that Java has tried to
remedy. Because it defines a platform-independent programming language and relies on no native
code, Java has become the most portable programming language available today. This is because
there is a set of constraints put upon what Java can do, and these constraints are available to all
platforms; while implementation details for tasks such as garbage collection and thread
management are left to the specific platform, the interface to those tasks is always the same for the
application developer.

Constraining XML documents with DTDs or schemas provides an analogous portability in XML.
Consider our original example in this section: if the second application could access a resource that
described the allowable formats of the data it is receiving, it could process that data with an XML-
based set of utilities. Because the constraints of the document are not coded directly into the
application (either the first or the second), there is no application logic that would have to be
changed if the format of the document changed. The DTD or schema would change, but because
this is simply a textual constraint file, neither application would have to be modified to immediately
utilize the document structure changes. This allows XML data to be portable without having to
resort to application-specific code, similar to the native code we try to avoid in Java programs.

Whether it is for documentation purposes, portability across applications and systems, or just
because it allows a stricter checking of XML data, constraining XML is almost always a good idea.

Java and XML

 page 82

The only group whose view is not addressed here is the group that would say the performance hit
taken for validating XML is greater than the gain from more structured data. This is a sound point;
validating data does take additional processing time. However, many good publishing frameworks,
such as the Apache Cocoon project, allow the specification of whether to validate a document or
not. This means that development and testing can be performed with validation turned on. Then,
once a document's structure is sound and tested, the framework can be told to not validate the
document. Applications receiving this data can choose in a similar fashion if they want to validate
the document or not, as the document will still contain a reference to a DTD or schema for which it
is valid. In this way, the benefits of validation can be gained without additional processing time.
Consult the vendor of any XML framework you consider using to see if this feature is supported.

In production systems, validation provides value in business-to-business applications; validation
can ensure that data received from other applications, often ones you have no control over, is
correctly formatted. This can help avoid errors in your application resulting from erroneous data
input. For all of these purposes, DTDs and schemas are invaluable.

4.2 Document Type Definitions

As we have just discussed, an XML document is not very usable without an accompanying DTD.
Just as XML can effectively describe data, the DTD makes this data usable in a variety of ways by
many different programs by defining the structure of the data. In this section, we will look at the
constructs for a DTD. We will again use as an example the XML representation of a portion of the
table of contents for this book, and we will go through the process of constructing a DTD for the
XML table of contents document.

The DTD's job is to define how data must be formatted. It must define each allowed element in an
XML document, the allowed attributes, and possibly the acceptable attribute values for each
element, the nesting and occurrences of each element, and any external entities. In fact, DTDs can
specify quite a few other things about an XML document, but these basics are what we will focus
on. We will learn the constructs that a DTD offers by applying them to and constraining our
example XML file from Chapter 2. Because we will be referring to that file often throughout this
chapter, it is reprinted here in Example 4.3.

Example 4.3. Table of Contents XML File
<?xml version="1.0"?>
<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>
<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 <JavaXML:Title>Java and XML</JavaXML:Title>
 <JavaXML:Contents>

 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Introduction</JavaXML:Heading>
 <JavaXML:Topic subSections="7">What Is It?</JavaXML:Topic>
 <JavaXML:Topic subSections="3">How Do I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Why Should I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Creating XML</JavaXML:Heading>

Java and XML

 page 83

 <JavaXML:Topic subSections="0">An XML Document</JavaXML:Topic>
 <JavaXML:Topic subSections="2">The Header</JavaXML:Topic>
 <JavaXML:Topic subSections="6">The Content</JavaXML:Topic>
 <JavaXML:Topic subSections="1">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:Chapter focus="Java">
 <JavaXML:Heading>Parsing XML</JavaXML:Heading>
 <JavaXML:Topic subSections="3">Getting Prepared</JavaXML:Topic>
 <JavaXML:Topic subSections="3">SAX Readers</JavaXML:Topic>
 <JavaXML:Topic subSections="9">Content Handlers</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Error Handlers</JavaXML:Topic>
 <JavaXML:Topic subSections="0">
 A Better Way to Load a Parser
 </JavaXML:Topic>
 <JavaXML:Topic subSections="4">"Gotcha!"</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:SectionBreak/>

 <JavaXML:Chapter focus="Java">
 <JavaXML:Heading>Web Publishing Frameworks</JavaXML:Heading>
 <JavaXML:Topic subSections="4">Selecting a Framework</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Installation</JavaXML:Topic>
 <JavaXML:Topic subSections="3">
 Using a Publishing Framework
 </JavaXML:Topic>
 <JavaXML:Topic subSections="2">XSP</JavaXML:Topic>
 <JavaXML:Topic subSections="3">Cocoon 2.0 and Beyond</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 </JavaXML:Contents>

 <JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>

</JavaXML:Book>

4.2.1 Specifying Elements

Our first concern is specifying which elements are allowed within the document. We want content
authors using this DTD to be able to use elements such as JavaXML:Book and JavaXML:Contents,
but not to be able to use elements like JavaXML:foo and JavaXML:bar. When we decide on a set of
allowed elements, we begin to give a semantic meaning to our XML document; in other words, we
give it a context in which it is useful. First, then, we want to make a list of all allowed elements.
The easiest way to make this list is to scan our XML document and make a note of each element
being used. It also is a good idea to define the purpose of each tag. Although this is not something
defined in the DTD unless by a comment (not a bad idea!), it helps you, the DTD author, keep
things straight. Table 4.1 has a complete listing of the elements in the contents.xml document.

Table 4.1, Elements Allowed for Our XML Document
Element Name Purpose
JavaXML:Book Overall root element
JavaXML:Title Title of the book being documented
JavaXML:Contents Denotes the table of contents
JavaXML:Chapter A chapter within the book
JavaXML:Heading The heading (title) of a chapter

Java and XML

 page 84

JavaXML:Topic The main focus of a section within a chapter
JavaXML:SectionBreak A break between chapters denoting a new section of the book
JavaXML:Copyright The copyright for the book

With these elements defined, we can now specify each one in our DTD. This is done with the
following notation:

<!ELEMENT [Element Name] [Element Definition/Type]>

The [Element Name] is the actual element from our table. This name, as in the table, should include
the namespace prefix. Within the DTD, there is no idea of an element with a namespace prefix, and
then a mapping from a namespace URI to that prefix. Within a DTD, the element name is either the
name itself, when no namespace is used, or the namespace prefix and element name separated by a
colon.

The [Element Definition/Type] is the most useful portion of the DTD. It allows the data within
the element to be defined, giving a "type" to the element, whether it is pure data or a compound
type consisting of data and other elements. The most unrestrictive element type is the keyword ANY .
Using this keyword allows the element to contain textual data, nested elements, or any legal XML
combination of the two. Thus, we can now define all the elements in our XML document within our
DTD, albeit not in a very useful way. Example 4.4 shows the beginning of a DTD for our XML
document.

Example 4.4. A "Bare-Bones" DTD with Element Definitions
<!ELEMENT JavaXML:Book ANY>
<!ELEMENT JavaXML:Title ANY>
<!ELEMENT JavaXML:Contents ANY>
<!ELEMENT JavaXML:Chapter ANY>
<!ELEMENT JavaXML:Heading ANY>
<!ELEMENT JavaXML:Topic ANY>
<!ELEMENT JavaXML:SectionBreak ANY>
<!ELEMENT JavaXML:Copyright ANY>

Of course, this simple DTD, in addition to not handling either attributes or entity references, doesn't
help us much. Although it defines each allowed element, it says nothing about the types of those
elements, or the nesting allowed. It would still be simple to create a nonsensical XML document
that conformed to this DTD, as in Example 4.5.

Example 4.5. A Conformant XML Document That Is Useless
<?xml version="1.0"?>
<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>
<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<JavaXML:Topic>
 <JavaXML:Book>Here's my Book</JavaXML:Book>
 <JavaXML:Copyright>
 <JavaXML:Chapter>Chapter One</JavaXML:Chapter>
 </JavaXML:Copyright>
 <JavaXML:SectionBreak>Here's a Section</JavaXML:SectionBreak>
</JavaXML:Topic>

Java and XML

 page 85

Although this document fragment uses only elements allowed by the DTD, its structure is incorrect.
This is because the DTD gives no information about how elements are nested and which elements
can contain textual data.

4.2.1.1 Nesting elements

One of the keys to XML document structure is the nesting of tags. We can expand on our original
table of elements by adding the elements that can be nested within each structure. This will create
our element hierarchy for us, which we can then define within our DTD. Table 4.2 summarizes the
element hierarchy.

Table 4.2, Element Hierarchy
Element Name Allowed Nested Elements Purpose

JavaXML:Book
JavaXML:Title
JavaXML:Contents
JavaXML:Copyright

Overall root element

JavaXML:Title None Title of the book being documented

JavaXML:Contents JavaXML:Chapter
JavaXML:SectionBreak Denotes the table of contents

JavaXML:Chapter JavaXML:Heading
JavaXML:Topic A chapter within the book

JavaXML:Heading None The heading (title) of a chapter
JavaXML:Topic None The main focus of a section within a chapter

JavaXML:SectionBreak None A break between chapters denoting a new section of the
book

JavaXML:Copyright None The copyright for the book

With this table complete, we are now ready to define the allowed element nestings within our DTD.
The way to perform this is:

<!ELEMENT [Element Name] ([Nested Element][,Nested Element]...)>

In this case, a list of comma-separated elements within parentheses becomes the element type. The
order of the elements is also important; this ordering is enforced as a validity constraint within the
XML document. This adds additional constraints to our document, ensuring that a copyright
element always comes at the end of a book, or that a title element appears before content elements.
With this new notation, we can update our DTD to add the allowed nestings of elements, shown in
Example 4.6.

Example 4.6. DTD with Element Hierarchy
<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ELEMENT JavaXML:Title ANY>
<!ELEMENT JavaXML:Contents (JavaXML:Chapter, JavaXML:SectionBreak)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading, JavaXML:Topic)>
<!ELEMENT JavaXML:Heading ANY>
<!ELEMENT JavaXML:Topic ANY>
<!ELEMENT JavaXML:SectionBreak ANY>
<!ELEMENT JavaXML:Copyright ANY>

Although some elements, those that contain parsed data, are not changed, we have a hierarchy of
elements that adds a lot of meaning to our XML document constraints. The earlier example that

Java and XML

 page 86

made no sense because of element ordering and nesting would now be invalid. However, there are
still a lot of problems with allowing any type of data within the remaining elements.

4.2.1.2 Parsed data

The element type to use for textual data is #PCDATA . This keyword represents Parsed Character
Data, and can be used for elements that contain character data that we want our XML parser to
handle normally. Using the #PCDATA keyword limits the element to using only character data,
though; nested elements are not allowed. We will discuss situations like this a little later. For now,
we can modify our title, heading, and topic elements to reflect that textual data should be used
within these elements, as in Example 4.7.

Example 4.7. DTD with Element Hierarchy and Character Data Elements
<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents (JavaXML:Chapter, JavaXML:SectionBreak)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading, JavaXML:Topic)>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ELEMENT JavaXML:SectionBreak ANY>
<!ELEMENT JavaXML:Copyright ANY>

4.2.1.3 Empty elements

We are moving right along in our element definitions within DTDs. In addition to elements that
contain textual data and elements that contain other elements, we have one element,
JavaXML:SectionBreak, which should contain no data. In other words, the element should always
be empty. Although it would be legal to specify that this element contained parsed character data
and simply never insert any, this isn't a good use of our constraints. It is better to actually require
that the element always be empty, preventing accidental misuse. The keyword EMPTY allows this
constraint. This keyword does not need to appear within parentheses, as it denotes a type and cannot
be grouped with any other elements, which, as we will soon see, the parentheses allow. We can
update our section break element in our DTD now in Example 4.8.

Example 4.8. DTD with EMPTY Element Defined
<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents (JavaXML:Chapter, JavaXML:SectionBreak)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading, JavaXML:Topic)>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright ANY>

4.2.1.4 Entity references

The last element we have to define more rigidly is the JavaXML:Copyright element. As you recall,
this is actually a container for an entity reference to another file that should be included. When our
XML sees &OReillyCopyright;, it will attempt to look up the OReillyCopyright entity within
the DTD, which in our case should reference an external file. This external file should have a shared
copyright for all books being documented in XML. The DTD has the job of specifying where the

Java and XML

 page 87

external file is located, and how it should be accessed. In our case, we assume that the copyright file
is on the local filesystem, and we want to reference that file. Entity references are specified in
DTDs with the notation:

<!ENTITY [Entity Name] "[Replacement Characters/Identifier]">

You will notice that the notation indicated that a set of replacement characters could be specified,
allowing substitution similar to using an external file. In fact, this is how the "escape" characters
within XML are handled:

<!ENTITY & "&">
<!ENTITY < "<">
<!ENTITY > ">">
...

So if our copyright was a very short piece of text, we could use something like:

<!ENTITY &OReillyCopyright;
 "Copyright O'Reilly and Associates, 2000">

However, the copyright we expect to use is a longer piece of text, more appropriately stored in an
external file for easy modification. This also allows it to be used in multiple XML documents
without duplication of the data within each document's DTD. This requires us to specify a system-
level resource as the resolution for the entity reference. The notation for this type of reference is:

<!ENTITY [Entity Reference] SYSTEM "[URI]">

As in the case of parsing our XML document and our discussion on namespaces, the URI specified
can be either a local resource or a network-accessible resource. In our case, we want to use a file
located on an external server, so the entity would reference that file through a URL:

<!ENTITY OReillyCopyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">

With this reference set up, an XML parser could now handle the OReillyCopyright reference
within an XML document and properly resolve it within the parsing process. This section of the
XML had to be commented out in Chapter 3, for this very reason, and in the next chapter, we will
uncomment the reference and see how a validating parser handles the entity and uses a DTD to
resolve it.

Finally, we need to let our containing element know it should expect parsed character data:

<!ELEMENT JavaXML:Copyright (#PCDATA)>

4.2.2 Say It Again One More Time

The last major construct in DTD element specifications we will look at is the variety of
combinations of grouping, multiple occurrences, and choices within an element. In other words, the
case where element X can appear once, or element Y can occur, followed by element Z. These
structures are critical to DTDs; by default, an element can appear exactly once when specified
without any modifiers in the DTD:

<!ELEMENT MyElement (NestedElement, AnotherElement)>

Java and XML

 page 88

Here NestedElement must appear exactly once, and must always be followed by exactly one
AnotherElement. If this were not the structure of the corresponding XML document, the document
would be invalid. A special set of modifiers must be applied to elements to change this default
constraining behavior.

4.2.2.1 Zero, one, or more

The most common modifier applied to an element is a recurrence operator. These operators allow
an element to appear zero or more times, one or more times, or optionally not at all, in addition to
the default, which requires an element to appear exactly one time. Table 4.3 lists each of the
recurrence operators and what recurrence they indicate.

Table 4.3, Recurrence Operators
Operator Description
[Default] Must appear exactly one time
? Must appear once or not at all
+ Must appear at least once (1 ... N times)
* May appear any number of times, or not at all (0 ... N times)

Each operator can be appended to the end of an element name. In our previous example, to allow
NestedElement to appear one or more times, and then require that AnotherElement appear either
once or not at all, we would use the following within the DTD:

<!ELEMENT MyElement (NestedElement+, AnotherElement?)>

This would make the following XML perfectly valid:

<MyElement>
 <NestedElement>One</NestedElement>
 <NestedElement>Two</NestedElement>
</MyElement>

In the DTD we have been building, we have a similar situation within the JavaXML:Chapter
element. We would like to allow a chapter heading (JavaXML:Heading) to either appear once, or
optionally be omitted, and to allow one or more JavaXML:Topic elements to appear. We can now
make this change using our recurrence operators:

<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>

This easy change makes our XML chapter representation much more realistic. We also need to
make a change to the JavaXML:Contents element definition. A chapter or set of chapters should
appear, and then possibly a section break. The section break must be optional, as a book may only
contain chapters. We can define the recurrence of chapters and the section break elements like this:

<!ELEMENT JavaXML:Contents (JavaXML:Chapter+,JavaXML:SectionBreak?)>

However, we still have not let the DTD know that more chapters can appear after the
JavaXML:SectionBreak element. In fact, if we look at the structure of the XML we would like to
allow this structure to occur multiple times. Chapters followed by a section break can be followed
by more chapters followed by another section break! We need a concept of grouping within our
element.

Java and XML

 page 89

4.2.2.2 Grouping

Grouping allows us to solve problems like the element nesting within JavaXML:Contents. Often,
recurrence occurs for a block or group of elements, rather than a single element. For this reason, any
of the recurrence operators can be applied to a group of elements. Enclosing a set of elements
within parentheses signifies the group. If you are starting to remember your old LISP classes in
college, don't worry; it stays fairly simple in our examples, and the parentheses don't get out of
hand. Nested parentheses are, of course, acceptable. So to group a set of elements the following
notation would be used:

<!ELEMENT GroupingExample ((Group1El1, Group1El2),
 (Group2El1, Group2El2))>

An operator can then be applied to the group, rather than to a single element. In the scenario we are
currently looking at, we need to apply the operator allowing multiple occurrences to the group
containing our chapter and section break element. This would then allow repetition of the entire
construct:

<!ELEMENT JavaXML:Contents (JavaXML:Chapter+,JavaXML:SectionBreak?)+>

This now accurately allows the various combinations: a set of chapters followed by one section
break, and then the structure repeating multiple times or optionally not repeating at all. It also
allows the case where only chapters are included, without any section breaks. However, this is not
particularly clear from the DTD. What would be better is to specify that one or more chapters could
occur, or this structure could occur. Although this is not going to result in different behavior, it
certainly would make more sense to readers other than the DTD author. To accomplish this, though,
we need to introduce an "or" function.

4.2.2.3 Either or

DTDs do conveniently offer an "or" function, signified by the pipe operator. This allows one thing
or the other to occur, and the pipe is often used in conjunction with groupings. One common,
although not necessarily good, use of the "or" operator is to allow a certain element or elements to
appear within an enclosing element, or for textual data to appear:

<!ELEMENT AggregateElement (#PCDATA|(Element1, Element2))>

For this DTD, both of the following XML document fragments would be valid:

<AggregateElement>
 <Element1>One</Element1>
 <Element2>Two</Element2>
</AggregateElement>

<AggregateElement>
 Textual Data
</AggregateElement>

Using this type of constraint is discouraged, though, as the meaning of the enclosing element
becomes obscure. An element should typically include textual, parsed data, or other elements; it
should not allow both.

In our document, we want to show a clearer representation of our JavaXML:Contents element. We
can now do that:

Java and XML

 page 90

<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+) |
 (JavaXML:Chapter+,JavaXML:SectionBreak?)+)>

It is now clear that either multiple chapters may appear, or that chapters followed by a section break
may appear. This greatly adds to the documentation that our DTD provides, as well as maintaining
the proper constraints.

We have now completely specified and constrained our XML elements. The DTD shown in
Example 4.9 should function in regard to our elements, and only attribute definitions are left, which
we will look at next.

Example 4.9. DTD with Elements Specified
<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY OReillyCopyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">

4.2.3 Defining Attributes

With element specifications thoroughly covered, we can move on to defining attributes. Because
there are not complicated nesting scenarios with attributes, defining them is somewhat simpler than
dealing with element specifications. In addition, whether the presence of an attribute is required is
specified by a keyword, so no recurrence operators are needed. Attribute definitions are in the
following form:

<!ATTLIST [Enclosing Element]
 [Attribute Name] [type] [Modifer]
 ...
>

The first two parameters, the element name and the attribute name, are simple to define. For any
element, the ATTLIST construct allows multiple attributes to be defined within the same structure.
We can add this portion of the attribute definition for the attributes we are using within our XML
document, creating placeholders for the rest of the definition. Best practice is to include the attribute
definitions right after the element specification, again in the spirit of a DTD being as self-
documenting as possible (see Example 4.10).

Example 4.10. DTD with Elements and Attribute Placeholders
<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ATTLIST JavaXML:Book
 xmlns:JavaXML [type] [Modifier]
>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>

Java and XML

 page 91

<!ATTLIST JavaXML:Chapter
 focus [type] [Modifier]
 section [type] [Modifier]
>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections [type] [Modifier]
>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY copyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">

We now need to define the types allowed for each attribute.

4.2.3.1 Attribute types

For many attributes, the value can be any textual data. This is the simplest type of attribute value,
but also the least constrained. This type is signified by the keyword CDATA , representing Character
Data. And yes, this is the same CDATA construct used within XML documents themselves to
represent "escaped" character data. This is the type generally used when an attribute can take on any
value and may represent a comment or additional information about an element. We will soon see
that a better solution is to define a set of values that are allowed for an attribute to take on. In our
document, the xmlns attribute should be character data. You may wonder why we need to define
this as an allowed attribute. Although the xmlns is an XML keyword that signifies a namespace
declaration, it is still an attribute that must be validated. Therefore, we include it to ensure our
document validity. The subSections attribute of JavaXML:Topic should be character data, as well:

<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA [Modifier]
>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus [type] [Modifier]
>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections CDATA [Modifier]
>

The next type of attribute, and one of the most commonly used, is an enumeration. This type allows
any of the specified values to be used, but any other value for the attribute results in an invalid
document. This is useful when the set of values for an attribute can be determined at authoring time,
as it tightly constrains the XML document. This is the type our focus attribute should take on, as
the only allowed foci for the book are "Java" and "XML." The allowed values are set within
parenthetical notation, separated by the "or" operator, similar to the way element nestings can be
specified:

<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus (XML|Java) [Modifier]
 section CDATA [Modifier]
>

Java and XML

 page 92

<!ELEMENT JavaXML:Heading (#PCDATA)>

4.2.3.2 To be or not to be

The final question that should be answered in defining an attribute is whether the attribute is
required within an element. This is specified with one of three possible keywords: #IMPLIED ,
#REQUIRED, or #FIXED. An implied attribute can remain unspecified. We can make this
modification to the subSections attribute, as it is not required for the document to remain valid:

<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections CDATA #IMPLIED
>

For our xmlns attribute, we want to ensure that a content author always specifies the namespace for
the book. Otherwise, our namespace prefixes become useless. In this case, we want to use the
#REQUIRED keyword. If this attribute were not included within the JavaXML:Book element, the
document would be invalid, as it doesn't specify a required attribute:

<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA #REQUIRED
>

The final keyword, #FIXED, is not frequently used for applications. Most common in backend
systems, this keyword states that the user can never change the value of this attribute. The format of
this type of notation is:

<!ATTLIST [Element Name]
 [Attribute Name] #FIXED [Fixed Value]
>

Because of its irrelevance in highly dynamic applications (an attribute whose value cannot change
does not help us much in representing dynamic data!), we will not spend more time on it.

We have still not addressed the focus attribute. We have enumerated the possible values it can take
on, but because the book is primarily focused on Java, we would like to allow the content author not
to have to explicitly define the attribute as "Java" in chapters where that is the focus. In a book with
twenty or thirty chapters, this becomes tedious. Imagine a listing of a science library's books where
each book had to notate that its primary subject was "science"! This data duplication is not very
efficient, so requiring the attribute is not a great solution. However, using the #IMPLIED keyword
does not result in a value being assigned to the attribute, which is precisely what we want to happen
if no value is specified. What we do want is to provide a default value; if no attribute value is given,
we want the default to be passed on to the XML parser. Fortunately, this is an allowed construct
within XML DTDs. Instead of one of the keyword modifiers, a default value can be given. This
value should be in quotes, and if an enumeration is the type for the attribute, the default must be one
of the enumerated values. We can now use this to define our focus attribute:

<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus (XML|Java) "Java"
>

Java and XML

 page 93

With this attribute definition, we have completed our DTD! Although the syntax may have seemed
awkward and a bit clumsy, hopefully you were able to easily follow along and understand how
elements and attributes, as well as entities, are defined within DTDs. We certainly have not
thoroughly covered DTDs, as this is primarily a book on Java and XML, not just XML; however,
you should feel comfortable with our sample DTD and be able to create simple DTDs for your own
XML documents. Before we move on to schemas, let's take a final look at our complete DTD in
Example 4.11.

Example 4.11. Completed DTD
<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus (XML|Java) "Java"
>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections CDATA #IMPLIED
>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY OReillyCopyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">

In comparing this XML document to its DTD, you should start to notice some unnecessary
complexities in the DTD's structure. The DTD that defines the organization of this XML file (and
other XML files like it) has a structure completely unlike the XML file itself. You will also see that
the DTD's structure is different from a schema, an XSL stylesheet, and nearly every other XML-
related document. Unfortunately, XML DTDs were developed as part of the XML 1.0 specification,
and some design decisions made in that specification still cause XML users and developers grief.
Much of the basis for XML DTDs came from the way DTDs are used in SGML, a much older
specification. However, the structure of an SGML DTD is not necessarily appropriate or in the
spirit of the XML specification. The result is that DTDs are not one of the best design decisions
made in the formation of the XML specification. Fortunately, XML Schema looks to correct these
structural differences, making constraining XML more of an XML-centric process, rather than a
break from XML format. We will discuss XML Schema next. Although XML Schema is likely to
replace DTDs, the process will be a slow and cautious one, as many applications have already
embraced XML in production systems, and those systems use documents constrained by DTDs. For
this reason, understanding DTDs is important, even if they will be phased out of heavy use.

4.2.4 Things Left Out

Strangely enough, there is a need for a section on things left out of a DTD. Although all of the
elements within an XML document must be specified, and their attributes defined, processing
instructions do not have to be part of a DTD. In fact, there is no possible way to specify the PIs and
XML declaration found at the top of XML files. The DTD begins with the first occurrence of the
first element within an XML file. This probably seems quite natural to you; why specify that an

Java and XML

 page 94

XML document may have this processing instruction, but not that one? The rationale behind this
decision is portability.

There are some good arguments for allowing the specification of PIs within a DTD. For example, it
is plausible that a content author might want to make sure his XML document is always
transformed, and require an xml-stylesheet PI. But which type of stylesheet is required? Well,
this can be defined too. And what type of engine should be used for transformations? Cocoon?
James Clark's Servlet? Another framework? Again, these items can be defined. However, by the
time all of these details have been specified and constrained, the document has lost all its
portability! It can only be used for one specific purpose on one specific framework, and can no
longer be transformed iteratively and easily moved from one platform or framework or application
to another. For this reason, PIs and initial XML declarations are left unconstrained within DTDs.
We only have to consider the elements and attributes within the document, beginning with the root
element.

4.3 XML Schema

XML Schema is a new working draft at the W3C that seeks to remedy many of the problems and
limitations of DTDs. In addition to handling more accurate representations of XML structure
constraints, XML Schema also seeks to provide an XML styling to the process of constraining data.
Schemas are actually XML documents that are both well-formed and valid. This allows parsers and
other XML-aware applications to handle XML Schema documents in a fashion similar to other
XML documents, as opposed to employing special techniques as are needed for handling DTD
documents.

Because XML Schema is both a new and young specification, as well as still incomplete, we will
only lightly treat it here. In addition, details of the implementation of XML Schema are subject to
change; if you have problems with some of the examples, you may want to consult the latest version
of the XML Schema proposal at http://www.w3.org/TR/xmlschema-1/
andhttp://www.w3.org/TR/xmlschema-2/. You should also be aware that many XML parsers do not
support XML Schema, or support only portions of the specification. You should check with your
vendor to verify the level of XML Schema support provided by your XML parser.

There is also a difference between a valid document and a schema-valid document. Because XML
Schema is not part of the XML 1.0 specification, a document that conforms to a given schema is not
said to be valid. Only an XML document conforming to a referenced DTD through a DOCTYPE
declaration is considered a valid XML document. This has caused quite a bit of confusion in the
XML community as to how to handle schema validation. In addition to the difference in terms of
validity, an XML 1.0 parser or application does not have to perform schema validation, again
because XML Schema is not in the 1.0 specification of XML. This means that even if your
document has a schema reference, the document may not be validated against that schema,
regardless of the parser's level of schema support. For these reasons, you should take care to
determine when your parser will and will not validate, and specifically how it handles schema
validation. For clarity, we will continue to use validity as the single term, representing either
schema or DTD validity. It will be up to you to see whether a DOCTYPE declaration or a schema
reference exists; in addition, the meaning of the word will be clear from the context in which it is
used. Any possible ambiguities will be expressly defined and handled in the appropriate portion of
the text.

The most significant aspect of creating a schema for your XML document is that you will actually
be creating another XML document. Unlike DTDs, which use an entirely different format for
specification of elements and definition of attributes, a schema is simply an XML document. For

Java and XML

 page 95

this reason, the syntax will be largely the same as we have already discussed in Chapter 2.
Interestingly enough, XML Schema itself is constrained by a DTD. If this seems a little strange to
you, consider that until XML Schema, DTDs were the only means of creating document constraints.
For XML Schema to enforce validity, it must use a mechanism other than itself to define its own
constraints. This other mechanism, then, must be a DTD. However, that initial DTD allows the
creating of a schema, which allows all other XML documents to completely disregard DTDs. This
rather odd flow of logic is not unusual in the world of specifications and evolving versions; new
versions must be shaped by old versions.

4.3.1 The Schema Namespace

You should expect XML Schema documents to begin with a standard XML declaration, and then to
refer to the XML Schema namespace. This is exactly correct. In addition, there are standards for the
naming of the root element. The accepted practice is to always use schema as the root element of
XML Schema documents, and we will not deviate from that standard here. When we specify the
root element, we also need to make some namespace definitions, much as we did in our original
XML document. The first thing needed is the default namespace declaration:

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema" >

We briefly discussed this in Chapter 2; omitting an identifier after the xmlns attribute results in a
default namespace being applied to the document. In our original XML document, our namespace
definition was specifically for the JavaXML namespace:

<JavaXML:Book xmlns:JavaXML="http://www.w3.org/1999/XMLSchema" >

This told the XML parser that all elements prefixed with JavaXML belonged to that namespace,
associated with the given URL. In our XML document, that was all elements, as all elements had
this namespace prefix. However, we could also have had additional elements within the document
that were not prefixed with a namespace. Elements without a prefix don't simply disappear; they too
must be assigned to a namespace. These would be considered part of the default namespace, which
is not defined in the document. It could be defined with an additional namespace declaration in our
root element:

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml"
 xmlns="http://www.someOtherUrl.com"
>

This would result in any element not prefixed with JavaXML or another namespace prefix being
associated with the default namespace, identified by the URL http://www.someOtherUrl.com. So
in the following document fragment, Book, Contents, and Title are associated with the JavaXML
namespace, while element1 and element2 are associated with the default namespace:

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml"
 xmlns="http://www.someOtherUrl.com"
>
 <JavaXML:Title>My Title</JavaXML:Title>
 <JavaXML:Contents>
 <element1>
 <element2 />
 </element1>
 </JavaXML:Contents>

</JavaXML:Book>

Java and XML

 page 96

Because our schema will be dealing with another document, all elements specifically related to
XML Schema constructs should be part of the default namespace. For this reason, we included the
default namespace definition. However, these element constructs are acting upon the namespace
within the constrained XML document. In other words, although XML Schema constructs are part
of the XML Schema namespace, they are used to constrain elements in other namespaces, namely
those of the XML document or documents they operate upon. In our continuing example, that
would be the JavaXML namespace. So we need to add this additional namespace definition to our
schema element:

<schema xmlns="http://www.w3.org/1999/XMLSchema"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml"
>

Finally, we need to let our schema know that the target of its constraints is on this second
namespace. To do that, the targetNamespace attribute is specified, which does exactly what it
implies:

<schema targetNamespace="http://www.oreilly.com/catalog/javaxml"
 xmlns="http://www.w3.org/1999/XMLSchema"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml"
>

So we end up with two namespaces defined (the default and JavaXML), and the target of the
constraints set forth in the document being associated with the latter namespace (JavaXML). And
with our root element defined, we are ready to begin setting constraints on this namespace. Also
keep in mind that it is possible, in the world of HTTP and web servers, that the URL referred to in a
namespace might actually be a valid URL; in our example, you could type
http://www.oreilly.com/catalog/javaxml into your web browser and get an HTML response.
However, the document returned is not being used here; in fact, the URL itself does not have to be
accessible, but instead is only used as an association for the declared namespace. This has caused
quite a bit of confusion, so don't get tripped up by what the URI specified is; instead, focus on the
namespace being declared and how that namespace is used in the document.

A short note is in order before continuing. This may seem a tough section to read through; if so,
don't feel as if you aren't up to the task. The concepts involved in XML Schema are not trivial, and
the specification is continuing to evolve. Although many content authors will use XML Schema,
you are now learning to understand it; this subtle but important difference will result in more
intelligent design choices and better applications. Of particular complexity is how DTDs and
namespaces are used within schemas; happily, many of the constructs for constraining XML are
more straightforward. So take heart, read slowly and with caffeine nearby, and continue on! It will
be worth the time and effort in the long run.

4.3.2 Specifying Elements

We have come a long way since you first saw this heading in the section on DTDs. In a schema,
specifying an element will feel quite a bit more logical. It also closely mirrors the structure, if not
the syntax, of a Java declaration, with some additional options that can be specified. The element
element is used for these specifications:

<element name="[Name of Element]"
 type="[Type of Element]"
 [Options...]
>

Java and XML

 page 97

Here, [Name of Element] is the name of the element in the XML document being constrained.
However, unlike DTDs, the namespace of the element should not prefix the element. Remember our
discussion of the target namespace? Because we have said that our target namespace is JavaXML, all
element specifications, as well as any user-defined types we create, are applied and assigned to that
target namespace. This also aids in creating a cleaner schema, as the elements are defined and then
the namespace applied. [Type of Element] is either a predefined XML Schema data type or a user-
defined data type. Table 4.4 lists the data types supported by the current version of XML Schema.

Table 4.4, XML Schema Data Types
Type Subtypes Purpose

string NMTOKEN,
language Character strings

boolean N/A Binary valued logic (true or false)
float N/A 32-bit floating point type
double N/A 64-bit floating point type
decimal integer Standard decimal notation, positive and negative

timeInstant N/A A combination of date and time representing one single instant of
time

timeDuration N/A A duration of time
recurringInstant date, time A specific time that recurs over a timeDuration
binary N/A Binary data
uri enumeration A Uniform Resource Indicator (URI)

Although we will only use a few of these in our examples, you can see that XML Schema provides
a much more comprehensive set of data types than DTDs.

4.3.2.1 Start at the bottom

Complex data types, defined by the user, are also possible within schemas. These types consist of
combinations of elements. For example, we can define a Book type as being made up of a Title
element, a Contents element, and a Copyright element (realize that we have stopped using the
namespace when referring to elements, as XML Schema sees only the element name, and later
applies the namespace). These elements can in turn be user-defined types, made up of more
elements. What results is a sort of hierarchical pyramid; at the base of this pyramid are elements
with basic XML Schema data types. Built on this base are layers of user-defined types, until the
root element is finally defined at the top of the pyramid.

Because of this structure, it is generally wise to start with the elements that comprise the base of the
hierarchy; in other words, those elements that can be defined as standard XML Schema data types.
This is a bit different than in DTDs, where the order of the elements within the XML document is
typically followed, but it does result in an easier schema creation process. Looking at our XML
document, we can determine which elements are "primitive" data types, shown in Table 4.5.

Table 4.5, "Primitive" Elements
Element Name Type

Title

string

Heading string
Topic string

Java and XML

 page 98

With these elements determined, we can add each to our schema (see Example 4.12). For clarity,
the example schema we build will omit the XML declaration and DOCTYPE declaration; although
these will be a part of the final schema, they are left out to avoid clutter until the end of our schema
creation.

Example 4.12. XML Schema with "Primitive" Elements
<schema targetNamespace="http://www.oreilly.com/catalog/javaxml"
 xmlns="http://www.w3.org/1999/XMLSchema"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml"
>

 <element name="Title" type="string" />
 <element name="Heading" type="string" />
 <element name="Topic" type="string" />

</schema>

If adding those elements seemed a little too easy to believe, great! It is that easy. By defining these
"base" or "primitive" elements, we can now go on to construct our more complex elements.

4.3.2.2 User-defined data types

Similar to the way we started with our most atomic elements, we want to begin constructing our
more complex elements at the bottom of the hierarchical pyramid of our document. This almost
always means starting with the most nested level of elements and working outwards until the root
element is reached. The most deeply nested elements in our example are Heading and Topic. Since
we have already specified these elements as primitives, we can move outward a level, reaching the
Chapter element. This element will be our first user-defined element, and it should be specified as
being made up of one Heading element and one or more Topic elements. The complexType
element within XML Schema allows us to define complex data types:

<complexType name="[Name of Type" >
 <[Element Specification]>
 <[Element Specification]>
 ...
</complexType>

By defining this name type, we can then assign the new type to our element. For our Chapter
element, we can now create a ChapterType data type:

<complexType name="ChapterType" >
 ...
</complexType>

This creates the type, and of course makes that type a part of our target namespace, JavaXML. So to
assign the type to our Chapter element, we can use the following element specification:

<element name="Chapter" type="JavaXML:ChapterType" />

Now whatever element structure we specify within the ChapterType element type will determine
the constraints on the Chapter element. Also notice that the type of element referred to is
JavaXML:ChapterType, not simply ChapterType. When the type was created, it was created within
the target namespace, JavaXML. But the elements we have been using within the schema (element,
complexType, etc.) are not prefixed with a namespace, as they belong to the default namespace,
which is the XML Schema namespace. So if we tried to specify the type as simply ChapterType,

Java and XML

 page 99

the parser would search the default namespace (that of XML Schema) for the type, not find the
type, and raise an exception. To tell our parser where to find the type definition, we must give it the
correct namespace, which in this case is JavaXML.

With the type body complete, we now need to fill in the details. For this element, we need to define
within the schema the two elements that should be nested within this type. Because we have already
specified the two elements that are nested (the Heading and Topic element primitives), we must
refer to those element specifications from within our new type:

<complexType name="ChapterType" >
 <element ref="JavaXML:Heading" />
 <element ref="JavaXML:Topic" />
</complexType>

The ref attribute tells the XML parser that the definition for the element named is in another part of
the schema. As in the case of specifying a type, we must tell the parser which namespace the
elements are specified within, which is usually the target namespace. However, this is a bit
redundant and verbose. We define the two elements as primitives, and then refer to them, resulting
in four lines within our schema. But these elements are not used anywhere else within our
document, so wouldn't it be clearer if we could define the element within the type? This would
avoid having to refer to the element, causing readers of your schema to have to scan through the rest
of the schema to find an element that is only used here. In fact, this is exactly what you should do
here. Element specifications can be nested within user-defined types, so we can refine our schema
to be more self-documenting:

<element name="Title" type="string" />
<element name="Chapter" type="JavaXML:ChapterType" />

<complexType name="ChapterType">
 <element name="Heading" type="string" />
 <element name="Topic" type="string" />
</complexType>

In addition to removing needless lines of XML, we have removed extra references to the JavaXML
namespace, which may help reduce confusion for newer XML authors when reading through your
schema. With our new knowledge of user-defined types, we can define the rest of our XML
documents' elements, as in Example 4.13.

Example 4.13. XML Schema with All Elements Defined
<schema targetNamespace="http://www.oreilly.com/catalog/javaxml"
 xmlns="http://www.w3.org/1999/XMLSchema"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml"
>

 <element name="Book" type="JavaXML:BookType" />

 <complexType name="BookType">
 <element name="Title" type="string" />
 <element name="Contents" type="JavaXML:ContentsType" />
 <element name="Copyright" type="string" />
 </complexType>

 <complexType name="ContentsType">
 <element name="Chapter" type="JavaXML:ChapterType" />
 <element name="SectionBreak" type="string" />
 </complexType>

Java and XML

 page 100

 <complexType name="ChapterType">
 <element name="Heading" type="string" />
 <element name="Topic" type="string" />
 </complexType>

</schema>

This neatly and cleanly results in every XML element used being defined, as well as having a very
readable schema. However, there are still a few problems.

4.3.2.3 Implicit types and empty content

So far we have used only named types, often called explicit types. An explicit type is one in which a
name is given to the type, and the element that uses the type is generally in a different section of the
file. This is very object-oriented, as the same explicit type could be used as the type for several
different elements. However, there may be times when this level of structure is not needed; in other
words, a type is so specific to the element it is assigned to that naming the type is not at all useful.
In our example, we could consolidate the definition of the Chapter element by defining its type
within its element definition. This is done using an implicit type , sometimes called a nameless type
:

<complexType name="ContentsType" >
 <element name="Chapter">
 <complexType>
 <element name="Heading" type="string" />
 <element name="Topic" type="string" />
 </complexType>
 </element>
 <element name="SectionBreak" type="string" />
</complexType>

This implicit type allows even more "streamlining" of a schema. However, no other element can be
of the same type as defined within an implicit type, unless another implicit type is defined. In other
words, only use implicit types when you are positive that the type will never be needed by multiple
elements.

In addition to using implicit types for user-defined data types, they can also be used to specify
information about the elements they are defining. For example, we currently have defined the type
of SectionBreak as a string. This isn't really accurate, as we want to make the element an empty
element. We can define the content of the element as empty by using an implicit type:

<element name="SectionBreak" >
 <complexType content="empty" />
</element>

This may seem a little strange; why can't we simply assign an "empty" data type to the element?
Did the XML Schema authors leave this out? Actually, just the reverse; earlier versions of the XML
Schema specification defined an empty data type, but it has since been removed. This is to require
the definition of an element type. To see why, consider that most elements that are empty may have
attributes that are used to specify data:

<comment text="Here is a comment" />

Java and XML

 page 101

In these cases, specifying the type as empty would not allow an intuitive way to define what
attributes are allowed for the empty element. However, by using a type for the element, this can be
defined:

<element name="img" >
 <complexType content="empty">
 <attribute name="src" type="string" />
 </complexType>
</element>

We will talk more about how these attributes are defined in the next section. For now, though, you
should see that using implicit types can help us design our schema more intuitively, as well as allow
the definition of more element properties, such as an element being empty.

4.3.2.4 How many?

The last item left to specify in our elements is their recurrence (or lack thereof!). A schema behaves
similarly to a DTD in that for an element specification with no modifiers, the element must appear
exactly one time. This is not always the desired case, as we found out in DTDs. Our book may have
many chapters, may have no section break, and might have some chapters with headings and some
without. We need to be able to specify these details in our schema. Like DTDs, there is a
mechanism to do this, but unlike DTDs, an intuitive set of attributes is provided to specify these
details, instead of the more cryptic recurrence operators in DTDs (?, +, *). In XML Schema, the
attributes minOccurs and maxOccurs are used within an element specification:

<element name="[Element Name]"
 type="[Element Type]"
 minOccurs="[Minimum times allowed to occur]"
 maxOccurs="[Maximum times allowed to occur]"
>

Both these attributes, when unspecified, default to the value "1", resulting in the single required
element per definition already discussed. If a maximum finite value is not determined, a wildcard
character can be used to indicate an occurrence an unlimited number of times. These constructs
allow easy additions to our schema setting the recurrence constraints on our defined elements, as
shown in Example 4.14.

Example 4.14. XML Schema Complete with Element Specifications
<schema targetNamespace="http://www.oreilly.com/catalog/javaxml"
 xmlns="http://www.w3.org/1999/XMLSchema"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml">

 <element name="Book" type="JavaXML:BookType" />

 <complexType name="BookType">
 <element name="Title" type="string" />
 <element name="Contents" type="JavaXML:ContentsType" />
 <element name="Copyright" type="string" />
 </complexType>

 <complexType name="ContentsType">
 <element name="Chapter" maxOccurs="*">
 <complexType>
 <element name="Heading" type="string" minOccurs="0" />
 <element name="Topic" type="string" maxOccurs="*" />
 </complexType>
 </element>

Java and XML

 page 102

 <element name="SectionBreak" minOccurs="0" maxOccurs="*">
 <complexType content="empty" />
 </element>
 </complexType>

</schema>

Looking at this, we have defined a single root element, Book, of type BookType. This element has
three immediate child elements: Title, Contents, and Copyright. Of these, two are primitive
XML strings, and the third (Contents) is another user-defined type, ContentsType. This element
type, in turn, has a child element Chapter, which can appear one or more times, and a child element
SectionBreak, which doesn't have to appear at all. The Chapter element has two nested elements,
Heading and Topic. Each is a primitive XML string, and while Heading can appear zero or one
times, Topic can appear one or more times. The SectionBreak element can appear zero or more
times, and is an empty element. Our schema now has all the elements specified and detailed; all that
is left is to add the attributes to the schema.

4.3.3 Defining Attributes

The process of defining attributes is much simpler than that of specifying elements, primarily
because many of the considerations within elements are not present when determining what
attributes can be used for an element. By default, an attribute does not have to appear, and nesting
concerns are not relevant, as attributes are not nested within other attributes. Although there are
many advanced constructs that can be used to handle attribute constraints, we only look at some of
the basic ones we need to constrain our XML document. The XML Schema specification should be
consulted for the more advanced features that XML Schema offers in regards to attribute
definitions.

4.3.3.1 What's left out

There are some important omissions when constraining attributes for an XML document; all of
these relate to the various namespace definitions in the referring document. An XML document, as
discussed, must make several namespace definitions to refer to a schema, plus those definitions that
apply to its own content. These are all accomplished through the xmlns:[Namespace] attribute in
the root document element. None of these attributes should be defined in a schema. Trying to define
every allowed namespace would result in a very confusing schema. Additionally, the location of the
namespace declaration does not have to be fixed; as long as the namespace is available to all
elements within it, the declaration can be relocated. For these reasons, the XML Schema group
allows the omission of all namespace attribute definitions within a schema.

If you remember our section on DTDs, this is quite a change. For our DTD, we had to make an
attribute definition as follows to allow the namespace declarations we made in our XML document:

<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA #REQUIRED
>

To use a DTD, we didn't have to do anything but specify the namespace in our XML document, as
DTDs don't have any "knowledge" of XML namespaces. This is a bit more complicated in XML
Schema.

If you remember from our introductory discussion, there are actually three different attributes that
are used to specify a schema for a document. These are repeated here to refresh your memory:

Java and XML

 page 103

<addressBook xmlns:xsi="http://www.w3.org/1999/XMLSchema/instance"
 xmlns="http://www.oreilly.com/catalog/javaxml"
 xsi:schemaLocation="http://www.oreilly.com/catalog/javaxml/
 mySchema.xsd"
>

If you were going to write a schema based on your knowledge of DTDs, you would probably get
ready to declare that the xmlns:xsi , xmlns , and xsi:schemaLocation attributes are all legal
attributes for this root element. However, these declarations can be omitted, as XML Schema is
namespace-aware, and is "smart" enough to not require that such declarations be defined in the
XML document being constrained.

4.3.3.2 The definition

The attribute definition is accomplished through XML Schema's attribute element (confusing,
isn't it?). In other words, similar to the element element, XML Schema defines an attribute
element by which to specify which attributes are allowed for the enclosing element or type
definition. The format of these is:

<attribute name="[Name of attribute]"
 type="[Type of Attribute]"
 [Attribute Options]
>

This should look very similar to how elements are defined, and in fact is almost identical. The same
data types are available for attributes as are for elements. This means we can very easily add the
attribute definitions to our schema. For any element with a type defined, we add the needed
attributes within the type definition. For elements that do not currently have a type defined, we must
add one. This is to let our schema know that the attributes we are declaring "belong" to the
enclosing element type. In these new element types, we can specify the content type with the
content attribute of the contentType element, preserving the original constraints, and add the
attribute definitions. These changes result in the schema shown in Example 4.15.

Example 4.15. XML Schema with Attribute Definitions
<schema targetNamespace="http://www.oreilly.com/catalog/javaxml"
 xmlns="http://www.w3.org/1999/XMLSchema"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml">

 <element name="Book" type="JavaXML:BookType" />

 <complexType name="BookType">
 <element name="Title" type="string" />
 <element name="Contents" type="JavaXML:ContentsType" />
 <element name="Copyright" type="string" />
 </complexType>

 <complexType name="ContentsType">
 <element name="Chapter" maxOccurs="*">
 <complexType>
 <element name="Heading" type="string" minOccurs="0" />
 <element name="Topic" maxOccurs="*">
 <complexType content="string">
 <attribute name="subSections" type="integer" />
 </complexType>
 </element>
 <attribute name="focus" type="string" />
 </complexType>
 </element>

Java and XML

 page 104

 <element name="SectionBreak" minOccurs="0" maxOccurs="*">
 <complexType content="empty" />
 </element>
 </complexType>

</schema>

You can see in the Topic element that we must create a type for the purpose of defining the
subSections attribute. Within this type, we use the content attribute to require that the element's
content be of type integer. This is the same functionality we used earlier to assign SectionBreak
a type of empty to ensure it remained an empty element. The other attributes added required less
modification, as types already existed for these more complex elements.

4.3.3.3 Required attributes, default values, and enumerations

All that is left to complete our schema is a set of odds and ends in our attribute definitions.
Remember that we used the keywords #IMPLIED, #FIXED, and #REQUIRED to specify if attributes
had to appear and whether they were assigned default values if not included in an XML document.
As in the case of the recurrence operators on elements, XML Schema has refined how these
constraints are notated, making them clearer. For requiring an attribute, the same minOccurs
attribute used for element specifications can be used, and assigning a value of "1" effectively makes
an attribute mandatory. In our example, if we wanted to ensure that an attribute called section is
required for the Chapter element, we could add a line as follows:

<attribute name="section" type="string" minOccurs="1" />

Although we mentioned that the default for elements was for any defined element to occur a single
time (minOccurs would default to 1), attributes are not required, and minOccurs defaults to when
defining an attribute.

The notion of a fixed value for attributes (#FIXED) is not employed in XML Schema; as we
discussed earlier, it is not used commonly and is not an intuitive construct. However, specifying a
default value for an attribute is a useful construct, and is handled quite simply by the default
attribute of an attribute definition. For example, we determined that the default value for the focus
attribute of the Chapter element should be "Java":

<attribute name="focus" type="string" default="Java" />

Hopefully, you are starting to love the simplicity and elegance of XML Schema! The intuitive
choices of element and attribute names go a long way towards making XML significantly easier to
constrain than with the mechanism that DTDs provided. To demonstrate this even further, let's look
at the final option we want to use: enumerations.

For our focus attribute, we had used our DTD to specify that only the values Java and XML were
allowed. Using parenthetical notation and the OR operator, we handled this like so:

<!ATTLIST JavaXML:Chapter
 focus (XML|Java) "Java"
>

While this isn't necessarily difficult, it is also not necessarily intuitive. The values allowed are not
even in quotation marks, which is the de facto standard for representing data values. XML Schema,
while requiring more lines of schema to achieve the same effect, makes this type of constraint much
easier to follow. The attribute definition is opened up, and a simpleType element is used. This

Java and XML

 page 105

element allows an existing data type, such as string, to be narrowed in the values that it can take
on. In this case, we want to include the two allowed enumerative values that the attribute can take
on. Each of these values is specified with the enumeration element. We specify the base type of
this element with the base keyword. Using all this information in concert, we can change our
attribute definition for the focus attribute:

<attribute name="focus" default="Java">
 <simpleType base="string">
 <enumeration value="XML" />
 <enumeration value="Java" />
 </simpleType>
</attribute>

Again, this is quite a bit more verbose than our DTD for the same resulting constraint, but
significantly easier to understand and grasp, particularly for newer users of XML. With this change,
we have now completed our schema, and set forth all the constraints of our earlier DTD, all in much
more readable form (see Example 4.16).

Example 4.16. Completed XML Schema
<?xml version="1.0"?>

<schema targetNamespace="http://www.oreilly.com/catalog/javaxml"
 xmlns="http://www.w3.org/1999/XMLSchema"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml">

 <element name="Book" type="JavaXML:BookType" />

 <complexType name="BookType">
 <element name="Title" type="string" />
 <element name="Contents" type="JavaXML:ContentsType" />
 <element name="Copyright" type="string" />
 </complexType>

 <complexType name="ContentsType">
 <element name="Chapter" maxOccurs="*">
 <complexType>
 <element name="Heading" type="string" minOccurs="0" />
 <element name="Topic" maxOccurs="*">
 <complexType content="string">
 <attribute name="subSections" type="integer" />
 </complexType>
 </element>
 <attribute name="focus" default="Java">
 <simpleType base="string">
 <enumeration value="XML" />
 <enumeration value="Java" />
 </simpleType>
 </attribute>
 </complexType>
 </element>
 <element name="SectionBreak" minOccurs="0" maxOccurs="*">
 <complexType content="empty" />
 </element>
 </complexType>

</schema>

Java and XML

 page 106

4.4 What's Next?

We have now looked at two ways to constrain our XML documents: the "old" way, by using DTDs,
and the "new" way, using XML Schema. Hopefully, you also are beginning to see the importance of
document constraints, particularly with regard to applications. If an application does not understand
the type of information that an XML document should contain, manipulating and understanding the
document's data becomes a much more difficult task. In the next chapter, we extend our knowledge
of the SAX Java classes by looking at the facilities for accessing DTDs and schemas within our
Java program. We will add to the parser the example program we built in Chapter 3, allowing the
program to read through document constraints and report errors if the XML documents read are not
valid, as well as examining the callbacks available within the validation process.

Chapter 5. Validating XML
Your knowledge base and accompanying bag of XML tricks should be starting to feel a little more
solid by now. You can create XML, use the Java SAX classes to parse through that XML, and now
constrain that XML. This leads us to the next logical step: validating XML with Java. Without the
ability to validate XML, business-to-business and inter-application communication becomes
significantly more difficult; while constraints enable portability of our data, validity ensures its
consistency. In other words, being able to constrain a document doesn't help much if we can't
ensure that those constraints are enforced within our XML applications.

In this chapter, we will look at using additional SAX classes and interfaces to enforce validity
constraints in our XML documents. We will examine how to set features and properties of a SAX-
compliant parser, allowing easy configuration of validation, namespace handling, and other parser
functionality. In addition, the errors and warnings that can occur with validating parsers will be
detailed, filling in the blanks from earlier discussions on the SAX error handlers.

5.1 Configuring the Parser

With the wealth of XML-related specifications and technologies emerging from the World Wide
Web Consortium (W3C), adding support for any new feature or property of an XML parser has
become difficult. Many parser implementations have added proprietary extensions or methods at the
cost of the portability of the code. While these software packages may implement the SAX
XMLReader interface, the methods for setting document and schema validation, namespace support,
and other core features are not standard across parser implementations. To address this, SAX 2.0
defines a standard mechanism for setting important properties and features of a parser that allows
the addition of new properties and features as they are accepted by the W3C without the use of
proprietary extensions or methods.

5.1.1 Setting Properties and Features

Lucky for us, SAX 2.0 includes the methods needed for setting properties and features in the
XMLReader interface. This means we have to change little of our existing code to request validation,
set the namespace separator, and handle other feature and property requests. The methods used for
these purposes are outlined in Table 5.1.

Table 5.1, Property and Feature Methods
Method Returns Parameters Syntax

setProperty(void String propertyID,

Object value
parser.setProperty(
 "[Property URI]",

Java and XML

 page 107

) "[Object parameter]");

setFeature() void

String featureID, boolean
state

parser.setFeature(
 "[Feature URI]", true);

getProperty(
)

Object String propertyID

String separator =

(String)parser.getProperty(
 "[Property URI]");

getFeature() boolean String featureID

if (parser.getFeature(
 "[Feature URI]")) {
 doSomething();
}

For each of these, the ID of a specific property or feature is a URI. The core set of features and
properties is listed in Appendix B. Additional documentation on features and properties supported
by your vendor's XML parser should also be available. Keep in mind, though, that these URIs are
similar to namespace URIs; they are only used as associations for particular features. Good parsers
ensure that you do not need network access to resolve these features; in this sense, you can think of
them as simple constants that happen to be in URI form. These methods are simply invoked and the
URI is de-referenced locally, often to a constant representing what action in the parser needs to be
taken.

In the parser configuration context, a property requires some arbitrary object to be usable. For
example, for lexical handling, a LexicalHandler implementation class might be supplied as the
value for the property. In contrast, a feature is a flag used by the parser to indicate whether a certain
type of processing should occur. Common features are validation, namespace support, and
including external parameter entities.

The most convenient aspect of these methods is that they allow simple addition and modification of
features. Although new or updated features will require a parser implementation to add supporting
code, the method by which features and properties are accessed remains standard, as well as simple;
only a new URI need be defined. Regardless of the complexity (or obscurity) of new XML-related
ideas, this robust set of four methods should be sufficient to allow parsers to implement the new
ideas.

5.1.2 Turning on Validation

So far, we have talked about how to set features and properties, but not about those functionalities
themselves. In this chapter, we are most concerned with ensuring document validation during
parsing. To illustrate the importance of these methods, a little history lesson is in order. In SAX 1.0,
parser implementations had to provide their own (proprietary) solutions to handle parsing with
validation and parsing without. Without the ability to turn validation on or off through a standard
mechanism, it was easier to provide two independent parsing classes in order to remain standard in
their use. For example, to use the early versions of Sun's Project X parser without validation, the
code fragment in Example 5.1 would be employed.

Example 5.1. Using a Non-Validating Parser with SAX 1.0
try {
 // Register a parser with SAX
 Parser parser =
 ParserFactory.makeParser(
 "com.sun.xml.parser.Parser");

 // Parse the document
 parser.parse(uri);

Java and XML

 page 108

} catch (Exception e) {
 e.printStackTrace();
}

Because no standard mechanism existed for requesting validation, a different class had to be loaded;
this new class is an almost identical implementation of the SAX 1.0 Parser interface that performs
validation. The code employed to use this parser is almost identical (see Example 5.2), with the
exception of the class loaded for parsing.

Example 5.2. Using a Validating Parser with SAX 1.0
try {
 // Register a parser with SAX - use the validating parser
 Parser parser =
 ParserFactory.makeParser(
 "com.sun.xml.parser.ValidatingParser");

 // Parse the document
 parser.parse(uri);

} catch (Exception e) {
 e.printStackTrace();
}

In addition to having to change and recompile source code when validation is turned on or off, this
presents a little-realized problem in rolling out production-ready code that parses XML. A standard
development environment will use code that validates all application-produced XML. This
validation, although costly for performance, can ensure that the application is always producing
correct XML documents, or that correct XML documents are always being received as input for the
application's components. Often, these validation constraints, once thoroughly tested, can be
removed, resulting in a significant performance yield in production. It is possible in this situation to
remove validation from the parser's behavior because thorough testing has confirmed correct XML
in development, but this change forces a source code modification and recompilation. Although this
may sound fairly trivial, many companies do not allow code to go into production that has not run
unchanged for a set length of time, often days if not weeks. This minor change to turn off validation
can result in additional testing cycles, which are often redundant, and a lengthier time to market for
applications.

A common argument here is that the name of the parser class to be used can be loaded from a
properties file (we talked about this in Chapter 2, regarding XML application portability). However,
consider the significance of changing a complete parser implementation class just before going into
production. This is not a minor change, and should be tested thoroughly. When compared to
changing the value of a feature set (supposing that the value to set the SAX validation feature is
kept in a similar properties file), it is easy to determine which solution is preferred.

For all these reasons, SAX 2.0 added the methods we have been discussing to the XMLReader
interface. With these methods, we can enable validation by using the URI specific to setting
validation: http://xml.org/sax/features/validation. We could also request parsing of external entities
and namespace processing, but for now we will simply add the validation feature to our parser
shown in Example 5.3.

Example 5.3. Turning On Validation
// Get instances of our handlers
ContentHandler contentHandler = new MyContentHandler();
ErrorHandler errHandler = new ErrHandler();

Java and XML

 page 109

try {
 // Instantiate a parser
 XMLReader parser =
 XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");

 // Register the content handler
 parser.setContentHandler(contentHandler);

 // Register the error handler
 parser.setErrorHandler(errHandler);

 parser.setFeature("http://xml.org/sax/features/validation", true);

 // Parse the document
 parser.parse(uri);

} catch (IOException e) {
 System.out.println("Error reading URI: " + e.getMessage());
} catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
}

With these straightforward changes, we are now ready to modify our sample XML file to again
include the DTD reference and entity reference (which we commented out in an earlier chapter):

<?xml version="1.0"?>

<!-- We don't need these yet
 <?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
 <?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
 <?cocoon-process type="xslt"?>
-->

<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 <JavaXML:Title>Java and XML</JavaXML:Title>
 <JavaXML:Contents>
...
<!-- Uncomment the entity reference as well -->
<JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>

Make sure you have the DTD we created in the last chapter in the directory specified here. Before
running the example, you need to make sure you are connected to the Internet; remember that in
validation, any entity references you make are attempted to be resolved. In our example file, we
have such an entity reference: OReillyCopyright. In our DTD, we referenced the URI
http://www.oreilly.com/catalog/javaxml/docs/copyright.xml. When validation takes place, if this
URI is not available, validation errors will occur. If you do not have Internet access, or do not want
to use that access, you can replace the reference with a local file reference. For example, you may
create a one-line text file like Example 5.4.

Example 5.4. Local Copyright File
This is a sample shared copyright file.

Java and XML

 page 110

Save this file in a directory that is accessible by the parser program, and replace the DTD entity
declaration with the path to this new file:

<!ENTITY OReillyCopyright SYSTEM
 "entities/copyright.txt">

In this example, the text file should be saved as copyright.txt in a subdirectory named entities/. With
this change, you are ready to run the sample program on the example XML file.

5.2 Output of XML Validation

Make sure your XML document, DTD, copyright file (if you created one), and compiled classes are
assembled. You may then run the example program, and you might be surprised at the output
(shown in Example 5.5).

Example 5.5. SAXParserDemo Output
D:\prod\JavaXML> java SAXParserDemo D:\prod\JavaXML\contents\contents.xml
Parsing XML File: D:\prod\JavaXML\contents\contents.xml

 * setDocumentLocator() called
Parsing begins...
Parsing Error
 Line: 13
 URI: file:/D:/prod/JavaXML/contents/contents.xml
 Message: Document root element "JavaXML:Book", must match DOCTYPE root
 "JavaXML:Book".

This rather cryptic error is a significant problem when using DTDs and namespaces together. The
error seems to be stating that the root specified in the DOCTYPE declaration (JavaXML:Book) does
not match the root element of the document itself. But the root element is JavaXML:Book, right?
Actually, it's not! By default, SAX 2.0 specifies that parsers must enable their namespace feature,
making all SAX 2.0 parsers namespace-aware unless this feature is explicitly set to false.[1] We did
not change this default, so our XMLReader implementation is namespace aware. The unexpected
result of this is that our root element is seen (by the parser) as Book, with the namespace prefix of
JavaXML. But remember that XML 1.0 and DTDs cannot distinguish between a prefix and element
name, so the root element the DTD expects to find is JavaXML:Book. When it finds Book, it reports
the error above.

[1] Namespace support being on by default was the SAX requirement as of the time of this writing; however, several groups within the XML community, such
as the Apache Xerces development team, are campaigning to have this feature off by default. If you do not receive the results shown here, it is possible that the
default for this feature has been changed in a revision of SAX.

The only way to get around this rather annoying "feature" of SAX is to turn off namespace
awareness on documents that are being validated by DTDs. Add in the following code to your
SAXParserDemo source file:

try {
 // Instantiate a parser
 XMLReader parser =
 XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");

 // Register the content handler
 parser.setContentHandler(contentHandler);

 // Register the error handler

Java and XML

 page 111

 parser.setErrorHandler(errorHandler);

 // Turn on validation
 parser.setFeature("http://xml.org/sax/features/validation",
 true);

 // Turn off namespace awareness
 parser.setFeature("http://xml.org/sax/features/namespaces",
 false);

 // Parse the document
 parser.parse(uri);

} catch (IOException e) {
 System.out.println("Error reading URI: " + e.getMessage());
} catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
}

With this change, all elements names are treated as containing both the namespace prefix and the
local name of the element. We will get back to dealing with allowing namespaces to be used later in
the chapter. For now, re-run the program with the changes compiled in, and you should get the
output shown in Example 5.6.

Example 5.6. SAXParserDemo Output with Namespaces Disabled
D:\prod\JavaXML> java SAXParserDemo D:\prod\JavaXML\contents\contents.xml
Parsing XML File: D:\prod\JavaXML\contents\contents.xml

 * setDocumentLocator() called
Parsing begins...
startElement: has no associated namespace
 Attribute: xmlns:JavaXML=http://www.oreilly.com/catalog/javaxml/
ignorableWhitespace: [
]
startElement: has no associated namespace
characters: Java and XML
endElement: JavaXML:Title
...

You may find this almost disappointing. It doesn't look any different than our output from the non-
validating parser in Chapter 3! This is because our XML document is both well-formed and valid;
there is nothing for the validating parser to report. This is important to realize: behavior of a
validating parser on a valid document is almost identical to behavior of a non-validating parser on
the same document. If this seems strange, remember that all validation seeks to achieve is to ensure
that a document doesn't break any of a set of predefined rules. If all those rules are followed, the
application should use the XML data as intended. It is only when rules are broken that a validating
parser must perform extra behavior; these cases, which do produce different output than the non-
validating parser, will be examined next.

Before looking at these errors, though, there is one difference in our output. Remember that
previously, all of the whitespace between elements in our XML document was reported through the
characters() callback method in our ContentHandler implementation. In a non-validated XML
document, the XML parser has the option to report this whitespace through either that callback or
the ignorableWhitespace() callback. We discussed that this is because the parser cannot safely
make assumptions about the purpose of the whitespace between elements without a DTD to
constrain the XML document. When running our parser example with validation, we instead see
that all of the whitespace is reported through the ignorableWhitespace() method. With

Java and XML

 page 112

validation occurring, any whitespace is ignored and treated as if it were not present unless explicitly
outlined in the DTD for the document. This allows the parser to determine if the content of XML
elements conforms to the DTD without having to worry about whitespace surrounding the element
contents. In other words, the parser is free to treat the following XML fragment:

<document>
 <element1>
 <element2>Hello!</element2>
 </element1>
</document>

identically to this fragment:

<document><element1><element2>Hello!</element2></element1></document>

While this second fragment is certainly less pleasing to the human eye, it follows the same
constraints as the first document, and should be treated identically when validation is occurring. The
lack of indentation should not affect the application using this XML data. If the whitespace used for
indenting in the first document were reported through the characters() callback, it could seem to
an application monitoring that callback method that the documents were not the same.

5.2.1 Warnings

There are almost no warnings that can arise as a result of validation being requested. All XML
being validated that does not conform to the referenced DTD is considered to be in error. Invalidity
in XML documents was considered by the W3C to be important enough to always warrant the
generation of an error. For this reason it is difficult, particularly using a SAX 2.0 parser, to generate
a warning. However, there are SAX 1.0 parsers that will generate a warning. For example, Sun's
Project X parser package currently includes a class for validating XML documents while parsing, as
well as a non-validating parser implementation. This should sound familiar, as we discussed this
scenario earlier, in Section 5.1.1 If the validating parser is used on an XML document that does not
explicitly declare a DTD, a warning will be generated. Because this is a specific issue with some
SAX 1.0 parser implementations, we will not detail the code needed to generate such a warning.
However, the output would look similar to the warnings we looked at in Chapter 3, and is shown
here in Example 5.7.

Example 5.7. SAXParserDemo Output Issuing a Warning
D:\prod\JavaXML> java SAXParserDemo D:\prod\JavaXML\contents\contents.xml
Parsing XML File: D:\prod\JavaXML\contents\contents.xml

 * setDocumentLocator() called
Parsing begins...
Parsing Warning
 Line: 6
 URI: file:/D:/prod/JavaXML/contents/contents.xml
 Message: Valid documents must have a <!DOCTYPE declaration.

This would occur if the <!DOCTYPE> construct was commented out or omitted in an XML document
being parsed. As almost all XML parsers, including Sun's Project X parser, are moving to a SAX
2.0-compliant implementation, this is most likely a warning you will never encounter.

Java and XML

 page 113

5.2.2 Non-Fatal Errors

The most common SAX problem you will receive when validating XML is a non-fatal error. This is
generated any time that XML constraints are violated. To demonstrate this type of error, make the
following change in your sample XML document, making it invalid:

<?xml version="1.0"?>

<!-- We don't need these yet
 <?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
 <?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
 <?cocoon-process type="xslt"?>
-->

<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
 publicationDate="June 2000">
 <JavaXML:Title>Java and XML</JavaXML:Title>
 <JavaXML:Contents>

This change, while certainly legal and keeping the XML document well-formed, is not valid.
Because no publicationDate attribute was declared in our DTD, an error will be generated on the
parsing of this XML, shown in Example 5.8.

Example 5.8. SAXParserDemo Output Issuing an Error
D:\prod\JavaXML> java SAXParserDemo D:\prod\JavaXML\contents\contents.xml
Parsing XML File: D:\prod\JavaXML\contents\contents.xml

 * setDocumentLocator() called
Parsing begins...
Parsing Error
 Line: 10
 URI: file:/D:/prod/JavaXML/contents/contents.xml
 Message: Attribute "publicationDate" must be declared for element type
 "JavaXML:Book".

Our parser sends the error to our ErrorHandler implementation, which reports the error, in this
case an attribute that is not declared for the enclosing element being used. Certainly there are a
variety of ways to manage to make our XML document invalid, and this is just one; however, all
generate the same error, so experimentation with these errors will be left to you. Simply be aware
that any violation of a DTD's constraints generates a non-fatal error, regardless of the type of
violation. This includes element content being incorrect, illegal element nestings, attributes being
misplaced or misused, and the variety of other well-formed but invalid conditions that can be
created within an XML document.

5.2.3 Fatal Errors

What may come as a surprise is that a document that violates its DTD's constraints will never
generate a fatal error. There are no conditions that arise in parsing invalid XML that would result in
the parsing process stopping. While it may seem that continuing to parse an invalid document
defeats the purpose of validation, realize that most of the time XML is application generated. In
other words, the application receives XML input from another program or subprogram. If this input

Java and XML

 page 114

is invalid for some reason, the application attempting to use it should report an error to the
application client rather than stop document processing. In fact, many times parsing must continue
to allow a graceful exit of the process, in turn allowing the application to accurately report what
errors occurred. While documents that are not well-formed will cause parsing to halt, invalid
documents typically indicate either an error condition that can be corrected or one that the client
should know about, such as invalid input. Consider the difficulty of writing an XML editor or IDE
if every time you made a mistake in meeting your DTD's constraints, the editor crashed with a fatal
error, or refused to parse your document long enough to let you know what mistake was made; in
fact, some editors may attempt to correct validity errors for you! For these reasons, invalid
documents cause warnings and errors, but never fatal errors.

The only fatal error you can encounter when using DTDs that you cannot receive in non-validated
documents is a syntax error within the referenced DTD. This shouldn't surprise you, as syntax errors
in an XML document also generate fatal errors. The same reasoning is used; it is impossible to
continue parsing or validation if the constraints cannot be determined, which is the case when the
syntax of the DTD is incorrect. You should be sure to realize this is not quite the same as the error
generated when XML is not well-formed; the primary difference is that a DTD is never said to be
well-formed because it is not true XML. However, the result of syntax errors in the DTD is the
same as the result of parsing XML that is not well-formed.

5.3 The DTDHandler Interface

The last core document handler that SAX provides registers callback methods during the process of
reading and parsing an XML document's DTD. This interface does not define events that take place
during the process of validation, but only those that occur during the process of reading the DTD. In
fact, in our section on "gotchas" we will look at some of the confusion this distinction often causes.
This handler behaves in the same manner as the ContentHandler and ErrorHandler interfaces
that we looked at in Chapter 3, defining two callback methods that occur during the parsing process.

As important as XML document validation is, the events involved with reading the DTD document
are not very significant. With only two callback methods, and both of those not commonly used,
you will probably not find many uses for the DTDHandler interface unless you are writing an XML
editor or IDE and need to build or process DTD documents for correct syntax and notation. We will
look at the two callback methods provided by SAX here, but will not spend much time on their use,
as they are not significant in our use of XML for non-editor type applications. For information on
an optional SAX handler that can help in reading further DTD information, refer to the
DeclHandler interface in Appendix A, under the org.xml.sax.ext package.

5.3.1 Unparsed Entity Declarations

The first callback method, unparsedEntityDecl() , is invoked when a DTD has an entity
declaration signifying that the XML parser should not parse a particular entity. Though we have not
looked at an example of this, unparsed entities are common in XML documents that reference
images or other binary data, such as media files. This method takes in the name of the entity, the
public and system IDs, and the notation name of the entity. Notation names are another XML term
we have not yet looked at. Consider the example of an XML document fragment that refers to an
image, possibly representing a logo, shown in Example 5.9.

Example 5.9. An XML Document with an Unparsed Entity
<document>
 <myLogo>&CompanyLogo;</myLogo>
</document>

Java and XML

 page 115

When processing XML, the parser attempts to resolve all entity references and insert the parsed
value of the reference into the document. However, an XML parser is not equipped to parse an
image, and should leave the binary data unparsed. The parser can be instructed to do this in a
document type definition:

<!ENTITY CompanyLogo SYSTEM "images/logo.gif" NDATA gif>

The NDATA keyword here instructs XML parsers not to parse the entity reference. Were this DTD to
be processed with a registered DTDHandler implementation, the information in the entity
declaration would be passed to the callback. Another key point here is that the callback occurs when
the entity declaration is made in the DTD, not when it is parsed in the XML document. This means
that even if the entity is not in the XML document, the callback would occur. This should make
sense, as this callback is part of the DTDHandler interface, not the ContentHandler interface.

5.3.2 Notation Declarations

Notation declarations are always associated with one or more unparsed entity declarations, and are
the subject of the second DTDHandler callback method. The final portion of the unparsed entity
declaration seen above was the word "gif ". This word specifies the type of the unparsed entity, and
must refer to a type defined elsewhere in the DTD through the NOTATION construct. This specifies to
the XML parser a URI reference for the type, often a public reference for common binary data
types. This, in fact, is very similar to referencing a DTD in an XML document, as it associates a
specific type of data (in this example, GIF images) with a public identifier or URI. The pairing of
the NOTATION definition and unparsed entity declaration results in an XML parser leaving binary
data untouched and unparsed, which is the desired behavior:

<!NOTATION gif SYSTEM "http://www.gif.com">

Occurrences of these declarations are reported to a registered handler through the notationDecl(
) callback method. This method, when invoked, receives the name of the notation declaration, the
system identifier, and any public identifier that is present. As with unparsed entity declarations, this
is a callback invoked upon reading the DTD, not the actual XML document.

5.3.3 Registering the Handler

Registering our DTDHandler implementation with our XML parser is no different than the
procedure used for registering our error and document handlers. An instantiation of our
implementation class can be passed to the setDTDHandler() method, and the parser will register
SAX callback events with the class:

import java.io.IOException;

import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.DTDHandler;
import org.xml.sax.ErrorHandler;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;
...
 // Get instances of our handlers
 ContentHandler contentHandler = new MyContentHandler();
 ErrorHandler errHandler = new ErrHandler();

Java and XML

 page 116

 DTDHandler dtdHandler = new MyDTDHandler();

 try {
 // Instantiate a parser
 XMLReader parser =
 XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");

 // Register the content handler
 parser.setContentHandler(contentHandler);

 // Register the error handler
 parser.setErrorHandler(errorHandler);

 // Register the DTD handler
 parser.setDTDHandler(dtdHandler);

 // Turn on validation
 parser.setFeature("http://xml.org/sax/features/validation",
 true);

 // Turn off namespace awareness
 parser.setFeature("http://xml.org/sax/features/namespaces",
 false);

 // Parse the document
 parser.parse(uri);

 } catch (IOException e) {
 System.out.println("Error reading URI: " + e.getMessage());
 } catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }

5.3.4 The Rest of the Story . . .

It may seem we have skimmed over the handler interface for DTDs, particularly as compared to our
treatment of our other handlers. However, applications that use XML rarely need to register this
type of handler. While validation is often used in XML-aware systems, details of unparsed entity
declarations rarely are relevant at higher levels of XML use. For this reason, we will move on to
details that are more relevant to our goal of writing XML-aware applications.

You might expect to read a section on XML Schema validation next; however, schemas are
increasingly being used not just for validation, but for pure data representation as well. For this
reason we will save a complete discussion of handling schemas in Java for Chapter 14, and wait
until we have seen both XSL and some more realistic uses of XML in applications before doing so.
The SAX interfaces for handling a schema are much more robust than those for a DTDHandler and
will require additional knowledge of XML to master. For now, we will complete our discussion of
validating XML data with a look at the common problems you may encounter trying to use
validation within your XML-aware applications.

5.4 "Gotcha!"

To continue with the theme of trying to provide some cautionary advice on your path to XML
mastery, some additional pitfalls associated with XML validation are included here. These are often
problems run into by newer XML developers, as the solutions are not immediately apparent. Take
heed of them, as they have caused many a developer long hours of tedious debugging, or simple
confusion at unexpected application output.

Java and XML

 page 117

5.4.1 Handling Validation and Handling DTDs

One of the most common misunderstandings about using SAX for validation is thinking that
validating an XML document is contingent upon registering a SAX DTDHandler implementation
with the XML parser. Often, time and effort are spent to implement the DTDHandler interface and
register it with the parser, and time is not spent setting the validation feature of the parser. This
mistake arises from a mistaken association between handling a DTD and actually using the DTD for
validation. In this case, the DTD would be parsed, and all DTD callback events would occur (if any
were needed). However, the XML document itself would not be validated, but simply parsed. Keep
in mind that the output from parsing a valid XML document looks almost identical to output from a
non-validated XML document; always be aware when validation is occurring to avoid application
bugs:

try {
 // Instantiate a parser
 XMLReader parser =
 XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");

 // Register the content handler
 parser.setContentHandler(contentHandler);

 // Register the error handler
 parser.setErrorHandler(errorHandler);

 // This has no effect on turning on validation!
 parser.setDTDHandler(dtdHandler);

 // Turn on validation
 parser.setFeature("http://xml.org/sax/features/validation", true);

 // Turn off namespace awareness
 parser.setFeature("http://xml.org/sax/features/namespaces", false);

 // Parse the document
 parser.parse(uri);

} catch (IOException e) {
 System.out.println("Error reading URI: " + e.getMessage());
} catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
}

Be sure to realize that registering a DTD has nothing to do with the process of validation; a parser
with a DTDHandler implementation registered does not always validate XML, and a parser without
a registered handler may validate XML. It is the features (for SAX 2.0 implementations) or class
(for pre-SAX 2.0 implementations) of the XML parser that determines if validation occurs, rather
than the handler that is registered with it. Keep this in mind, as a DTDHandler implementation is not
needed for validating XML, while setting a property or using a different parser class is.

5.4.2 Validate in Development, Cruise in Production

It is important to emphasize the value of knowing when to use validation and when not to. One of
the biggest "gotchas" in using validation is to be surprised when your application seems sluggish in
production, and you can't seem to determine why. The "gotcha" here is leaving validation on in a
production environment. Typically, validation is part of testing; run an application numerous times
through development and testing or quality assurance (QA) until you are confident of its results. If

Java and XML

 page 118

part of this application is the generation or modification of XML, validation of the resultant XML
should be included as part of that testing. However, this validation is costly, as the parser must
process significantly more data and make many more decisions to validate a document.

Once you are assured of the output of your application, it is usually safe to turn off validation in the
production environment. This results in a significant speed increase in most applications, and if
testing was done properly, should not affect the application in any way. The only time disabling
validation for production is not a good rule of thumb is when the application client is taking an
active part in XML creation, as in an XML IDE or GUI tool, or when receiving XML from other
applications, such as in e-business scenarios. Both of these are exceptions because the XML used as
input, from a user or application, is outside of your control and may not be valid. In these cases,
certainly validation is required, and even expected by the application client. In most situations,
though, let your production application cruise without the heavyweight validation occurring.

5.5 What's Next?

By now you should feel very comfortable with XML documents and how to constrain those
documents. We have also looked at all of the major aspects of using the SAX interfaces and classes,
and you should have a solid understanding of the parsing and validating lifecycle, as well as what
document callbacks are available. You should be able to easily configure and use an XML parser, as
well as register the various types of SAX handlers with that parser. In the next chapter, we add to
our specifications by taking a look at XSL, the Extensible Stylesheet Language. This will begin the
transition from looking at XML data to looking at XML applications. Our discussions of XSL and
XSL transformations will set the stage for a look at the Document Object Model and publishing
engines, as well as more in-depth application programming throughout the rest of the book.

Chapter 6. Transforming XML
If you are a backend systems developer or a systems architect, you should be seeing the value of
XML by now. A language that represents data in a vendor-neutral way, that is easy to parse, that is
portable, and that you can use from Java? Could this be the data format that solves so many of your
interoperability issues? It just might be. However, if you are a content developer, an application
assembler, or are involved with application presentation, you may be a little confused. Certainly
you have heard a lot about the promise of XML for generating content for various types of clients,
and how it provides a separation of presentation and data. Yet we have been through five chapters
without a word about how this is accomplished. You might be wondering if this technology is really
right for you. In either case, read on, because XML's capabilities are just beginning to be
showcased.

In this chapter, we begin the process of tackling XML transformations. This is a rather lengthy
topic, and we begin in this chapter by discussing why XML transformations are important, the
components involved, and the syntax used to accomplish transformations. The next chapter
continues our discussion by looking at how Java XSLT processors can take an XML document and
generate various types of content, often wildly different, from the same initial XML data, and how
the Document Object Model (DOM) is used in this process. Throughout, we will continue to focus
on the value of XML transformations to you, the application developer. Because XML
transformations are such a large subject, we will not touch on every syntactical construct or possible
use. For a short reference on transformations, you should pick up the XML Pocket Reference, by
Robert Eckstein (O'Reilly & Associates). There is also an entire section of the World Wide Web
Consortium's web site devoted to XML transformations, which can be accessed online at
http://www.w3.org/Style/XSL/. These resources can fill in any blanks left by the next two chapters.

Java and XML

 page 119

6.1 The Purpose

Before we dive into the components of XML transformations and the syntax involved, it is
important to understand the purpose of XML transformations. Just as we spent time discussing the
significance of constraining XML data and its effect on application interoperability, an
understanding of the value of transforming XML data is critical to using these transformations
appropriately. They are not the final solution in data presentation and should not be used in every
situation; by the same token, there are times when transforming XML can save tens and even
hundreds of hours of time that would be spent on discovering a comparable solution for a given
problem.

We have spent a lot of time emphasizing the importance of XML as a pure data layer. In fact, there
has been much more discussion of XML as pure data than as a new way of generating application
content. This is in contrast to the hype that XML seems to be receiving as a content-driven
language. In the next two chapters, we shift our focus to looking at how XML data can be presented
to various clients. However, this does not necessarily mean that the focus is displaying a
presentation layer to an end user. In fact, we will spend almost no time discussing the user point of
view. If this confuses you a bit, that's okay. Let's reiterate what we mean by client.

6.1.1 The Client of the Client of the Client

The most common definition for a client or application client is an end user. The idea that some
human using a web browser or a GUI interface is the client of an application is somewhat limiting,
though. We've already discussed the variety of clients that might interact with your application; let's
extend this definition even more. Consider a database engine; because the data within that database
is rarely directly displayed to the end user without another program formatting that data, can we say
that the database has no clients? In an application that parses the weather from another HTML page
and displays it in a new format to a user, can we say that the weather data has two clients? How
about the X Windows system, where the display is generated on the server, and the remote
application is the client? Clearly, the commonly accepted definition of a client needs to be
redefined.

For the duration of the this book, we consider a client to be anything that uses data from an
application, program, or engine. That would make the program using our database engine above a
client, as well as the end user who views the formatted data. The program that formats the weather
data is a client, as are the users who view that formatted data; and the program that reformats that
data is a client, as well as its users. As you can see, the line between an end user and a program
begins to get blurred. In a multi-tiered system where a database, Enterprise JavaBeans container,
servlet engine, and publishing framework may all exist, there are four, five, or more clients!

The point of this discussion is to make you understand that with XML, we do not distinguish
between a human and a program using the data; they are both clients. This allows us to think about
data transformations in a much more useful way; if application A needs data (in format A) from
application B (which stores the data in format B), we will need to transform the data. The formats
are simply details of the transformation, but do not affect the concepts involved. With our new
definition of what a client is, we can also separate the details of the type of application needing the
data. When application C then uses the formatted data in application B in format C, another
transformation occurs. Whether these formats are HTML, SQL, XML conforming to different
DTDs, or something entirely different, is not important. Whether the client is another program, an
end user, or a legacy system, the details are still unimportant. The process is still simply a
transformation from one format to another. Understanding this important point will help you see
why we need to be able to transform XML data.

Java and XML

 page 120

6.1.2 It's Greek to Me

As you may already be thinking, certainly the most common purpose for transforming XML is to
put it into a format readable by a given client. Sometimes mutating an XML document that
conforms to one DTD or schema into an XML document that conforms to another DTD or schema
can do this. Other times, radically different documents may need to result from the same underlying
XML data. In either case, our previous discussions about the importance of constraining and
validating XML should be coming back to you. Even if an application knows the format it must
read data in, it cannot correctly interpret another format with that information alone. It must use a
DTD, schema, or another set of constraints for the originating document to understand what types
of conversions can be accomplished and what data structures are present in the source data.

The problems arise when the permutations of application interoperability increase; in other words,
the more application components, the more possibilities for data transformations. This can become
unmanageable for the components, as each has to keep track of all other components' constraints
and formats to allow them to exchange data. For this reason, a set of specifications and standards
has been developed for XML transformations. These provide an intermediary layer that can act
independently of application components to convert data from one format or style to another,
leaving application components to perform business logic. We refer to this middle layer as a
processor . It is the processor's task to take one or more documents, determine their formats and
constraints, and apply a transformation, which results in data in another format, which might even
result in multiple output files. This resulting document can then be used by the next component. Of
course, this application may in turn hand its data to another processor, which hands off yet another
transformed document to a third component, and so on down the line. In this way, applications that
do not speak the same "language" can converse without having to implement complex rules for
understanding each other's different data types. We look at the pieces of this process and how this
nontrivial task is accomplished in the next section.

6.2 The Components

As useful as these XML transformations can be, they are not very simple to implement. In fact,
rather than trying to specify the transformation of XML in the original XML 1.0 specification, three
separate recommendations have come out to define how transformations should occur. Although
one of these (XPath) is also used in the XPointer specification, by far the most common use of the
components we outline here is to transform XML from one format into another.

Because these three specifications are tied together tightly, and are almost always used in concert,
there is rarely a clear distinction between them. This can often make for a discussion that is easy to
understand, but not necessarily technically correct. In other words, the term XSLT, which refers
specifically to extensible stylesheet transformations, is often applied to both extensible stylesheets
(XSL) and XPath. In the same fashion, XSL is often used as a grouping term for all three
technologies. In this section, we will distinguish among the three recommendations, and remain true
to the letter of the specifications outlining these technologies. However, in the interest of clarity, we
will resume using XSL and XSLT interchangeably to refer to the complete transformation process
throughout the rest of the book. Although this may not follow the letter of these specifications, it
certainly follows their spirit, as well as helping to avoid unnecessary confusion.

6.2.1 The Extensible Stylesheet Language (XSL)

XSL is the extensible stylesheet language. It is defined as a language for expressing stylesheets.
This broad definition is broken down into two parts:

Java and XML

 page 121

• XSL is a language for transforming XML documents.
• XSL is an XML vocabulary for specifying the formatting of XML documents.

These definitions are similar, but one deals with moving from one XML document form to another,
while the other is more focused on the actual presentation of content within each document. Perhaps
a clearer definition would be to say that XSL handles the specification of how to transform a
document from format A to format B. The components of the language handle the processing and
identification of the constructs used to do this.

6.2.1.1 XSL and trees

The most important concept to begin to understand in XSL is that all data within XSL processing
stages is in tree structures (see Figure 6.1). In fact, the rules you define using XSL are themselves
held in a tree structure. This allows simple processing of the hierarchical structure of XML
documents. Templates are used to match the root element of the XML document being processed.
Then "leaf" rules are applied to "leaf" elements, filtering down to the most nested elements. At any
point in this progression, elements can be processed, styled, ignored, copied, or have a variety of
other things done to them.

Figure 6.1. Tree operations within XSL

A nice advantage of this tree structure is that it allows the grouping of XML documents to be
maintained. If element A contains elements B and C, and element A is moved or copied, the
elements contained within it receive the same treatment.

This makes the handling of large data sections that need to receive the same treatment fast and easy
to notate, as well as concise, in the XSL stylesheet. We will look more at how this tree is actually
constructed when we talk specifically about XSLT in the next section.

6.2.1.2 Formatting objects

Almost the entirety of the XSL specification is concerned with defining formatting objects . A
formatting object is based on a large model, not surprisingly called the formatting model. This
model is all about a set of objects that are fed as input into a formatter. This formatter applies the
objects to the document, either in whole or in part, and what results is a new document that consists
of all or part of the data from the original XML document in a format specific to the objects the

Java and XML

 page 122

formatter used. Because this is such a vague, shadowy concept, the XSL specification attempts to
define a concrete model these objects should conform to. In other words, a large set of properties
and vocabulary make up the set of features that formatting objects can use. These include the types
of areas that may be visualized by the objects, the properties of lines, fonts, graphics, and other
visual objects, inline and block formatting objects, and a wealth of other syntactical constructs.

Formatting objects are used particularly heavily when converting textual XML data into binary
formats, such as PDF files, images, or document formats such as Microsoft Word. For transforming
XML data to another textual format, these objects are seldom used explicitly. Although an
underlying part of the stylesheet logic, formatting objects are rarely directly invoked, since the
resulting textual data often conforms to another predefined markup language such as HTML.
Because most enterprise applications today are at least in some part based on web architecture, and
use a browser as a client, we will spend most of our time looking at transformations to HTML and
XHTML. While this causes us to cover formatting objects lightly, the topic is broad enough to merit
its own coverage in a separate book or web site. For further information, you should consult the
XSL specification at http://www.w3.org/TR/WD-xsl.

6.2.2 XSL Transformations (XSLT)

The second component of XML transformations is XSL Transformations. XSLT is the language
that specifies the conversion of a document from one format to another. The syntax used within
XSLT is generally concerned with the textual transformations we discussed earlier that do not result
in binary data output. For example, XSLT is instrumental is generating HTML or WML (Wireless
Markup Language) from an XML document. In fact, the XSLT specification outlines the syntax of
an XSL stylesheet more explicitly than the XSL specification itself!

Just as in the case of XSL, XSLT is always well-formed, valid XML. A DTD is defined for XSL
and XSLT that delineates the allowed constructs. For this reason, you should only have to learn new
syntax to use XSLT as opposed to the entirely new structures that had to be digested to use DTDs
themselves. Just as in XSL, XSLT is based on a hierarchical tree structure of data, where nested
elements are leaves, or children, of their parents. XSLT provides a mechanism for matching
patterns within the original XML document (using an XPath expression, which we look at next),
and applying formatting to that data. This could result in simply outputting the data without the
unwanted XML element names, or inserting the data into a complex HTML table and displaying it
to the user with highlighting and coloring. XSLT also provides syntax for many common operators,
such as conditionals, copying of document tree fragments, advanced pattern matching, and the
ability to access elements within the input XML data in an absolute and relative path structure. All
these constructs are designed to ease the process of transforming an XML document into a new
format.

6.2.3 XML Path Language (XPath)

The final piece of the XML transformations puzzle, XPath provides a mechanism for referring to
the wide variety of element and attribute names and values in an XML document. As we mentioned
earlier, many XML specifications are now using XPath, but this discussion is only concerned with
its use in XSLT. With the complex structure that an XML document can have, locating one specific
element or set of elements can be difficult. This is made more difficult because access to a DTD or
other set of constraints that outlines the document's structure cannot be assumed; documents that are
not validated must be able to be transformed just as valid documents can. To accomplish this
addressing of elements, XPath defines syntax in line with the tree structure of XML and the XSLT
processes and constructs that use it.

Java and XML

 page 123

Referencing any element or attribute within an XML document is most easily accomplished by
specifying the path to the element relative to the current element being processed. In other words, if
element B is the current element and element C and element D are nested within it, a relative path
most easily locates them. This is similar to the relative paths used in operating system directory
structures. At the same time, XPath also defines addressing for elements relative to the root of a
document. This covers the common case of needing to reference an element not within the current
element's scope; in other words, an element that is not nested within the element being processed.
Finally, XPath defines syntax for actual pattern matching; find an element whose parent is element
E and which has a sibling element F. This fills in the gaps left between the absolute and relative
paths. In all these expressions, attributes can be used as well, with similar matching abilities.
Several examples are shown in Example 6.1.

Example 6.1. XPath Expressions
<!-- Match the element named JavaXML:Book relative to
 the current element -->
<xsl:value-of select="JavaXML:Book" />

<!-- Match the element named JavaXML:Contents nested within the
 JavaXML:Book element -->
<xsl:value-of select="JavaXML:Book/JavaXML:Contents" />

<!-- Match the JavaXML:Contents element using an absolute path -->
<xsl:value-of select="/JavaXML:Book/JavaXML:Contents" />

<!-- Match the focus attribute of the current element -->
<xsl:value-of select="@focus" />

<!-- Match the focus attribute of the JavaXML:Chapter element -->
<xsl:value-of select="JavaXML:Chapter/@focus" />

Because often the input document is not fixed, an XPath expression can result in the evaluation of
no input data, one input element or attribute, or multiple input elements and attributes. This makes
XPath very useful and handy; it also causes the introduction of some additional terms. The result of
evaluating an XPath expression is generally referred to as a node set . This shouldn't be surprising,
as we have already been loosely using the term "node" and will continue to do so; it is also in line
with the idea of a hierarchical or tree structure, often dealt with in terms of its leaves, or nodes. The
resultant node set can then be transformed, copied, or ignored, or have any other legal operation
performed on it. In addition to expressions to select node sets, XPath also defines several node set
functions, such as not() and count() . These functions take in a node set as input (typically in
the form of an XPath expression) and then further pare the results. All of these expressions and
functions are collectively part of the XPath specification and XPath implementations; however,
XPath is also often used to signify any expression that conforms to the specification itself. This, like
XSL and XSLT, while not always technically correct, makes it easier to talk about XSL and XPath.

To explain any of these three components' syntax by themselves would simply be a rehash of the
specifications. Instead, we will again use our example XML document. As a demonstration of an
XML transformation, we will look at how to create an HTML document fragment from our table of
contents data. In this way we will look at XSL, XSLT, and XPath in the context of a practical use,
continuing to try to make these discussions of syntax relevant to you as a developer.

6.3 The Syntax

Now that you have a conceptual understanding of the pieces of the XML transformation puzzle,
let's begin to assemble these pieces into something meaningful. We will begin with our original
XML file representing a portion of this book's table of contents. We would like to output this XML

Java and XML

 page 124

file in HTML, formatted to our liking. This is an extremely common task in Java applications today,
and although we will only perform simple formatting on this file, the possibilities for the resultant
HTML's complexity are only bounded by our knowledge and skill at XSLT. As we move step by
step through the process of creating a stylesheet to apply to our XML, we will cover the most
common constructs within XSLT and look at how they are often applied in XML applications.

Because this chapter is an introduction to XSLT, we will not look at the more complex
transformations from one XML format to another. These transformations, while common in large
business-to-business applications, are often more dependent upon application and business rules
specific to a company. We will later touch on these types of XML transformations in our chapter on
XML-RPC and XML for data storage, so if you are looking to use XML for data transport more
than for presentation, we will not leave you out. The actual constructs used in transformation will be
identical as well; only the resulting output will be different. With that understanding, let's generate
some HTML!

6.3.1 XSL Is XML

The first task any XSL stylesheet must complete is to remain true to the XML specification.
Remember that XSL has constructs of its own, but is really only one particular vocabulary of XML.
That means that our XSL stylesheet must be well-formed, must contain an XML declaration, and
must declare any namespaces that it uses. The XSL namespace, which uses the prefix xsl, defines
the elements we need for performing transformations. This means that every element within our
stylesheet that assists in the transformation process will be prefixed with that namespace. For
example, the root element of all XSL stylesheets should be xsl:stylesheet. This namespace, in
addition to identifying the XSL namespaces to the XML parser and processor, makes it easy to look
at an XSL stylesheet and see what elements are parts of a transformation and what elements are not.

In addition to the XML declaration and the prescribed root element, we must reference the xsl
namespace. By now this should not come as any great surprise; prefixing our elements with the
XSL namespace requires that we let our parser know where to locate a URI to associate with that
namespace. The namespace for XSL is located at the W3C, and the most recent version of the
specification to refer to in this URI is http://www.w3.org/1999/XSL/Transform. You should consult
the documentation available for your XSL processor to ensure you are using the latest supported
version of XSL. In addition to the XSL namespace, we are going to be referring to elements in our
XML table of contents that are within the JavaXML namespace. We must also include a namespace
declaration for this namespace, identical to the one we used in our XML document. Remember that
these namespaces are only used for association with the namespace each is assigned to, and do not
represent a schema, DTD, or any other actual piece of data. With the initial declaration, the root
element, and the namespace declarations, we can construct a very small skeleton of our XSL
stylesheet, as shown in Example 6.2.

Example 6.2. The Skeleton XSL Stylesheet
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
 version="1.0"
>

</xsl:stylesheet>

Java and XML

 page 125

Note that we added a version attribute, now required for XSL stylesheets. While this is a legal
stylesheet, it remains a useless one. We have not defined any rules within the stylesheet to match
elements within our incoming XML data. We look at how to perform this matching now.

6.3.2 XSL Templates

Perhaps the most fundamental task within an XSL stylesheet is to locate a particular element or set
of elements within the input XML document and apply a rule or set of rules to the resulting XML.
In other words, in Java parlance, you want to call some accessor (getMyNodes(criteria)), and
perform a computation (transformation) on the return value of your accessor. This is accomplished
by using an XSL template. A template is defined as a set of rules that should be applied to XML
that matches a specified XPath. So here we begin to use the various XSL components we have been
talking about. We define the template using the XSL element template . This of course becomes
xsl:template within our document to account for namespaces. This element should be defined
with the attribute match. The value of this attribute must be the XPath expression that will match
zero or more elements within the XML being processed. All of this results in the following:

<xsl:template match="[XPath expression]" >
 <!-- Here are my rules and formatting -->
</xsl:template>

So the only real complexity in using these templates is creating an XPath expression that matches
the XML element or elements you want to extract. The easiest of all XPath expressions are relative
ones. In other words, similar to specifying the lib/ directory when you are located at the root of a
filesystem, we can specify elements by their name when we are at a level directly above them in the
element hierarchy. Consider that the XSLT processor places us at the very top of the element
hierarchy when processing begins, and it becomes simple to match the root element of a document;
we simply use its name:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
 version="1.0"
>

 <xsl:template match="JavaXML:Book">
 <!-- We can now perform formatting on the XML -->
 </xsl:template>

</xsl:stylesheet>

You should realize that although in this case we match exactly one element, an XPath expression
might match many elements within the XML input, or none at all. We will look at examples of
these scenarios as we continue.

Once you have matched an element, you of course want to do something with it. Within a template,
you have access to all the elements within the matched element. Using the directory analogy, you
have moved into the lib/ directory. You can now relatively refer to any of the next-level elements
(JavaXML:Title and JavaXML:Contents) by their name; referring to any other elements would
require a more complex XPath expression. Before going on with that, though, let's actually produce
some output. The typical "Hello World!" example could be accomplished by simply writing the text
we want within our template:

<xsl:template match="JavaXML:Book" >
 Hello World!
</xsl:template>

Java and XML

 page 126

Of course, this isn't really that impressive; what we want is to get access to our XML data, not just
push out textual content within the XSL itself. The easiest way to do this in XSL is to let the default
behavior of XSL take over. If we match this root element, we have the entire XML element
hierarchy loaded into the template. We can then specify that any other templates in the stylesheet
should be applied. This may seem rather silly, as we have defined no other templates; however,
since that is the case, the XSLT processor traverses the element hierarchy, and every time a leaf
node with data is encountered, that data is added to the output of the transformation. The result is
that all data within the XML document is printed out hierarchically without any formatting applied.
The XSL construct we want to use here is xsl:apply-templates. Without any attributes specified
for this element, this tells the processor to match any elements relative to the current one with any
templates within the XSL stylesheet:

<xsl:template match="JavaXML:Book" >
 <xsl:apply-templates />
</xsl:template>

Still, this manages to border on the useless and inane when it comes to handling transformations.
All this data doesn't mean much without formatting applied. In our case, we should be able to apply
some general HTML formatting tags to generate HTML output. As in the case of inserting the
"Hello World" text, we can also insert standard HTML tags. We add an HTML head and body to
the output, and then let the XML data output within that body using the xsl:apply-templates
element we just discussed. Although this is a small improvement, it is our first step to creating
HTML output. Make the additions noted in Example 6.3 to your stylesheet.

Example 6.3. Generating an HTML File As Output
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
 version="1.0"
>

 <xsl:template match="JavaXML:Book">
 <html>
 <head>
 <title>Here is my HTML page!</title>
 </head>
 <body>
 <xsl:apply-templates />
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

The result of transforming this data would be the HTML output shown in Example 6.4.

Example 6.4. HTML Output from Example 6.3 and XML Contents File
<html xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/" >
<head>
<title>Here is my HTML page!</title>
</head>
<body>
 Java and XML

Java and XML

 page 127

 Introduction
 What Is It?
 How Do I Use It?
 Why Should I Use It?
 What's Next?

 Creating XML
 An XML Document
 The Header
 The Content
 What's Next?

<!-- Additional chapters left out for brevity -->

 This is a sample shared copyright file.

</body>
</html>

We're definitely starting to get somewhere. Although we haven't had to use very complex XSL
functionality yet, we are already seeing HTML-formatted results with very little effort. In the
process of creating some HTML output, you may notice that in our stylesheet, items that had to be
escaped, such as angle brackets, are passed through without problem to the output tree. This is
because in the XSL stylesheet itself, elements (such as the HTML head and body elements) that are
not part of the XSL specification are inserted into the output tree directly. This allows easy addition
of markup language constructs without having to go to great lengths to escape your output.

The last item we want to discuss before moving on is matching a specific element within a template.
In other words, suppose that we want the title of our HTML document to be the value of the
JavaXML:Title element within our XML document. This would be a good time to extract that
value without creating a template for that element; there is no formatting to apply, so building a
template to match the element would seem to be overkill. Instead, we want to obtain the value and
insert that value into our output "inline" within our HTML formatting. It shouldn't come as a
surprise to you that this is a simple operation. Here we introduce another XSL construct, the
xsl:value-of element. This construct, instead of matching an XPath expression for further
processing, matches an XPath expression and obtains the value of the matched input. The XPath
expression is supplied as a value for the select attribute on the element. As we go on, you will find
that the select attribute is common to many XSL elements, and is always used to supply an XPath
expression in this fashion. In our example stylesheet, we want to match the JavaXML:Title
element, which is relative to the root element we are within in our template. In other words, we
again have to do nothing special to construct the appropriate XPath expression. We simply name the
element to match:

<xsl:template match="JavaXML:Book" >
 <html>
 <head>
 <title><xsl:value-of select="JavaXML:Title" /></title>
 </head>
 <body>
 <xsl:apply-templates />
 </body>
 </html>
</xsl:template>

After processing, you get the following HTML fragment for your title:

Java and XML

 page 128

<head>
 <title>Java and XML</title>
</head>

Before we move on to some more complicated structures and expressions, a final word to the wise
is in order. Although in this last example we matched the JavaXML:Title element, selecting its
value does not remove it from the element hierarchy used as an input to the XSLT processor. The
somewhat surprising result is that not only will the value of the data within the element appear
within the title, but also it will be duplicated within the body of the HTML due to the xsl:apply-
templates construct. If this seems incorrect, consider that the input to the processor is immutable;
you cannot change this input, only specify how it is traversed and add information. To avoid
processing an element, you have to construct an XPath for matching templates that excludes the
element, or have a template match the element and produce no output within that template. In other
words, we could construct a template to explicitly match the JavaXML:Title element, and have it
generate no output:

<xsl:template match="JavaXML:Title" />

When all templates are applied within the root element template, this is matched and the effect is
that the element's content is ignored. Hopefully you see this as a clumsy sort of solution, and
already are eager to see how to construct an XPath expression that ignores this particular element.
Read on, and all shall be revealed!

6.3.3 Control Structures

XSL, like any good processing language, provides several useful control structures. Although these
do not closely resemble the constructs you may be used to in languages like Java and C, they are
helpful in controlling the traversal of the input tree given to the XSLT processor. We will look at
the most common of these and see how they help us control not only what content we are able to
access, but the order and fashion in which that content is accessed.

6.3.3.1 Using XPath for filtering

To begin our look at XSL control structures, we start with controlling the traversal of the document
tree we have been discussing. While this does not require a special construct, it is easily
accomplished with intelligent usage of XPath expressions. For example, specifying an XPath
expression that avoids duplication of the title element from our last example is as much of a control
structure as the constructs we will look at that direct program flow later in this section. In the
example we have been looking at concerning the JavaXML:Title element, we can devise a simple
solution. Remember that the set of nodes returned from an XPath expression is parsed
hierarchically; in other words, our XSLT processor does not see all the elements in an XML
document at one time. It sees all the elements at a specific level of nesting, and then begins to
traverse down each element's tree structure. In our document, this means that the elements seen by
the XSLT processor within the root element are the elements nested exactly one layer deep; in other
words, only JavaXML:Title, JavaXML:Contents, and JavaXML:Copyright. We want to exclude
the JavaXML:Title element, while processing the rest of the elements. This is best accomplished
through our first XPath node set function, not() . This function can be used to generate a set of
nodes that don't match a given XPath expression. First, we need to add the attribute allowing an
XPath expression to our applying of templates. For now, we can use an asterisk as the value of the
select attribute to signify we want all child nodes of the current node to be processed. This is
called selecting an axis upon which to operate; here we select the child axis. This obviously doesn't
completely accomplish the desired task, but it is a start:

Java and XML

 page 129

<xsl:template match="JavaXML:Book" >
 <html>
 <head>
 <title><xsl:value-of select="JavaXML:Title" /></title>
 </head>
 <body>
 <xsl:apply-templates select="*" />
 </body>
 </html>
</xsl:template>

Next we need to refine the result set. We add a set of brackets to the end of our selection criteria,
within which we can add criteria. It is within this set of brackets that our node set expression should
go, returning the nodes to process. In our example, we nest the not() function, and then specify
the nodes we do not want to be processed along the child axis. This would look like the following:

<xsl:template match="JavaXML:Book" >
 <html>
 <head>
 <title><xsl:value-of select="JavaXML:Title" /></title>
 </head>
 <body>
 <xsl:apply-templates select="*[not(myExpression)]" />
 </body>
 </html>
</xsl:template>

The expression we want should signify the name (including namespace prefix) of the element to
ignore, in our case JavaXML:Title. However, we still have some extra work to do. Because we are
selecting nodes along a specified axis, we must let the XSLT processor know where the node we are
referring to comes from. If this seems silly (why should I have to specify myself as the origin?),
consider that often the axis being selected is not the child axis, and so a frame of reference must be
given for those cases. This, of course, means that in even our simple case, we still must specify that
frame of reference. For this, we use the keyword self . This lets the processor know that the nodes
referred to after self are children of the current node being processed (JavaXML:Book). To separate
the keyword from the elements (actually a single element in our case), we use a double colon. This
allows us to reserve the single colon for namespace separators, and results in the final expression:

<xsl:template match="JavaXML:Book" >
 <html>
 <head>
 <title><xsl:value-of select="JavaXML:Title" /></title>
 </head>
 <body>
 <xsl:apply-templates select="*[not(self::JavaXML:Title)]" />
 </body>
 </html>
</xsl:template>

If you are scratching your head a bit by now, don't feel like you are the only one. Node sets, axes,
and transformations are not a small or trivial part of the world of XML; an entire book could easily
be written on the subject. For now, try to absorb what you can and make notes about what confuses
you. After completing this and the next chapter, you may want to research online at the W3C
(http://www.w3.org) anything you are still unclear about. You can also view and join the XSL
mailing list and archives by visiting http://www.mulberrytech.com on the Web.

6.3.3.2 Looping and iteration

Java and XML

 page 130

In addition to using XPath and functions to generate a specific traversal of the input tree, XSL also
provides constructs to control processor flow that are analogous to standard programming language
control structures. The first of these we look at is a looping construct, xsl:for-each . This is a
perfect choice for iterating through data within the same element type. For example, our XML table
of contents has several chapters defined within it, and we can loop through each chapter, printing
out the title. To accomplish this task, we first want to add a new template to our XSL file to match
the JavaXML:Contents element. This gives us a framework within which to build our looping
structure. Without this outer template, we would have no templates that we could insert our looping
into. While we could continue to add onto our original JavaXML:Book template, our stylesheet
could easily become riddled with complex XPath expressions that reference nodes several layers
deep. By creating another template for JavaXML:Contents, we are now able to write XPath
expressions that begin with JavaXML:Contents as the current "base" element, rather than the
JavaXML:Book element. This keeps our XPath expressions simple and our stylesheet readable.

Once within this new template, we can print out a heading specifying that we are about to display
the table of contents. This is easily done with some HTML directly inserted into our stylesheet. We
then add a horizontal rule (<hr>) to separate our title from the contents:

<xsl:template match="JavaXML:Contents" >
 <center>
 <h2>Table of Contents</h2>
 </center>
 <hr>
</xsl:template>

Before we construct our loop, you should notice that something in our XSL is wrong. If you don't
see it, remember that XSL must always remain well-formed XML. Even when we are adding static
HTML, the HTML must conform to this rule (in essence, making it XHTML)! So when processing
this stylesheet, we would receive an error, because our <hr> tag has no closing tag. From an XML
point of view, this is certainly nothing surprising, but it may catch you off guard if you are used to
coding HTML. The simple solution to this is to use the empty notation for this tag, which browsers
ignore when parsing the generated HTML:

<xsl:template match="JavaXML:Contents" >
 <center>
 <h2>Table of Contents</h2>
 </center>
 <hr />
</xsl:template>

This will take a little getting used to if you do lots of content development, but in time, it will feel
as natural as coding the less-formal HTML standard did. With this detail worked out, we can add in
our looping. The xsl:for-each construct takes in an XPath expression that should result in a node
set to iterate over, specified via the select attribute; in our case, we want all of the
JavaXML:Chapter elements to be the result of this expression. By now it should be easy for you to
create this expression:

<xsl:template match="JavaXML:Contents" >
 <center>
 <h2>Table of Contents</h2>
 </center>
 <hr />
 <xsl:for-each select="JavaXML:Chapter">
 </xsl:for-each>
</xsl:template>

Java and XML

 page 131

With this in place, we merely have to add content. Within each iteration of this loop, the node being
traversed becomes the current node in our hierarchy. This means that to refer to elements and
attributes that are nested within the JavaXML:Chapter element, we refer to them relative to that
element, rather than the element being traversed within the outer template, JavaXML:Contents. In
our example, we can now print out the heading of each chapter. To make the result look nicer, we
add each heading as an unnumbered list to our HTML output:

<xsl:template match="JavaXML:Contents" >
 <center>
 <h2>Table of Contents</h2>
 </center>
 <hr />

 <xsl:for-each select="JavaXML:Chapter">
 <xsl:value-of select="JavaXML:Heading" />
 </xsl:for-each>

</xsl:template>

The resulting HTML from this stylesheet is actually beginning to look like useful content! We'll
look at how you can produce this content in your servlet engine in Chapter 9; the generated HTML
would look like Example 6.5.

Example 6.5. HTML Output from Modified XSL Stylesheet
<html xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/" >
<head>
<title>Java and XML</title>
</head>
<body>
<center>
<h2>Table of Contents</h2>
</center>
<hr>

Introduction
Creating XML
Parsing XML
Web Publishing Frameworks
This is a sample shared copyright file.</body>
</html>

By now you're probably jumping at the chance to see how this transformation occurs; hold on until
the next chapter, as a firm understanding of the constructs within XSL will be necessary before
performing the transformations. The value of knowing XSL syntax before using an XSLT processor
will pay off in our later discussions.

You may be asking yourself why we use a looping construct in XSL. Wouldn't it be simpler to
create a new template for the element we want to format, such as JavaXML:Chapter, and handle the
formatting within that template? It might be simpler (we did the same thing for our
JavaXML:Contents element earlier); however, one consideration is readability. It is very clear in
our stylesheet what the purpose of our looping is; certainly much clearer than if we applied
templates to each JavaXML:Heading element individually. It is also very easy to display only the
data we want made visible, in our case the heading, within this construct. While we are not forced
to show other nested elements like the JavaXML:Section element in our template, the XML
chapters are being used for formatting within a list structure () that is created in the
JavaXML:Contents template. If we did construct a template for the chapters, you would have to
remember (as would those who had to maintain your stylesheet when you moved on to your next

Java and XML

 page 132

XML project) that content within that template had to be a list item (). This is clearly
not very good style; as with many concepts in XML, the possibility of doing something doesn't
always suggest the correctness of that thing. So yes, it might be simpler in the short term to create a
template, but almost certainly a poorer decision in the long run.

6.3.3.3 Choosing elements to process

Next to looping through a set of nodes, one of the most common tasks you will encounter is
processing only nodes that meet a certain criteria. This should remind wizened developers of the
simple if-then construct in most languages. We can simulate this behavior with the xsl:if
construct, which allows us to return nodes that conform to both an XPath expression and some user-
defined criteria. This is helpful when all data of a certain type needs to be evaluated, and only a
subset of that data should be displayed or formatted in a particular way. In our example, suppose
that we want to separate the chapters focusing on Java from those that concentrate on XML. We
have this data in our XML document as the value of the focus attribute ready for just such a use.
The attribute that we use to complement the xsl:if element is the test attribute. The result of
evaluating the expression within test should be either true or false; if true, the contents of the
xsl:if element will be evaluated, and if false, ignored. Easy enough, right? Let's take a look at our
example using this construct to only display chapters whose focus attribute is equal to the value
`Java':

<xsl:template match="JavaXML:Contents" >
 <center>
 <h2>Table of Contents</h2>
 </center>
 <hr />

 <xsl:for-each select="JavaXML:Chapter">
 <xsl:if test="@focus='Java'">
 <xsl:value-of select="JavaXML:Heading" />
 </xsl:if>
 </xsl:for-each>

</xsl:template>

There are few surprises here. You may be unfamiliar with the way we reference an XML attribute.
Instead of using the name, as with elements, we prefix the attribute name with the @ sign. This lets
our XSLT processor know that an attribute is being referred to, not an element. We then compare it
to the literal value `Java', signified by the surrounding quotation marks as static text. For the two
chapters where this is not true (Chapter 1, and Chapter 2), the heading is not printed; the other two
chapters, because they do meet the criteria specified, are processed and displayed to the screen.

Although this is a common and useful way to make decisions occur within your transformations, it
is not the best solution for our document. Rather than only showing XML-based chapters or Java-
based chapters, we would prefer to display the name of the chapter, and then the focus of the
chapter in parentheses after the name. While we could use xsl:if to accomplish this, we would
need two loops; the first to iterate through the chapters and test for the focus being XML, and the
second to loop again and test for the focus being Java. Not only is this costly for performance, but it
can result in the chapters being displayed out of order; all of the XML chapters would always
appear first, and all Java chapters last. We want to make a choice based on a similar test, but
perform an action in either case. The xsl:choose element makes this possible. With this construct,
we can specify a test, perform one action if the test evaluates to true, and another if it evaluates to
false. This element surrounds the block of actions to perform for either case. Inside this block, the
element xsl:when is used, and a test is specified to its test attribute. This test and its format

Java and XML

 page 133

should be the same as that specified to the xsl:if element's test attribute. Within this element,
processing that should occur if the test evaluates to true is included. The difference is that we also
include an xsl:otherwise element, which contains the processing we wish to occur if the test
evaluates to false. This behaves much like the default keyword in a Java switch statement. In our
example, we can make some minor modifications to use this construct. In either case, we write the
name of the element out, and then, based on our test, determine what focus to display:

<xsl:template match="JavaXML:Contents" >
 <center>
 <h2>Table of Contents</h2>
 </center>
 <hr />

 <xsl:for-each select="JavaXML:Chapter">
 <xsl:choose>
 <xsl:when test="@focus='Java'">
 <xsl:value-of select="JavaXML:Heading" /> (Java Focus)
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="JavaXML:Heading" /> (XML Focus)
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>

</xsl:template>

As you're absorbing this example, realize that it only works because there are only two possible
choices for a chapter's focus. Also realize that we could have just as easily used XSL to output the
value of the focus attribute directly to the screen. Of course, that wouldn't have taught you as much
about XSL, or been as fun! Seriously, the xsl:choose is very helpful for controlling the traversal
and processing of a node set returned from an XPath expression, particularly when a certain subset
of those nodes needs to be singled out and handled differently. In our case, this manages to further
clean up our HTML output, as well as move it closer to looking like a real table of contents, shown
in Example 6.6.

Example 6.6. HTML Output with XSL Control Structures
<html xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/" >
<head>
<title>Java and XML</title>
</head>
<body>
<center>
<h2>Table of Contents</h2>
</center>
<hr>

Introduction (XML Focus)
Creating XML (XML Focus)
Parsing XML (Java Focus)
Web Publishing Frameworks (Java Focus)
This is a sample shared copyright file.</body>
</html>

With these control structures, you should be able to handle a variety of tasks, as well as learn to use
more complex XPath expressions and tests to further help you process only the specific data you
need. Next we look at how to manipulate and create new elements and attributes within XSL to
complement the ones available in your processor's input.

Java and XML

 page 134

6.3.4 Elements and Attributes

You should be starting to see how much control a textual XSL stylesheet gives you. With as much
control as you have over the processing of XML elements and attributes, it shouldn't come as a
great shock to learn that you can also define attributes and elements within your XSL stylesheet.
These can be used in computations, or simply created and added to the output of your
transformation. They are most commonly used in some more advanced templates and in parameter
parsing, which we won't spend much time on here. If you have a lot of interest in these more
advanced uses of XSL, you may want to subscribe to the XSL list, which discusses these topics all
day every day. You may get more information on the XSL list at
http://www.mulberrytech.com/xsl/xsl-list.

One common reason to create elements and attributes within a stylesheet is to generate dynamic
HTML references from XML data. To demonstrate, let's add a section of useful references within
our XML file (no, this isn't really appropriate in a table of contents, but it's a great example!), nested
within our JavaXML:Book element (we need to be sure to turn off validation, as we are now
breaking rules in our DTD!):

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
 publicationDate="June 2000">
 <JavaXML:Title>Java and XML</JavaXML:Title>

 <!-- Our Chapters Content -->

 </JavaXML:Contents>

 <JavaXML:References>
 <JavaXML:Reference>
 <JavaXML:Name>The W3C</JavaXML:Name>
 <JavaXML:Url>http://www.w3.org/Style/XSL</JavaXML:Url>
 </JavaXML:Reference>
 <JavaXML:Reference>
 <JavaXML:Name>XSL List</JavaXML:Name>
 <JavaXML:Url>http://www.mulberrytech.com/xsl/xsl-list</JavaXML:Url>
 </JavaXML:Reference>
 </JavaXML:References>

 <!-- Copyright -->

 </JavaXML:Book>

To set this up, we need to add a new template for this element in our stylesheet. We can also add in
some HTML formatting, as well as an iteration through the references in the document, all using the
techniques we have been discussing:

<xsl:template match="JavaXML:References" >
 <p>
 <center><h3>Useful References</h3></center>

 <xsl:for-each select="JavaXML:Reference">
 <!-- The URL should go here -->
 </xsl:for-each>

 </p>
</xsl:template>

Java and XML

 page 135

All that is left is to create our link in HTML. It should use the JavaXML:name element's value as the
label, and the JavaXML:url element's value as the URL to link to. However, how do we add this
into a tag we define? In other words, we want to do something like this in our XSL:

[value of the name element]

The trick is that the attribute we are outputting needs to be constructed from an element inputted to
the processor. A good way to accomplish this feat is to use the xsl:element and xsl:attribute
constructs to set data values for these elements and attributes. The element construct takes a name
attribute that gives the element its name, and its value is any data within the element. In other
words, <xsl:element name="myElement">Hello!</xsl:element> would be outputted simply as
<myElement>Hello!</myElement>. We can also add <xsl:attribute> tags to this definition,
which function the same way. So in a more complete example, the following XSL:

<xsl:element name="myElement" >
 <xsl:attribute name="myAttribute">
 Java
 </xsl:attribute>
 is Great!
</xsl:element>

would be evaluated, and the resulting output would be:

<myElement myAttribute="Java" >is Great!</myElement>

Complex expressions can appear within the xsl:element and xsl:attribute elements, allowing
virtually any values to be created inline. This gives us the tools we need to tackle our URL building
problem. Let's take a look at a solution to our problem:

<xsl:template match="JavaXML:References" >
 <p>
 <center><h3>Useful References</h3></center>

 <xsl:for-each select="JavaXML:Reference">

 <xsl:element name="a">
 <xsl:attribute name="href">
 <xsl:value-of select="JavaXML:Url" />
 </xsl:attribute>
 <xsl:value-of select="JavaXML:Name" />
 </xsl:element>

 </xsl:for-each>

 </p>
</xsl:template>

We are able to insert the values of elements, as well as generate an attribute, using an XSL element,
which in turn becomes an HTML element and is interpreted as a hyperlink. The output of this
transformation, shown in Example 6.7, is exactly what we want.

Example 6.7. HTML Output with XSL Styles for References
<html xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/" >
<head>
<title>Java and XML</title>
</head>
<body>

Java and XML

 page 136

<center>
<h2>Table of Contents</h2>
</center>
<hr>

Introduction (XML Focus)
Creating XML (XML Focus)
Parsing XML (Java Focus)
Web Publishing Frameworks (Java Focus)

<p>
<center>
<h3>Useful References</h3>
</center>

The W3C

XSL List

</p>This is a sample shared copyright file.</body>
</html>

6.3.5 Data . . . Just the Data

It could be argued that in a perfect world, only one transformation would need to occur for any
XML document. It also might be argued that the XML document would be pure data, without a
single formatting tag or element that should remain unprocessed. However, we don't live in a
perfect world, and the result is that sometimes elements in an XML document are intended to be
used as data. If that just confused you, don't worry, as you are certainly not alone. However, there
are probably some developers who are already nodding their heads out there. They are the
developers who have had to produce HTML within XML, and try to figure out how to tell the
XSLT processor to "leave my HTML alone!" They are the developers who have to chain stylesheets
together, or generate elements that must go through unprocessed to be used in another XML-aware
application. They are the developers who sometimes just want to see their output on the screen
without it being processed. In short, if they aren't you yet, someday they will be!

The final construct we look at in XSLT processing is the construct that requests that no processing
occur! Let's make this a little more applicable with an example. Instead of using the entity reference
for the XML table of contents' copyright, let's insert some HTML data into that element. This could
be data from another file, or some sort of generated data that is beyond your control. In other words,
it is HTML that you are stuck with, something that happens quite a bit in applications today. So we
can add some HTML into our XML document:

<JavaXML:Copyright>
 <center>
 <table cellpadding="0" cellspacing="1" border="1" bgcolor="Black">
 <tr>
 <td align="center">
 <table bgcolor="White" border="2">
 <tr>
 <td>

 Copyright O'Reilly and Associates, 2000

Java and XML

 page 137

 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </center>
</JavaXML:Copyright>

This is the type of HTML formatting that you may have to handle in your XML transformations. If
you are thinking that this isn't such a big deal, you might be surprised by the results of running this
change in your document through the XSLT processor; what you get is the text "Copyright O'Reilly
and Associates, 2000," without any formatting included. This is only surprising until you remember
our initial discussion on template matching. Remember that if a template is not specified for an
element, nothing is outputted, and the input tree is continually traversed until data is encountered
and printed out. What came into our processor as HTML tags was interpreted as XML, and all of
our center, table, tr, td, and font tags were happily processed and ignored in our XML
transformation, leaving us only the textual data, unformatted and unchanged. Fortunately, there is a
simple solution to the problem of specifying some elements as data: the xsl:copy-of construct.
This functions identically in form to the xsl:value-of construct, taking in an XPath expression
through the value of the select attribute. However, instead of outputting the value of the node set
returned, it passes the complete node set through the processor from the input directly to the output.
All content within the node set is not transformed.

<xsl:template match="JavaXML:Copyright" >
 <xsl:copy-of select="*" />
</xsl:template>

This passes through the JavaXML:Copyright element's contents (including the HTML) untouched.
However, do not think this gives you freedom to break any XML rules! The content of this node set
is parsed the same as any other XML before it ever hits the processing stage, and must be well-
formed XML. In other words, using ampersands (&) or elements without closing tags (
) is just
as illegal in a node set being copied as it is in one being transformed. Still, the advantages of being
able to copy data from your input directly to your output, possibly for later processing, should
become clear in situations where your data is not all XML, or when multiple stylesheets may need
to be applied and all elements shouldn't be processed in the same stylesheet. Let's take a look at our
completed XSL stylesheet, shown in Example 6.8, with this new template added in.

Example 6.8. Completed XSL Stylesheet
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
 version="1.0"
>

 <xsl:template match="JavaXML:Book">
 <html>
 <head>
 <title><xsl:value-of select="JavaXML:Title" /></title>
 </head>
 <body>
 <xsl:apply-templates select="*[not(self::JavaXML:Title)]" />
 </body>
 </html>
 </xsl:template>

Java and XML

 page 138

 <xsl:template match="JavaXML:Contents">
 <center>
 <h2>Table of Contents</h2>
 </center>
 <hr />

 <xsl:for-each select="JavaXML:Chapter">
 <xsl:choose>
 <xsl:when test="@focus='Java'">
 <xsl:value-of select="JavaXML:Heading" /> (Java Focus)
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="JavaXML:Heading" /> (XML Focus)
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>

 </xsl:template>

 <xsl:template match="JavaXML:References">
 <p>
 <center><h3>Useful References</h3></center>

 <xsl:for-each select="JavaXML:Reference">

 <xsl:element name="a">
 <xsl:attribute name="href">
 <xsl:value-of select="JavaXML:Url" />
 </xsl:attribute>
 <xsl:value-of select="JavaXML:Name" />
 </xsl:element>

 </xsl:for-each>

 </p>
 </xsl:template>

 <xsl:template match="JavaXML:Copyright">
 <xsl:copy-of select="*" />
 </xsl:template>

</xsl:stylesheet>

We can see how this copying allowed our HTML tables to pass through unmodified; Example 6.9
shows the output from the transformation.

Example 6.9. HTML Output with XHTML Content Copied Through
<html xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/" >
<head>
<title>Java and XML</title>
</head>
<body>
<center>
<h2>Table of Contents</h2>
</center>
<hr>

Introduction (XML Focus)
Creating XML (XML Focus)
Parsing XML (Java Focus)
Web Publishing Frameworks (Java Focus)

Java and XML

 page 139

<p>
<center>
<h3>Useful References</h3>
</center>

The W3C

XSL List

</p>This is a sample shared copyright file.</body>
</html>

Finally, as a preview of the next chapter on using an XSLT processor, Figure 6.2 shows the HTML
as seen in a web browser .

Figure 6.2. HTML output seen in a web browser

6.3.6 When Text Just Isn't Good Enough

As useful and common as transforming XML into another textual format is, sometimes it doesn't
cover all the bases. We have stressed that XML data can be transformed into nearly any format, not
just textual ones like HTML or WML. For example, XML can be processed and transformed into a
PDF (Portable Document Format) to be viewed through Adobe Acrobat. To accomplish these
binary transformations, formatting objects are used. We briefly discussed formatting objects earlier
when talking about the XSL specification. Because XSL must output well-formed XML, it is
impossible for an XSLT processor to directly output binary data. However, formatting objects
define a set of XML elements and attributes that can be used to represent areas in an output format.
An area is then used by a formatting objects processor to turn the specified XML area into a binary
format. For example, consider the following XSL fragment, which transforms XML using
formatting objects:

<xsl:template match="JavaXML:Title" >
 <fo:block font-size="24pt" text-align-last="centered"
 space-before.optimum="24pt">
 <xsl:apply-templates/>
 </fo:block>

Java and XML

 page 140

</xsl:template>

The output of the transformation for a JavaXML:Title element whose value was "Java and XML"
would be this XML document fragment:

<fo:block font-size="24pt" text-align="centered"
 space-before.optimum="24pt">
 Java and XML
</fo:block>

On its own, this is fairly cryptic, and certainly not a PDF document fragment. However, a
formatting objects processor, such as FOP from the Apache XML Group (http://xml.apache.org)
can then take the area represented by this XML fragment and convert it into PDF-specific binary
data. The result would be the title, "Java and XML," centered on the page with the correct font size.
This same XML fragment could be turned into a Word document if a formatting processor was
developed for Microsoft Word, or a Star Office spreadsheet if a Star Office processor was available.

In this way, XSL can generate XML "areas" using formatting objects; these representations of data
can then be manipulated in ways that are specific to the binary data that should result. At the same
time, the XML format is preserved in both the original and transformed documents, continuing to
keep the data portable. In fact, the answer to when text isn't enough isn't to change the way things
are done; the same XSL techniques are used, with a different set of transformation objects. The
result is one source document with a variety of output formats.

6.4 What's Next?

We have now created a complete, functional, XSL stylesheet. You should have a pretty good idea
of how to manipulate XML data and transform that data, as well as how to create new data within
an XSL stylesheet. In order to use the pairing of XML and XSL, though, we need an XSLT
processor. The XSLT processor, in our case written in Java, will handle the actual transformation
and generate the output of our stylesheet being applied to our XML document. In the next chapter,
we look at using XSLT processors, both from a command line in a standalone fashion and from
within Java programs. We will also delve into the Document Object Model (DOM) to see how it is
used to generate XML data in a format suitable for input into an XSLT processor. We will then end
the book's section on basic XML syntax and use by seeing how all the parts of XML we have
looked at so far can be assembled and used within larger XML applications.

Chapter 7. Traversing XML
In the last chapter, we learned how to create stylesheets for our XML documents, beginning our
section on XSL. In this chapter, we complete that discussion by taking a detailed look at how our
document and stylesheet are processed and transformed into output. As in our previous pairs of
chapters, this chapter gives you the Java application of the XML language structures we just learned
about. We will look at Java XSLT processors, Java APIs for handling XML input in tree formats,
and how these APIs differ from the SAX APIs we have already examined.

To begin this chapter, we take a look at how to make the transformations dangled in front of you
throughout the last chapter actually occur on your own local machine. This should give you a
"virtual playground" where you can experiment with all the various XSL and XSLT constructs on
your own, as well as adding more complex formatting to the stylesheet we created last chapter. It
will also begin our closer look into how an XSLT processor works. We then complement our view
of a processor's output with a detailed look at the type of input it expects, and the format of this

Java and XML

 page 141

input. This leads us into a first look at the Document Object Model (DOM), an alternative to using
SAX for getting to XML data. Finally, we will begin to move back a step from parsers, processors,
and APIs, and look at how to put an XML application together. This will set the tone for the rest of
the book, as we take a more topical approach on various types of XML applications and how to take
advantage of proven design patterns and XML frameworks.

Before going on, you should understand not only the focus of the chapter, but also what it does not
focus on. This chapter will not teach you how to write an XSLT processor, any more than previous
chapters taught you to write an XML parser. Certainly the concepts here are very important, in fact
critical, to using an XSLT processor, and are a great starting point for getting involved with existing
efforts to enhance XSLT processors, such as the Apache Group's Xalan processor. However,
parsers and processors are extremely complex programs, and to try to explain the inner workings of
them within these pages would consume the rest of this book and possibly another! Instead, we
continue to take the approach of an application developer or Java architect; we use the excellent
tools that are available, and enhance them when needed. In other words, you have to start
somewhere, and for a Java developer, using a processor should precede trying to code one.

7.1 Getting the Output

If you followed along with our examples in the last chapter, you should be ready to put your
stylesheet and XML document through a processor and see the output for yourself. This is a fairly
straightforward process with most XSLT processors. Continuing in our vein of using open source,
best-of-breed products, we will use the Apache Xalan XSLT processor, which you can find
information and downloads for at http://xml.apache.org. In addition to being contributed to by
Lotus, IBM, Sun, Oracle, and some of the best open source minds in the business, Xalan fits in very
well with Apache Xerces, the parser we looked at in earlier chapters. If you already have another
processor, you should easily be able to find the programs and instructions needed to run the
examples in this chapter; your output should also be identical or very close to the example output
we look at here.

The first use of an XSLT processor we will investigate is invoking it from a command line. This is
often done for debugging, testing, and offline development of content. Consider that many high-
performance web sites generate their content offline, often nightly or weekly, to reduce the load and
performance constraints of dynamically transforming XML into HTML or other markup languages
when a user requests a page. We can also use this as a starting point for peeling back the layers of
an XML transformation. Consult your processor's documentation for how to use XSLT from the
command line. For Apache Xalan, the command used to perform this task is:

D:\prod\JavaXML> java org.apache.xalan.xslt.Process
 -IN [XML Document]
 -XSL [XSL Stylesheet]
 -OUT [Output Filename]

Xalan, like any processor you choose, can take in many other command-line options, but these three
are the primary ones we want to use. Xalan also uses the Xerces parser by default, so you will need
to have both the parser and processor classes in your class path to run Xalan from the command
line. You can specify a different XML parser implementation through the command line if you
wish, although the support for Xerces is more advanced than for other parsers. You also do not need
to reference a stylesheet in your XML document if generating a transformation this way; the XSLT
processor will apply the stylesheet you specify on the command line to the XML document. We
will use our XML document's internal stylesheet declarations in Chapter 9. So taking the names of
our XML document and XSL stylesheet (in this case in a subdirectory), we can determine the

Java and XML

 page 142

syntax needed to run the processor. Since we are transforming our XML into HTML, we specify
contents.html as the output for the transformation:

D:\prod\JavaXML> java org.apache.xalan.xslt.Process
 -IN contents.xml
 -XSL XSL/JavaXML.html.xsl
 -OUT contents.html

Running this command from the appropriate directory should cause Xalan to begin the
transformation process, giving you output similar to that shown in Example 7.1.

Example 7.1. Transforming XML with Apache Xalan
D:\prod\JavaXML>java org.apache.xalan.xslt.Process
 -IN contents.xml
 -XSL XSL/JavaXML.html.xsl
 -OUT contents.html
========= Parsing file:D:/prod/JavaXML/XSL/JavaXML.html.xsl ==========

Parse of file:D:/prod/JavaXML/XSL/JavaXML.html.xsl took 1161 milliseconds
========= Parsing contents.xml ==========
Parse of contents.xml took 311 milliseconds
=============================
Transforming...
transform took 300 milliseconds
XSLProcessor: done

Once this is complete, you should be able to open the generated file, contents.html, in an editor or
web browser. If you followed along with all the examples in the last chapter, your HTML document
should look similar to Figure 7.1 (remember our preview of this HTML from the last chapter?).

Figure 7.1. HTML from XML transformation

As simple as that, you have a means to make changes and test the resultant output from XML and
XSL stylesheets! The Xalan processor, when run from the command line, also has the helpful
feature of identifying errors that may occur in your XML or XSL and the line numbers on which
those errors are encountered in the source documents, aiding even further in testing and debugging.

Java and XML

 page 143

7.2 Getting the Input

Besides the reasons already mentioned for not going into how a processor works, there is an even
better reason not to spend time on the issue: the inputs and outputs of the processor are far more
interesting! You have seen how to parse a document incrementally with the SAX interfaces and
classes. You can easily make decisions within the process about what to do with the elements
encountered, how to handle particular attributes, and what actions error conditions should result in.
However, there are some problems with using that model in various situations, and providing input
to an XSLT processor is one of them.

7.2.1 SAX Is Sequential

The sequential model that SAX provides does not allow for random access to an XML document. In
other words, in SAX you get information about the XML document as the parser does, and lose that
information when the parser does. When element 2 comes along, it cannot access information in
element 4, because element 4 hasn't been parsed yet. When element 4 comes along, it can't "look
back" on element 2. Certainly, you have every right to save the information encountered as the
process moves along; coding all these special cases can be very tricky, though. The other more
extreme option is to build an in-memory representation of the XML document. We will see in a
moment that a Document Object Model parser does exactly that for us, so performing the same task
in SAX would be pointless, and probably slower and more difficult.

7.2.2 SAX Siblings

Another difficult task to achieve with the SAX model is moving laterally between elements. The
access provided in SAX is largely hierarchical, as well as sequential. You are going to reach leaf
nodes of the first element, then move back up the tree, then down again to leaf nodes of the second
element, and so on. At no point is there any clear relation of what "level" of the hierarchy you are
at. Although this can be implemented with some clever counters, it is not what SAX is designed for.
There is no concept of a sibling element; no concept of the next element at the same level, or of
which elements are nested within which other elements.

The problem with this lack of information is that an XSLT processor must be able to determine the
siblings of an element, and more importantly, the children of an element. Consider the following
code snippet in an XSL template:

<xsl:template match="myParentElement" >
 <!-- Add content to the output tree -->
 <xsl:apply-templates select="myChildElement1|myChildElement2" />
 <!-- Add more content to the output tree -->
</xsl:template>

Here, templates are being applied via the xsl:apply-templates construct, but they are being
applied to a specific node set that matches the given XPath expression. In this example, the template
should be applied only to the elements myChildElement1 or myChildElement2 (separated by the
XPath OR operator, the pipe). In addition, because a relative path is used, these must be direct
children of the element myParentElement. Determining and locating these nodes with a SAX
representation of an XML document would be extremely difficult. With an in-memory, hierarchical
representation of the XML document, locating these nodes is trivial, another reason why the DOM
approach is heavily used for input into XSLT processors.

Java and XML

 page 144

7.2.3 Why Use SAX At All?

All these discussions about the "shortcomings" of SAX may have you wondering why one would
ever choose to use SAX at all. If you are thinking along these lines, remind yourself that these
shortcomings are all in regard to a specific application of XML data, in this case processing it
through XSL. In fact, all of these "problems" with using SAX are the exact reason you would
choose to use SAX. Confusing? Maybe not as much as you think.

Imagine parsing a table of contents represented in XML for an issue of National Geographic. This
document could easily be 500 lines in length, more if there is a lot of content within the issue.
Imagine an XML index for an O'Reilly book. Hundreds of words, with page numbers, cross-
references, and more. And these are all fairly small, concise applications of XML. As an XML
document grows in size, so does the in-memory representation when represented by a DOM tree.
Imagine an XML document so large and with so many nestings that the representation of it using
the DOM begins to affect the performance of your application. And now imagine that the same
results could be obtained by parsing the same input document sequentially using SAX, and only
need one-tenth, or one-hundredth, of your system's resources to accomplish the task.

The point of this example is that just as in Java there are many ways to do the same job, there are
many ways to obtain the data in an XML document. In various scenarios, SAX is easily the better
choice for quick, less-intensive parsing and processing. In other cases, the DOM provides an easy-
to-use, clean interface to data in a desirable format. You, the developer, must always analyze your
application and its purpose to make the correct decision as to which method to use, or how to use
both in concert. As always, the power to make good or bad decisions lies in your knowledge of the
alternatives. Keeping that in mind, let's look at this new alternative in more detail.

7.3 The Document Object Model (DOM)

The Document Object Model, unlike SAX, has its origins in the World Wide Web Consortium
(W3C). Whereas SAX is public-domain software, developed through long discussions on the XML-
dev mailing list, DOM is a standard just as the actual XML specification itself is. The DOM is also
not designed specifically for Java, but to represent the content and model of documents across all
programming languages and tools. Bindings exist for JavaScript, Java, CORBA, and other
languages, allowing the DOM to be a cross-platform and cross-language specification.

In addition to being different from SAX in regard to standardization and language bindings, the
DOM is organized into " levels" instead of versions. DOM Level One is an accepted
Recommendation, and you can view the completed specification at http://www.w3.org/TR/REC-
DOM-Level-1/. Level One details the functionality and navigation of content within a document. A
document in the DOM is not just limited to XML, but can be HTML or other content models as
well! Level Two, which should finalize in mid-2000, adds upon Level One by supplying modules
and options aimed at specific content models, such as XML, HTML, and Cascading Style Sheets
(CSS). These less-generic modules begin to "fill in the blanks" left by the more general tools
provided in DOM Level One. You can view the current Level Two Candidate Recommendation at
http://www.w3.org/TR/DOM-Level-2/. Level Three is already being worked on, and should add
even more facilities for specific types of documents, such as validation handlers for XML.

7.3.1 The DOM and Java

Using the DOM for a specific programming language requires a set of interfaces and classes that
define and implement the DOM itself. Because the methods involved are not outlined specifically in
the DOM specification, and instead the model of a document is focused upon, language bindings

Java and XML

 page 145

must be developed to represent the conceptual structure of the DOM for its use in Java or any other
language. These language bindings then serve as APIs for us to manipulate documents in the
fashion outlined in the DOM specification.

We are obviously concerned with the Java language binding. The latest Java bindings, the DOM
Level Two Java bindings, can be downloaded from http://www.w3.org/TR/DOM-Level-2/java-
binding.html. The classes you should be able to add to your IDE or class path are all in the
org.w3c.dom package (and its subpackages). However, before downloading these yourself, you
should check the XML parser and XSLT processor you purchased or downloaded; like the SAX
package, the DOM package is often included with these products. This also ensures a correct match
between your parser, processor, and the version of DOM that is supported.

Most processors do not handle the task of generating a DOM input themselves, but instead rely on
an XML parser that is capable of generating a DOM tree. For this reason, it is often the XML parser
that will have the needed DOM binding classes and not the XSLT processor. In addition, this
maintains the loose coupling between parser and processor, letting one or the other be substituted
with comparable products. As Apache Xalan, by default, uses Apache Xerces for XML parsing and
DOM generation, it is the level of support for DOM that Xerces provides that is of interest to us.

7.3.2 Getting a DOM Parser

To give you an idea of how DOM works, we are going to look at how the Apache Xalan processor
and other programs that need DOM input receive an XML document in the DOM tree structure.
This will give us our first look at the DOM Java language binding, and start us towards
understanding the concepts behind handling XML documents using the DOM.

One thing that the DOM does not specify is how a DOM tree is created. The specification instead
focuses on the structure and APIs for manipulating this tree, which leaves a lot of latitude in how
DOM parsers are implemented. Unlike the SAX XMLReader class, which dynamically loads a SAX
XMLReader implementation, you will need to import and instantiate your vendor's DOM parser class
explicitly. To begin, create a new Java file and call it DOMParserDemo.java. We will look at how
to build a simple DOM parsing program to read in an XML document and print out its contents.
Create the structure and skeleton of your example class first, as shown in Example 7.2.

Example 7.2. DOMParserDemo Class
// Import your vendor's DOM parser
import org.apache.xerces.parsers.DOMParser;

/**
 * <code>DOMParserDemo</code> will take an XML file and display
 * the document using DOM.
 *
 * @version 1.0
 */
public class DOMParserDemo {

 /**
 * <p>
 * This parses the file, and then prints the document out
 * using DOM.
 * </p>
 *
 * @param uri <code>String</code> URI of file to parse.
 */
 public void performDemo(String uri) {

Java and XML

 page 146

 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Instantiate your vendor's DOM parser implementation
 DOMParser parser = new DOMParser();
 try {
 // parser.parse(uri);

 } catch (Exception e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }
 }

 /**
 * <p>
 * This provides a command-line entry point for this demo.
 * </p>
 */
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java DOMParserDemo [XML URI]");
 System.exit(0);
 }

 String uri = args[0];

 DOMParserDemo parserDemo = new DOMParserDemo();
 parserDemo.performDemo(uri);
 }

}

This is set up in a fashion similar to our earlier SAXParserDemo class, but imports the Apache
Xerces DOMParser class directly and instantiates it. We have commented out our actual invocation
of the parse() method for the moment; before looking at what is involved in parsing a document
into a DOM structure, we need to address issues of vendor neutrality in our choice of parsers.

Keep in mind that this is simple and works great for many applications, but is not portable across
parser implementations as our SAX example was. The initial impulse would be to use Java
constructs like Class.forName(parserClass).newInstance() to get an instance of the correct
vendor parser class. However, different DOM implementations behave in a variety of fashions:
sometimes the parse() method returns an org.w3c.dom.Document object (which we look at
next); sometimes the parser class provides a getDocument() method; and sometimes different
parameter types are required for the parse() method (InputSource, InputStream, String, URI,
etc.) to be supplied with the URI. In other words, while the DOM tree created is portable, the
method of obtaining that tree is not without fairly complex reflection and dynamic class and method
loading.

7.3.3 DOM Parser Output

Remember that in SAX, the focus of interest in the parser was the lifecycle of the process, as all the
callback methods provided us "hooks" into the data as it was being parsed. In the DOM, the focus
of interest lies in the output from the parsing process. Until the entire document has been parsed and
added into the output tree structure, the data is not in a usable state. The output of a parse intended
for use with the DOM interfaces is an org.w3c.dom.Document object. This object acts as a
"handle" to the tree your XML data is in, and in terms of the element hierarchy we have continually
discussed, it is equivalent to one level above the root element in your XML document. In other
words, it owns each and every element in the XML document input.

Java and XML

 page 147

Unfortunately, the standardization with regard to DOM is focused on manipulating this data instead
of obtaining it. This has resulted in some variety in the mechanism used to obtain the Document
object after a parse. In many implementations, such as older versions of the IBM XML4J parser, the
parse() method returned the Document object. The code to use such an implementation of a
DOM parser would look like this:

public void performDemo(String uri) {
 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Instantiate your vendor's DOM parser implementation
 DOMParser parser = new DOMParser();
 try {
 Document doc = parser.parse(uri);

 } catch (Exception e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }
}

Most newer parsers, such as Apache Xerces, do not follow this methodology. In order to maintain a
standard interface across both SAX and DOM parsers, the parse() method in these parsers
returns void, as our SAX example of using the parse() method did. This change allows an
application to use a DOM parser class and a SAX parser class interchangeably; however, it requires
an additional method to obtain the Document object result from the XML parsing. In Apache
Xerces, this method is named getDocument(). Using this type of parser, we can add the following
example to our code to obtain the resulting DOM tree from parsing our input file:

public void performDemo(String uri) {
 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Instantiate your vendor's DOM parser implementation
 DOMParser parser = new DOMParser();
 try {
 parser.parse(uri);
 Document doc = parser.getDocument();

 } catch (Exception e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }
}

Also be sure to import the necessary DOM class:

import org.w3c.dom.Document;

// Import your vendor's DOM parser
import org.apache.xerces.parsers.DOMParser;

You should consult your vendor documentation to determine which of these mechanisms you need
to employ to get the DOM result of your parse. In the next chapter, we look at Sun's JAXP API and
other ways to have a more standardized means of accessing a DOM tree from any parser
implementation. Although there is some variance in getting this result, all of the uses of this result
we will look at are standard across the DOM specification, so you should not have to worry about
any other implementation curveballs as we continue in the chapter.

Java and XML

 page 148

7.3.4 Using a DOM Tree

Now that we have this "tree" object, let's look at doing something useful with it. For our example,
we want to move through the tree structure we have access to and print out the tree of our XML
data. The easiest way to do this is to take our initial Document object and at each node in the tree,
process the current node and then recursively process the children of that node. This should sound
familiar to you if you have ever done any work with tree structures. To understand how this works,
we need to see the basic objects that our XML data will be accessible through; we have already seen
the Document object, and this and the other core DOM object interfaces are listed here. These
interfaces, shown in Figure 7.2 (which includes the less frequently used DOM interfaces as well),
will be the means by which we manipulate all data within our DOM tree.

Figure 7.2. UML class model of DOM Level 2 core interfaces and classes

In addition to absorbing these interfaces, pay special attention to the Node interface, and notice that
it is the base interface for the other interfaces. Anytime you see a design pattern like this, you
should immediately think of runtime object-type discovery. In other words, we can write a method
that takes in a node, discovers what type of DOM structure that node is, and prints it in the correct
fashion. This allows us to easily print our entire DOM tree with one method! Once we print the
node, we can use the common methods that are available to move on to the next sibling element in
the tree, get the attributes if it is an element, and handle any other special cases that arise. Then,
iterating through the child nodes, we can recursively invoke the same method on each, until our
entire DOM tree is printed. This is a simple, clean way of handling DOM trees. We take a detailed
look at how to accomplish this now.

7.3.4.1 Getting the ball rolling

Java and XML

 page 149

Because our Document object itself is a DOM Node, we can pass it unchanged as the initial
argument to our printing method. We can create the skeleton of this method, but first we need to
add the appropriate import statements to our Java file:

import org.w3c.dom.Document;
import org.w3c.dom.Node;

// Import your vendor's DOM parser
import org.apache.xerces.parsers.DOMParser;

We then can add our method signature, which takes in a DOM Node and will print it out:

/**
 * <p>
 * This will print a DOM <code>Node</code> and then recurse
 * on its children.
 * </p>
 *
 * @param node <code>Node</code> object to print.
 */
public void printNode(Node node) {
 // Determine the type of node
 // Print the node
 // Recurse on children
}

Finally, with our skeleton method in place, we can invoke the method on our initial Document
object, letting recursion continue the printing until the tree is completely output. This works because
the Document interface extends from the common DOM Node interface:

public void performDemo(String uri) {
 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Instantiate your vendor's DOM parser implementation
 DOMParser parser = new DOMParser();
 try {
 parser.parse(uri);
 Document doc = parser.getDocument();

 // Print the document from the DOM tree
 printNode(doc);

 } catch (Exception e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }

}

At this point, you can compile your Java source file. Although there is no output, you can see that
getting an application that uses a DOM output from an XML parser up and running is fairly simple.
We next look at making this a usable demonstration.

7.3.4.2 Determining a node's type

Once within our printing method, our first task is to determine what type of node we have.
Although we could approach this with a Java methodology, using instanceof and Java reflection,
the DOM bindings for Java make our task much simpler. The Node interface defines a helper
method, getNodeType() , which returns an integer value. This value can be compared against a

Java and XML

 page 150

set of constants defined within the Node interface, and the type of Node being examined can be
quickly and easily determined. This also fits very naturally into the Java switch construct, which
we can use within our method to break up printing into logical sections. We compare the type of our
node with the most common node types; although there are some additional node types defined (see
Figure 7.2), these are the most common and the concepts here can be applied to the less frequent
node types as well:

private static void printTree(Node node) {

 // Determine action based on node type
 switch (node.getNodeType()) {
 case Node.DOCUMENT_NODE:
 // Print the contents of the Document object
 break;

 case Node.ELEMENT_NODE:
 // Print the element and its attributes
 break;

 case Node.TEXT_NODE:
 case Node.CDATA_SECTION_NODE:
 // Print the textual data
 break;

 case Node.PROCESSING_INSTRUCTION_NODE:
 // Print the processing instruction
 break;

 case Node.ENTITY_REFERENCE_NODE:
 // Print the entity reference
 break;

 case Node.DOCUMENT_TYPE_NODE:
 // Print the DTD declaration
 break;
 }
}

Notice that for CDATASection and Text nodes, we handle output in a single case statement. In this
example, we are not concerned with whether the text was in a CDATA section or not in the original
document; we just want to print the text within the element. We now can add printing and recursion
to the appropriate blocks of code, and have our application printing our DOM tree quickly and
easily. We look at how to do this for the various DOM node types next.

7.3.5 The DOM Node Types

Now that you have seen how the concepts and structure of DOM work, you should only have to
learn the syntax for the different node types to have a solid understanding of the DOM. In other
words, you can now treat the DOM Java bindings as just another API, like the JNDI packages or the
servlet extensions. Learning the concepts is typically the most difficult part of mastery, while using
correct syntax only requires a reference and some example code. In this section, we give you that
example code, demonstrating how to print out the most common node types as well as looking at
traversing the DOM tree. You can then use the online documentation for the DOM at
http://www.w3.org/DOM as your reference, as well as Appendix A, which has an API reference for
SAX, DOM, and JDOM (which we look at in the next chapter).

7.3.5.1 The Document node

Java and XML

 page 151

Because the Document is an extension of the Node interface itself, we can use it interchangeably
with our other node types. However, it is a bit of a special case, as it contains the root element as
well as the XML document's DTD and some other special information not within the XML element
hierarchy. Thus we need to extract the root element and pass that to our printing function when we
run across this node. We also print out a simple version declaration to make our output conform to
the XML specification:

case Node.DOCUMENT_NODE:
System.out.println("<xml version=\"1.0\">\n");
Document doc = (Document)node;
printTree(doc.getDocumentElement());
break;

Unfortunately, DOM Level 2 (as well as SAX 2.0) does not expose the XML
declaration. This may not seem to be a big problem, until you consider that the
encoding of the document is included in this declaration. DOM Level 3 is expected to
address this deficiency, and should be available in a draft form in mid- to late 2000. Be
careful not to write DOM applications that depend on this information until this
problem is corrected.

Since we need to access a Document-specific method, we must first cast the Node implementation
passed to the printing method to the Document interface; we can then invoke its
getDocumentElement() method to obtain the root element of the XML input document, and then
in turn pass that on to the printing method, starting the recursion and traversal of the DOM tree.

7.3.5.2 DOM elements

Of course, our most common task will be to take a DOM Element and print out its name, attributes,
and value, and then print its children. As you would suspect, all of these are easily accomplishable
with DOM method calls. First we need to get the name of the XML element, which is available
through the getNodeName() method within the Node interface, and print it out. For now, we can
leave space to add in the attributes, and then print out the closing angle bracket on our element. We
then need to get the children of the current element and print these as well. A Node's children can be
accessed through the getChildNodes() method, which returns an instance of a DOM NodeList.

While most Java APIs use a Vector, Hashtable, or other Java collections class to
support traversing a list, the DOM API returns a DOM-specific interface, the NodeList
interface. Don't expect to be handling attributes through the Java methods you are used
to; instead, you will have to familiarize yourself with these structures when using
DOM.

It is trivial to obtain the length of this list, and then iterate through the children calling the printing
method on each, continuing our recursion. Finally, we can output the closing of our element.

First let's add in the new DOM interface we need:

import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

// Import your vendor's DOM parser
import org.apache.xerces.parsers.DOMParser;

Java and XML

 page 152

Now that we have the needed classes and interfaces accessible by their class name, we can add in
the code we have been discussing. We obtain the name of the Node implementation, print it in XML
format, print each of its children (checking for null to ensure that children exist), and then close
our element. Although this code doesn't yet handle attributes, it should take care of printing out our
XML elements for us throughout the entire DOM tree:

case Node.ELEMENT_NODE:
 String name = node.getNodeName();
 System.out.print("<" + name);
 // Print out attributes
 System.out.println(">");

 // recurse on each child
 NodeList children = node.getChildNodes();
 if (children != null) {
 for (int i=0; i<children.getLength(); i++) {
 printTree(children.item(i));
 }
 }

 System.out.println("</" + name + ">");
 break;

This seems fairly easy, right? It is just as simple to iterate through the attributes of our DOM
Element. We use the getAttributes() method, again defined in the Node interface, to get a list
of XML attributes, returned in a NamedNodeMap. This DOM interface is used for a collection of
nodes that are unique with regard to their name, so is ideal for storing a list of our XML element's
attributes. We then iterate through this list, printing out the name and value of each attribute. This is
similar to the way we handled iteration through our element's child nodes, and we use the
getNodeName() and getNodeValue() methods to obtain the values needed for printing. Let's
take a look at how to do this here; add the import statement needed for NamedNodeMap and make the
following changes to our code:

import org.w3c.dom.Document;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

// Import your vendor's DOM parser
import org.apache.xerces.parsers.DOMParser;
...
 case Node.ELEMENT_NODE:
 String name = node.getNodeName();
 System.out.print("<" + name);
 NamedNodeMap attributes = node.getAttributes();
 for (int i=0; i<attributes.getLength(); i++) {
 Node current = attributes.item(i);
 System.out.print(" " + current.getNodeName() +
 "=\"" + current.getNodeValue() +
 "\"");
 }
 System.out.println(">");

 // recurse on each child
 NodeList children = node.getChildNodes();
 if (children != null) {
 for (int i=0; i<children.getLength(); i++) {
 printNode(children.item(i));
 }
 }

Java and XML

 page 153

 System.out.println("</" + name + ">");
 break;
...

At this point we have done quite a bit of work! With only a couple of hundred lines of code
complete, we can iterate through a DOM tree and print out elements and attributes. In fact, it is this
ease of use, particularly as compared to SAX, that has made DOM such a prevalent and popular
way to handle XML data. Certainly it is not always the best choice, as we have already discussed
and will again, but it provides a simple representation of XML that is easy to move through.

7.3.5.3 Applying formatting

If you haven't already, compile your Java source file and run it on the XML table of contents file we
have been using. You should get output similar to the fragment shown in Example 7.3.

Example 7.3. DOMParserDemo Output
D:\prod\JavaXML>java DOMParserDemo D:\prod\JavaXML\contents.xml
Parsing XML File: D:\prod\JavaXML\ contents.xml

<xml version="1.0">

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
<JavaXML:Title>
</JavaXML:Title>
<JavaXML:Contents>
<JavaXML:Chapter focus="XML">
<JavaXML:Heading>
</JavaXML:Heading>
<JavaXML:Topic subSections="4">
</JavaXML:Topic>
<JavaXML:Topic subSections="5">
</JavaXML:Topic>
<JavaXML:Topic subSections="4">
</JavaXML:Topic>
<JavaXML:Topic subSections="1">
</JavaXML:Topic>
</JavaXML:Chapter>
...

This does exactly what we expected, but perhaps not in a very clear or usable way. It is very
difficult to see where elements begin and end without the indenting we used in our original
document. As you remember, whitespace between elements is stripped and typically ignored by
parsers, so we need to add some whitespace back in to help in our output formatting. We can pass a
simple indentation string into our printing method to handle this. Indentation can be added to as we
recurse and traverse through the DOM tree:

/**
 * <p>
 * This will print a DOM <code>Node</code> and then recurse
 * on its children.
 * </p>
 *
 * @param node <code>Node</code> object to print.
 * @param indent <code>String</code> spacing to insert
 * before this <code>Node</code>
 */

Java and XML

 page 154

public void printNode(Node node, String indent) {
 switch (node.getNodeType()) {
 case Node.DOCUMENT_NODE:
 System.out.println("<xml version=\"1.0\">\n");
 Document doc = (Document)node;
 printNode(doc.getDocumentElement(), "");
 break;

 case Node.ELEMENT_NODE:
 String name = node.getNodeName();
 System.out.print(indent + "<" + name);
 NamedNodeMap attributes = node.getAttributes();
 for (int i=0; i<attributes.getLength(); i++) {
 Node current = attributes.item(i);
 System.out.print(" " + current.getNodeName() +
 "=\"" + current.getNodeValue() +
 "\"");
 }
 System.out.println(">");

 // recurse on each child
 NodeList children = node.getChildNodes();
 if (children != null) {
 for (int i=0; i<children.getLength(); i++) {
 printNode(children.item(i), indent + " ");
 }
 }

 System.out.println(indent + "</" + name + ">");
 break;

 case Node.TEXT_NODE:
 case Node.CDATA_SECTION_NODE:
 // Print the textual data
 break;

 case Node.PROCESSING_INSTRUCTION_NODE:
 // Print the processing instruction
 break;

 case Node.ENTITY_REFERENCE_NODE:
 // Print the entity reference
 break;

 case Node.DOCUMENT_TYPE_NODE:
 // Print the DTD declaration
 break;
 }
}

Then make a small change to feed our method an initial indent of an empty string:

public void performDemo(String uri) {
 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Instantiate your vendor's DOM parser implementation
 DOMParser parser = new DOMParser();
 try {
 parser.parse(uri);
 Document doc = parser.getDocument();

 // Print the document from the DOM tree and
 // feed it an initial indentation of nothing

Java and XML

 page 155

 printNode(doc, "");

 } catch (Exception e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }

}

With this minor change, you can see in Example 7.4 that our output is much more readable.

Example 7.4. DOMParserDemo Output with Indentation
D:\prod\JavaXML>java DOMParserDemo D:\prod\JavaXML\contents.xml
Parsing XML File: D:\prod\JavaXML\ contents.xml

<xml version="1.0">

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 <JavaXML:Title>
 </JavaXML:Title>
 <JavaXML:Contents>
 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>
 </JavaXML:Heading>
 <JavaXML:Topic subSections="4">
 </JavaXML:Topic>
 <JavaXML:Topic subSections="5">
 </JavaXML:Topic>
 <JavaXML:Topic subSections="4">
 </JavaXML:Topic>
 <JavaXML:Topic subSections="1">
 </JavaXML:Topic>
 </JavaXML:Chapter>
...

With this formatting in place, we are ready to add in the textual data values of our elements.

7.3.5.4 Textual nodes

If you are wondering when we are going to handle integer nodes, numeric nodes, or Boolean nodes,
we are not. As you should recall, all XML data within an element was reported through the SAX
characters() callback. This should have given you your first clue that an XML parser handles all
data as text, and an application must make data type conversions if needed. Thus, the DOM Text
and CDATASection interfaces are all we need to worry about to print our elements' values. Printing
is quite simple, as we only need to use the now familiar getNodeValue() method of the DOM
Node interface to get the textual data and print it out:

case Node.TEXT_NODE:
case Node.CDATA_SECTION_NODE:
 System.out.print(node.getNodeValue());
 break;

With that in place, we are very close to having a complete DOM traversal. However, before moving
on, let's take a look at a few less common but useful DOM interfaces (and their corresponding Node
types): ProcessingInstruction, DocumentType, and EntityReference, all of which we have in
our document.

7.3.5.5 Processing instructions

Java and XML

 page 156

The DOM bindings for Java define an interface to handle processing instructions that are within the
input XML document. This is useful, as these instructions do not follow the same markup model
that XML elements and attributes do, but are still important for applications to know about. In our
example document, we give instructions to the XSLT processor informing it about a stylesheet, as
well as an instruction to a publishing framework, Apache Cocoon, letting it know what processing
needs to occur. If you still have these PIs commented out in your XML table of contents, you
should uncomment these now:

<?xml version="1.0"?>

<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>

<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">

The PI node in the DOM is a little bit of a break from what we have seen so far: to fit the syntax
into the Node interface model, the getNodeValue() method returns all data instructions within a
PI in one String. This allows us to quickly output the PI to the screen; however, we still use
getNodeName() to get the name of the PI. If you were writing an application that could receive PIs
from an XML document, you might prefer to use the PrcoessingInstruction interface; although
it exposes the same data, the method names (getTarget() and getData()) are more in line with
a PI's format. With this understanding, we can add in the code to print out our PIs:

case Node.PROCESSING_INSTRUCTION_NODE:
 System.out.println("<?" + node.getNodeName() +
 " " + node.getNodeValue() +
 "?>");
 break;

If you compile and run the sample program with this change, you may be in for a surprise: none of
our XML document's PIs are outputted! Is something going on? Well, in a sense, no. Our code
currently obtains the Document object from the XML parser, and only processes the root element of
our XML input. Because our processing instructions are at the same level of the tree as that root
element, they are ignored. To correct this, we need to change the section of code that handles a
Node that is of type Document. We can make a modification similar to how we handled an element's
children to process all of our "top-level" XML structures instead of just the root element:

case Node.DOCUMENT_NODE:
 System.out.println("<xml version=\"1.0\">\n");
 // recurse on each child
 NodeList nodes = node.getChildNodes();
 if (nodes != null) {
 for (int i=0; i<nodes.getLength(); i++) {
 printNode(nodes.item(i), "");
 }
 }
 /*
 Document doc = (Document)node;
 printTree(doc.getDocumentElement(), "");
 */
 break;

Java and XML

 page 157

Compile this change in, and you should see the PIs at the top of your output, as expected. This is
another subtle point of using DOM that you should remember: always be aware of what nodes you
are processing, as well as what nodes you are not processing!

7.3.5.6 Document types

Like PIs, a DTD declaration can be helpful in exposing what set of constraints an XML document
references. However, since there can be a public and system ID as well as other DTD-specific data,
we need to case our Node instance to the DocumentType interface to access this additional data. We
can then use the helper methods to get the name of the Node, which returns the root element of the
document it constrains, the public ID (if it exists), and the system ID of the DTD referenced. Using
this information, we can reconstruct the DTD reference in the XML document:

import org.w3c.dom.Document;
import org.w3c.dom.DocumentType;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

// Import your vendor's DOM parser
import org.apache.xerces.parsers.DOMParser;
...
case Node.DOCUMENT_TYPE_NODE:
 DocumentType docType = (DocumentType)node;
 System.out.print("<!DOCTYPE " + docType.getName());
 if (docType.getPublicId() != null) {
 System.out.print(" PUBLIC \"" +
 docType.getPublicId() + "\" ");
 } else {
 System.out.print(" SYSTEM ");
 }
 System.out.println("\"" + docType.getSystemId() + "\">");

 break;

7.3.5.7 Entity references

The final node type we look at is the EntityReference interface. This handles the various entity
references that can appear within an XML document, such as our copyright reference in our
example XML document. There are no surprises in how we print this type of node:

case Node.ENTITY_REFERENCE_NODE:
 System.out.println("&" + node.getNodeName() + ";");
 break;

There are a few surprises that may trip you up when it comes to the output from a node such as this.
The definition of how entity references should be processed within DOM allows a lot of latitude,
and also relies heavily on the underlying parser's behavior. In fact, most XML parsers have
expanded and processed entity references before the XML document's data ever makes its way into
the DOM tree. So often, when expecting to see an entity reference within your DOM structure, you
will find the text or values outputted rather than the entity itself. To test this for your parser,
comment out or remove our HTML version of the JavaXML:Copyright element (we changed this
last chapter, remember?) and replace it with the OReillyCopyright entity reference:

<!--
<JavaXML:Copyright>
 <center>

Java and XML

 page 158

 <table cellpadding="0" cellspacing="1" border="1" bgcolor="Black">
 <tr>
 <td align="center">
 <table bgcolor="White" border="2">
 <tr>
 <td>

 Copyright O'Reilly and Associates, 2000

 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </center>
 </JavaXML:Copyright>
-->

<JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>

</JavaXML:Book>

This can cause a nasty bug, and leave you staring at your XML wondering what is wrong. So what
good is an entity reference node type if it is pre-processed by the parser? Well, it's actually intended
more for use in creating XML than in parsing existing XML. We look at this next.

7.3.6 Mutability of a DOM Tree

The one glaring omission you will notice if you are familiar with the DOM is that we have not
talked about the mutability of the DOM tree we have been using. It is possible to add nodes into the
DOM tree very easily. In fact, next to the simplicity of use, this ability to modify and add to the tree
is one of DOM's most used and heralded features.

This brings us back full circle to our original discussion on XML transformations. Why is the DOM
so important for an XSLT processor? Not only is the input in an easily accessible data form, but an
XSLT processor can create a new DOM tree for the output document, and easily copy, modify, add,
and remove nodes from the input tree, creating an output tree as processing occurs. This is the
"apples to apples" processing that is preferred in complex operations, as often input can be passed
through to the output tree with little class casting or new object instantiation, greatly reducing
complexity and increasing performance of the XSLT processor. For this reason, we have spent this
chapter looking closely at the DOM.

However, you are probably still wondering when we talk about using this mutability; unfortunately,
you will have to wait a little longer. To delve into that process now would take us quite a bit off
track in our discussions on XSL; however, rest assured that the next chapters will spend time on
how to create and modify XML. Before we dive into these more advanced topical chapters, let's
take a look at some additional stumbling blocks that DOM can give you as a Java developer
learning how to use these powerful APIs.

7.4 "Gotcha!"

As in previous chapters, we again revisit some of the common pitfalls for new XML Java
developers. In this chapter, we have focused on the Document Object Model, and this section
continues that emphasis. Although some of the points made here are more informational than
directly affective on your programming, they can be helpful in making design decisions about when

Java and XML

 page 159

to use DOM, as well as instrumental in understanding what is going on "under the hood" of your
XML applications.

7.4.1 Memory and Performance with DOM

We spent a lot of time earlier looking at the reasons to use DOM and the reasons to use SAX.
Although it was emphasized that using the DOM requires that the entire XML document be read
into memory and stored in a tree structure, enough cannot be said on the subject. All too common is
the scenario where a developer loads up his extensive collection of complex XML documents into
an XSLT processor and begins a series of offline transformations, leaving the process to grab a bite
to eat. Upon returning, he finds that his Windows machine is showing the dreaded "blue screen of
death" and his Linux box is screaming about memory problems. For this developer and the
hundreds like him, beware the DOM for large data!

Using the DOM requires an amount of memory proportional to the size and complexity of an XML
document. There is no way to avoid this relationship, and no way to lower the memory
requirements. In addition, transformations themselves are often expensive operations; combined
with the memory requirements of using the DOM, the two can easily chew into system resources
very quickly. Is the motto never to use DOM? Certainly not! However, the motto is to be very
careful and aware of the types of documents you are feeding into this model; if you have small,
fractional-megabyte documents, you could probably use the DOM and never have a single problem.
As you begin to transform larger documents, possibly lengthy technical manuals or textbook-length
documents, beware that you don't eat into your system's resources and affect application
performance.

7.4.2 DOM Parsers Throwing SAX Exceptions

In our examples of using DOM, we did not explicitly list the exceptions that could result from a
document parse as we did in our SAX section. This was because we mentioned that the process of
generating a DOM tree is left up to the parser implementation, and is not always the same.
However, it is typically good practice to catch the specific exceptions that can occur and react to
them differently, as the type of exception gives information about the problem that occurred.
Rewriting our main parser loop this way might make a surprise facet of this process surface. For
Apache Xerces this would be:

/**
 * <p>
 * This parses the file, and then prints the document out
 * using DOM.
 * </p>
 *
 * @param uri <code>String</code> URI of file to parse.
 */
public void performDemo(String uri) {
 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Instantiate your vendor's DOM parser implementation
 DOMParser parser = new DOMParser();
 try {
 parser.parse(uri);
 Document doc = parser.getDocument();

 // Print the document from the DOM tree and
 // feed it an initial indentation of nothing
 printNode(doc, "");

Java and XML

 page 160

 } catch (IOException e) {
 System.out.println("Error reading URI: " + e.getMessage());
 } catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }

}

The IOException seen here should not come as a surprise, as it signifies an error in locating the
specified URI as it did in our SAX example. Something else in our SAX section that might make
you think something was amiss is the SAXException that can be thrown. Our DOM parser throws a
SAX exception? Surely we have imported the wrong set of classes! In fact, you have the right
classes. Remember that we said earlier that it would be possible to build a tree structure of the data
in an XML document ourselves, using SAX, but that the DOM provided an alternative. This was
true, but saying this does not preclude SAX from being used. In fact, SAX provides a lightweight,
fast way to parse a document; in this case, it just happens that as it is parsed it is inserted into a
DOM structure. Because no standard for the DOM creation exists, this is acceptable and not even
uncommon. So don't be surprised or taken aback when you find yourself importing and catching
org.xml.sax.SAXException in your DOM applications.

7.5 What's Next?

We have reached a significant milestone in our travels through XML land. You should now have
working knowledge of XML, DTDs, XML Schema, and XSLT. These are the core and foundational
technologies in the world of XML programming. Certainly there are more specifications and
acronyms that you will come across in your development, but these fundamentals are key in using
XML from the world of Java. In addition to the specifications, we have looked at both SAX and
DOM, easily representing the majority of all XML use within Java. This officially makes you an
XML Java developer!

In the next chapter, we wrap up our look at SAX and DOM by discussing where they shine, but
more importantly, where they do not. Before diving into application code, which the rest of this
book focuses on, JDOM is introduced to you. JDOM seeks to correct many of the problems and
annoyances that developers continually face when using SAX and DOM. This API will also give
you a good look at how XML can be used in new and creative ways with a little code and elbow
grease.

Chapter 8. JDOM
We are at the midpoint of our travels through XML-land, and you should be starting to form some
opinions about how useful the tools we have examined are, where some are handy and some are
cumbersome, how to use these APIs and concepts in your applications, and most of all, what you
want XML to do for you. In this chapter, however, we stop briefly to examine additional Java and
XML APIs before diving into specific XML topics. First, we take a look at a helper API, the Java
API for XML Parsing (JAXP). This API, developed by Sun, is intended to provide an abstraction
layer over obtaining a SAX or DOM parser instance; as we saw in previous chapters, this is not
always a standardized task (particularly when using DOM), and constitutes a serious gap in the
process of using XML in a vendor-independent way.

After this look at JAXP, we introduce a new API, JDOM. Although not related to DOM in any
structural or implementation manner, JDOM does provide a complete view of an XML document
(as DOM does); however, it has been created for the specific purpose of solving the variety of
problems that we have already discussed related to using SAX and DOM (remember all of those

Java and XML

 page 161

"Gotcha!" sections?), as well as for enhancing usability and performance of the current Java API
offerings. We will discuss this API, its purpose, functionality, and future, and examine it as an
alternative to using SAX, DOM, and JAXP. First, though, we need to look at what JAXP is and add
it to our toolbox of XML APIs.

8.1 Parsers and the Java API for XML Parsing

If you have been doing much research or exploration into XML and Java, you have probably heard
a little bit about Sun's Java API for XML Parsing, usually referred to as JAXP. We also briefly
mentioned JAXP in Chapter 1. Given that JAXP is often mentioned in the same breath as SAX and
DOM, you may be surprised that we have waited until now to look at the API. However, the entire
JAXP package, contained within javax.xml.parsers , is comprised of only six classes, four of
which are abstract. The other two are exceptions that are thrown by the first four, making a concise
look at JAXP possible.

You should have noticed that when using DOM (and SAX when not using the XMLReaderFactory
helper class), we have had to explicitly import and reference a parser class from our vendor's Java
code. In Apache Xerces these classes were org.apache.xerces.parsers.SAXParser and
org.apache.xerces.parsers.DOMParser. The problem with this approach is that changing which
parser class is used requires a change to the application code and a subsequent recompilation. While
changes as large as whether to use one vendor's parser or another's are significant ones, it would be
nice if the XML parser were completely pluggable. This " pluggability" layer is what JAXP seeks to
provide.

With JAXP, instead of having to import a vendor's parser class directly, a system property can be
used to specify the parser to use. JAXP then reads that property and handles the loading of the
requested parser. In this way, changing the parser implementation to be used requires only a change
to the system property specifying the parser class to JAXP, as the application code then uses the
Sun-provided wrappers as an abstraction layer.

8.1.1 Using JAXP with SAX

When using SAX, the JAXP SAXParser and SAXParserFactory classes should be used. The
former class wraps a SAX parser implementation and the latter handles the dynamic loading of the
implementation. Before discussing these classes, let's look at an example of abstracting the specific
XML parser implementation used with these classes, shown in Example 8.1.

Example 8.1. Using JAXP to Get a SAX Parser Implementation
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.helpers.HandlerBase;

public class JAXPSAXText {

 public void doSomeParsing() {
 SAXParser parser;
 SAXParserFactory factory = SAXParserFactory.newInstance();
 HandlerBase myHandler = new MyHandlerBase();
 factory.setValidating(true);
 factory.setNamespaceAware(true);

 try {

Java and XML

 page 162

 parser = factory.newSAXParser();
 parser.parse(myURI, myHandler);
 } catch (SAXException e) {
 // Handle SAX errors
 } catch (IOException e) {
 // Handle errors from reading the URI
 } catch (ParserConfigurationException e) {
 // Handle errors from the factory being unable to
 // load the specified parser implementation
 }
 }

}

This shouldn't look too different from anything we have seen, but it does remove details of Apache
Xerces or any other vendor from our parsing code. The SAXParser class wraps the instance of the
implementation of parser used, and retrieves that instance from an instance of the
SAXParserFactory class. One detail that is different from what we have seen in handling parsers is
that validation and namespace awareness are set on the parser factory rather than the parser instance
itself. The difference here is that any instances created from the factory are given these features; be
careful you do not set a feature early in your code and forget that it is still set when retrieving a
parser implementation from the same factory in later code.

Another deviation from using a SAX parser implementation directly is that an instance of the helper
class HandlerBase from SAX is required for passing into the parser() method of SAXParser.
This means that all content handlers, error handlers, and other SAX document handlers must be
consolidated into a single subclass of HandlerBase. Be careful not to implement the SAX
interfaces directly and expect to be able to use them individually (through the setXXXHandler()
methods available in the SAX Parser interface). If the HandlerBase class does not ring any bells,
you are most likely not familiar with SAX 1.0. Unfortunately, JAXP only supports SAX 1.0; the
DefaultHandler class in SAX 2.0 replaces the HandlerBase class. That class implements the core
SAX 1.0 interfaces, providing an empty implementation of each method defined in ErrorHandler,
DTDHandler, EntityResolver, and DocumentHandler (which is deprecated in SAX 2.0 in favor of
ContentHandler). In your HandlerBase subclass, you would override any callbacks you wish to
have action occur within. Once this handler is created, the parse() method can be called on the
instance of SAXParser with the URI to parse, as well as the DefaultHandler instance supplied as
parameters.

8.1.2 Using JAXP with DOM

The principles of using JAXP to obtain a DOM parser implementation are identical to those used in
obtaining a SAX implementation. There are analogs to the SAXParser and SAXParserFactory
classes used to create a DOM tree: DocumentBuilder and DocumentBuilderFactory, which are
also in the javax.xml.parsers package. In fact, these two classes use SAX APIs to communicate
with the rest of the application, throwing the same exceptions as the SAX classes (including
SAXException). Although the JAXP specification does not require that DOMBuilder
implementations use SAX to construct the DOM tree, it does mandate that the SAX APIs be used to
communicate with the application.

Code to use the JAXP DOM classes is almost identical to the SAX code we looked at earlier, and is
shown in Example 8.2.

Example 8.2. Using JAXP to Get a DOM Parser Implementation
import javax.xml.parsers.DocumentBuilder;

Java and XML

 page 163

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.w3c.dom.Document;

public class JAXPDOMTest {

 public void doSomeParsing() {
 DocumentBuilder parser;
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setValidating(true);
 factory.setNamespaceAware(true);

 try {
 parser = factory.newDocumentBuilder();
 Document doc = parser.parse(myURI);
 } catch (SAXException e) {
 // Handle SAX errors
 } catch (IOException e) {
 // Handle errors from reading the URI
 } catch (ParserConfigurationException e) {
 // Handle errors from the factory being unable to
 // load the specified parser implementation
 }
 }
}

The DocumentBuilderFactory allows validation and namespace awareness to be set, and will
maintain these settings for any DocumentBuilder instances obtained through its
newDocumentBuilder() method. Once the location of the document to parse is determined, the
parse() method can be called; this returns the DOM Document object resulting from the parsing.
After the parsing, the standard DOM objects and methods can be used, abstracting the application
from any vendor-specific parser details.

8.1.3 Selecting the Parser to Use

The one detail we have not yet covered in using JAXP is that of setting which parser is used. As
mentioned, the purpose of JAXP is to allow easy change of parser implementations. However, this
is not quite as simple as it might sound.

Because JAXP includes four abstract classes, each parser that supports JAXP must provide an
implementation of the JAXP classes. For example, the Apache Xerces parser has the required
implementation classes under org.apache.xerces.jaxp. The JAXP specification says that each
implementation can provide any given parser as the default; in other words, the Apache Xerces
implementation provides Apache Xerces as the default parser, while an Oracle implementation
would most likely provide an Oracle parser as the default. To change this default parser class to
another implementation, you can set the Java system property
javax.xml.parsers.SAXParserFactory to point at a new SAX factory, or set the system property
javax.xml.parsers.DocumentBuilderFactory to point at a new DOM factory. System
properties can be set using the -D argument for command-line programs, or through
System.setProperty() in Java code. This would allow the JAXP classes to read the system
property and respond to calls to newSAXParser() and newDocumentBuilder() by providing
instances using the factory specified. However, most applications using XML today are not
command- line-based, but web-based, or part of a larger package that is not directly invoked
through a command line. Additionally, using System.setProperty() in a generic way would

Java and XML

 page 164

probably mean having that code fragment read the information passed to setProperty() (such as
the property name and SAX driver class) from a textual properties file. Of course, this cannot be an
XML configuration file (which we discuss in more detail in Chapter 11), as no parser is available
yet. The Java™ Development Kit (JDK) 1.3 does include the ability to specify properties within a
jar file that is deployed; however, support for JDK 1.3 at the time of this writing was not available
on major platforms such as Linux. In other words, the configurability of JAXP is still maturing.

Despite these shortcomings, the concepts and ideas outlined in JAXP are very important ones;
additionally, Sun has recently donated JAXP and the Project X parser code to the Apache Xerces
project (the code is code-named "Crimson"), which indicates Sun intends to allow faster growth of
their API, as well as support open standards. Expect to see a JAXP 1.1 release in late 2000 that
supports DOM Level 2, SAX 2.0, and a more generic means of configuration for selecting the
parser class to use.

8.2 JDOM: Another API?

We have now covered the current API offerings for XML use within Java, and addressed their
major strengths and weaknesses. However, the general level of acceptance and excitement over
SAX, DOM, and JAXP has been average, at best. The XML community seems to feel that the
necessary tools have been provided, while the Java community has been left a bit puzzled at the
non-standard ways in which SAX and DOM behave, and the general difficulty in manipulating an
XML document, as well as simply obtaining a parser! Therefore, in the tradition of open source
software, Java development, and O'Reilly & Associates publishing, we decided to fix this problem,
and let you in on the solution: a new API, JDOM.

What's in a Name?
Many of the early reviewers of JDOM were a little put off by its name, particularly as it is
so close to DOM, an API that is more broad-sweeping in nature. However, since JDOM
simply represents a document in Java, it was felt that the name was appropriate. In other
words, the name was chosen for its accuracy despite its similarity to another API's name.
Additionally, JDOM is only loosely coupled to XML. JDOM can support any hierarchical
data format, and it can be serialized just as easily as it can be output to XML, by using an
OutputStream or File and the JDOM output classes. In the same way, a JDOM
org.jdom.input.Builder implementation provides a robust means by which to create a
JDOM Document, and could construct that Document from a properties file in a non-
standard format just as easily as it could from an XML format. JDOM seeks to provide
these additional features, and truly represents any grouping of data within Java.

The JDOM API is comprised of a specification, written by Brett McLaughlin and Jason Hunter
(K&A Software), with feedback and support from James Duncan Davidson (author of the JAXP
specification). It defines behavior for a very lightweight view of an XML document. It includes
standard input and output behavior suitable for creating a JDOM Document object from existing
XML data and writing a Document's data to any specified destination. The reference
implementation, contained within the org.jdom package, is a complete 1.0 working product, and is
currently available for download with the specification at http://www.jdom.org. JDOM attempts to
solve the deficiencies widely recognized in SAX, DOM, and JAXP. With this lightning-fast
overview, let's see why another API was even needed—don't we have enough APIs and
abbreviations already?

Java and XML

 page 165

JDOM seeks to provide a Java-centric, high-performance alternative to SAX and DOM in most
cases.[1] It is not based on DOM or SAX, but rather allows a user to deal with an XML document in
tree form without the idiosyncrasies of DOM. At the same time, it provides the high performance of
SAX, allowing very quick parsing and output. Additionally, it is namespace-aware, supports
validation through DTDs (and will include XML Schema validation when the XML Schema
specification finalizes), and never returns objects in the form of a NodeList or Attributes;
instead, Java 2 collection classes, such as List and Map, are returned. Complete support for
additional implementations is included, yet JDOM is comprised of concrete (non-abstract) classes,
so no factory is needed for creation of elements, attributes, comments, and other JDOM constructs.

[1] It is certainly true that in some cases, JDOM is not a good replacement for the larger DOM API; JDOM is not supported across multiple programming
languages, and does not provide the strict tree representation that DOM does. However, JDOM does strive to provide at least the 80/20 rule of usability: 80% of
the time, JDOM will solve your XML manipulation problems.

8.2.1 Specification Slowdown

While it is useful that standard APIs like DOM and SAX undergo so much review by the World
Wide Web Consortium (W3C) and David Megginson and the XML community, respectively, often
there is an enormous amount of time between revisions of the APIs. Additionally, the movement of
software towards open source and public access (and modification, in many cases) demands a faster
revision process, and a more up-to-date view of Java and XML specifications. JDOM, being
completely open source software, is an attempt to provide this quicker time-to-market with regard
to support for standards and emerging specifications. For example, JDOM already supports XML
namespaces in all Document objects (even if the Document was built with a parser that is not
namespace-aware!).

JDOM also eventually will be moved into a CVS tree with public access.[2] This allows suggestions
and code contributions to be added to the code base, resulting in greater understanding of the code
as well as a community vision of support and upgrades to functionality. The intent is that JDOM be
constantly evolving, becoming a solution for the majority of Java developers' needs for using XML
within their code.

[2] At the time of this writing, putting JDOM into a public CVS tree was a task in process. The intent is that at this book's publication time, JDOM will already
be available through CVS at http://www.jdom.org.

8.2.2 Java-Optimized

We have already mentioned that JDOM is a complete Java 2-based API, leveraging the power of
the Java collection classes. There are no current plans to port the API to any other language; while
this may decrease the standardization of the API across languages, it greatly increases its usability
within Java, which is the goal of the project. The core JDOM classes are based on Java 2, allowing
the use of Collection classes and weak references; however, a JDK 1.1 version is also available.

As JDOM is designed with you, the Java developer, in mind, it is easy to learn and use, and it
follows proven Java design patterns. JDOM constructs (elements, comments, attributes, etc.) are
created through direct object instantiation. An XML document (as well as any other document type)
can be seen as a whole, and any member of that document is available at any time. Straightforward
methods are provided for handling construction, removal, and modification of XML constructs, and
Java classes are used for input and output (URLs, InputStreams, OutputStreams, Files, etc.).

Hopefully you see that trying to campaign for "reform" in SAX or DOM was certainly a slower
(and arguably futile) process compared to developing and supplying JDOM as an alternative. The
rest of this chapter, then, introduces this new API and demonstrates how it can be used for XML
manipulation within Java.

Java and XML

 page 166

8.3 Getting a Document

The first task in any process involving JDOM is to obtain a JDOM Document object. The Document
object in JDOM is the core class that represents an XML document.

Like all other objects within the JDOM model, the org.jdom.Document class is detailed in
Appendix A, and all its method signatures are listed. Additionally, complete Javadoc on JDOM is
available at http://www.jdom.org.

There are two ways to obtain a JDOM Document object: create one from scratch, when no existing
XML data must be read, and build one from existing XML data.

8.3.1 Starting from Scratch

When no existing XML data is needed as a starting point, creating a JDOM Document is simply a
matter of invoking a constructor:

Document doc = new Document(new Element("root"));

As we mentioned earlier, JDOM is a set of concrete classes, not a set of interfaces. This means that
the more complicated code using factories to create objects as needed to create an
org.w3c.dom.Element in DOM is unnecessary in JDOM. We simply perform the new operation on
the Document object, and we have a viable JDOM Document that can be used.

This Document is not tied to any particular parser, either. XML often needs to be created from a
blank template, rather than an existing XML data source, so there is a JDOM constructor for
org.jdom.Document that requires only a root Element as a parameter. Example 8.3 builds an XML
document from scratch using JDOM.

Example 8.3. Building a Document
import org.jdom.Document;
import org.jdom.Element;

/**
 * <p>
 * Demonstrate building a JDOM Document from scratch.
 * </p>
 *
 * @version 1.0
 */
public class FromScratch {

 /**
 * <p>
 * Build a simple XML document in memory.
 * </p>
 */
 public static void main(String[] args) {
 Document doc = new Document(new Element("root"));
 System.out.println("Document successfully built");
 }

}

Java and XML

 page 167

This creates a new JDOM Document object with a new Element as its root (using the name "root"
for the Element). This Document can be used for any purpose, manipulated in memory, and later
output to a stream.

8.3.2 Building a Document from XML

As simple as creating a JDOM Document from no previous data is, it is more common to have
existing data that needs to be read. Because JDOM documents may be created from many sources, a
separate package is provided with classes for generating a JDOM Document object from these
various forms of input. This package, org.jdom.input , defines the Builder interface, whose
methods are shown in Example 8.4.

Example 8.4. The org.jdom.input.Builder Interface
public interface Builder {

 // Create a JDOM Document from an InputStream
 public Document build(InputStream in) throws JDOMException;

 // Create a JDOM Document from a File
 public Document build(File file) throws JDOMException;

 // Create a JDOM Document from a URL
 public Document build(URL url) throws JDOMException;
}

This provides a mechanism for a JDOM Document to be created from various input sources, and for
different implementations to be built for various input formats. Currently, JDOM provides two
builder implementations, SAXBuilder and DOMBuilder.[3] These allow current standards-based
parsers to be used for creating JDOM Document objects, without those parsers having to provide
additional support to their current DOM and SAX offerings.

[3] By the time you are reading this, it is possible that JDOM 1.0 will have additional Builder implementations available. While the 1.0 core API was
frozen at the time of this writing, the helper packages (org.jdom.input, org.jdom.output, and org.jdom.adapters) were
not. This allows for enhancements that do not affect the core API to be added during the book's publication cycle. Check http://www.jdom.orgfor updates.

8.3.2.1 SAXBuilder

Using the org.jdom.input.SAXBuilder class to create a JDOM document from an existing XML
input source is fairly simple. The SAXBuilder constructor can take in two optional parameters: the
name of the SAX parser class to use (which should implement org.xml.sax.XMLReader), and a
flag indicating whether validation should occur. If neither is supplied, the default parser is used
(currently Apache Xerces), and validation does not occur. We can create a simple SAXTest class to
allow entry of a file on the command line, and then create a JDOM Document object using the
SAXBuilder class and the supplied filename:

import java.io.File;

import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.input.Builder;
import org.jdom.input.SAXBuilder;

public class SAXTest {

 public static void main(String[] args) {

Java and XML

 page 168

 if (args.length != 1) {
 System.out.println("Usage: SAXTest [filename to parse]");
 return;
 }

 try {
 // Request document building without validation
 Builder builder = new SAXBuilder(false);
 Document doc = builder.build(new File(args[0]));
 System.out.println("Document successfully read");
 } catch (JDOMException e) {
 e.printStackTrace();
 }
 }
}

Seems simple, doesn't it? This is because the SAXBuilder handles the chores of creating the various
SAX handler classes, registering those with the XMLReader implementation, and building the
JDOM Document. This is similar to how many DOM parsers might build a DOM Document object
using SAX; however, to keep things simple, JDOM's SAXBuilder handles all SAXExceptions and
converts them to JDOMExceptions. This isolates the SAX code from your Document building, and
JDOM ensures the converted exceptions contain information about the specific problems that
occurred in parsing and the line on which they occurred.

8.3.2.2 DOMBuilder

The org.jdom.input.DOMBuilder class is almost identical in function to the SAXBuilder class.
Like SAXBuilder, it provides a means of producing a JDOM Document, but uses DOM and DOM
parsers to accomplish the task. Because DOM does not define a standard parser interface, the
org.jdom.adapters package supplies an abstraction level over vendor-specific parsers, providing
a standard means of obtaining a DOM Document object. The constructor of a DOMBuilder takes in a
flag indicating whether validation should occur, as well as the name of the adapter class to use. This
can be any class (including user-defined ones), as long as it implements the DOMAdapter interface
defined in org.jdom.adapters.

While the org.jdom.adapters package was created for use with JDOM, it can also be used in pure
DOM applications as a flexible JAXP alternative. It provides a complete abstraction over the DOM
parsing process, allowing the input of an InputStream or filename, as well as a validation flag, and
will return a constructed DOM Document object. In other words, you could use these adapter classes in
your applications to prevent having to import DOM-specific parser implementations. Additionally, the
adapter classes are all built on reflection, so they do not require any parser implementations to be in your
classpath at compile-time. This allows complete configurability and portability of an application with
regard to the DOM parser implementation used.

Once the DOMBuilder has been created, it functions exactly the same as the SAXBuilder. The
following example shows how to build a Document using DOM:

import java.io.File;

import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.input.Builder;
import org.jdom.input.DOMBuilder;

public class DOMTest {

Java and XML

 page 169

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: DOMTest [filename to parse]");
 return;
 }

 try {
 // Request document building without validation, using Oracle parser
 Builder builder =
 new DOMBuilder("org.jdom.adapters.OracleV2DOMAdapter");
 Document doc = builder.build(new File(args[0]));
 System.out.println("Document successfully read");
 } catch (JDOMException e) {
 e.printStackTrace();
 }
 }
}

This uses the Oracle V2 XML parser to create a DOM tree, and then build a JDOM Document
object from that DOM tree. To use the default parser, simply call Builder builder = new
DOMBuilder().

All current DOM parser implementations actually use SAX to create a DOM tree. For this reason, using
DOMBuilder to create a JDOM Document object does not make much sense; it will always be slower
than SAXBuilder (as SAX is used in both cases), and will always consume more memory, as the
complete DOM tree exists for the duration of the conversion process into JDOM. DOMBuilder, then,
should rarely be used. Its main value is the method it provides to create a JDOM Document object from
an existing DOM tree (such as one received as input to your application from a non-JDOM application).
This method, build(org.w3c.dom.Document), is detailed in Appendix A.

Once the JDOM Document object has been created, there is no difference in the Document operation
and functionality between varying builders.

8.4 Using a Document

Once we have our initial Document object (either from instantiating one directly or building one
using the JDOM input classes), we can act on the Document independently of any particular format
or API. There are no ties to SAX, DOM, or the original format of the data. There is also no coupling
to the output format, as we will see in the next section. Any JDOM Document object can be output
to any format desired!

The Document object itself has methods that deal with the four components it can have: a DocType
(referencing an external DTD, or providing internal definitions), ProcessingInstructions, a root
Element, and Comments. Each of these objects maps to an XML equivalent, and provides a Java
representation of those constructs in XML.

8.4.1 The Document DocType

The JDOM DocType object is a simple representation of a DOCTYPE declaration in an XML
document. Assume we have the following XHTML file:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
>

Java and XML

 page 170

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <!-- etc -->
</html>

This code will print out the element, public ID, and system ID from the JDOM DocType object that
maps to the declaration:

DocType docType = doc.getDocType();
 System.out.println("Element: " + docType.getElementName());
 System.out.println("Public ID: " + docType.getPublicID());
 System.out.println("System ID: " + docType.getSystemID());

Its output is:

Element: html
Public ID: -//W3C//DTD XHTML 1.0 Transitional//EN
System ID: http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

JDOM 1.0 supports referencing external DTDs, but does not yet allow inline definition of
constraints.[4] A DocType object can be created with the name of the element being constrained
(typically the root element of the document), and a system and public ID may be supplied to specify
the location of an external DTD to reference. We can add a reference to the Document object with
the following code:

[4] Support for inline constraints is likely be added to a minor revision of JDOM, which may be available at the time of this book's publication.

Document doc = new Document(new Element("foo:bar"));
doc.setDocType(new DocType(
 "html",
 "-//W3C//DTD XHTML 1.0 Transitional//EN",
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"));

The DocType object is automatically created by the selected Builder implementation if the JDOM
Document is constructed from existing XML data.

8.4.2 Processing Instructions

The ProcessingInstruction class provides a Java representation of an XML PI, with simple
accessor and mutator methods. You can get a list of all PIs[5] from a Document using the following
code:

[5] JDOM does support ProcessingInstruction objects nested within Elements in a Document. These nested PIs are not returned
through the Document-level PI methods; because nested PIs are relatively uncommon, they are not specifically addressed here.

// Get all PIs
List pis = doc.getProcessingInstructions();

// Iterate through them, printing out target and data
for (int i=0, size=pis.size(); i<size; i++) {
 ProcessingInstruction pi = (ProcessingInstruction)pis.get(i);
 String target = pi.getTarget();
 String data = pi.getData();
}

You can also retrieve a list of all PIs with a specific target name using
getProcessingInstructions(String target).

Java and XML

 page 171

A PI can be constructed by providing the target and data to the ProcessingInstruction
constructor:

ProcessingInstruction pi =
 new ProcessingInstruction("cocoon-process", "type=\"xslt\"");

This would result in the following PI representation:

<?cocoon-process type="xslt"?>

There are several additional helper methods added to the class. It is common to supply the data for a
PI in name/value pairs, as in the following example:

<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl" media="wap"?>

To accommodate this, the ProcessingInstruction class provides a constructor that accepts a Map
of values:

Map map = new HashMap();
map.put("href", "XSL\\JavaXML.wml.xsl"); // escape the '\'
map.put("type", "text/xsl");
map.put("media", "wap");
ProcessingInstruction pi =
 new ProcessingInstruction("xml-stylesheet", map);

The ProcessingInstruction class also has convenience methods to retrieve the data of the PI in
name/value pair format. The most basic of these is the getValue() method. This method takes the
name of the name/value pair being searched for in the PI's data, and returns its value if located, or
an empty String is returned if the name/value pair cannot be found. For example, the following
code would determine the media type for the xml-stylesheet PI shown earlier:

String mediaType = pi.getValue("media");

The resulting value would be the String "wap", which can then be used throughout the application.
Since the data of a PI is not required to be in name/value pair form, getData() is also provided,
which returns the raw String data for the ProcessingInstruction object. Adding
ProcessingInstructions to a JDOM Document object can be done in any of the following ways:

Document doc = new Document(new Element("root"))
 .addProcessingInstruction(
 new ProcessingInstruction("instruction-1", "one way"))
 .addProcessingInstruction("instruction-2", "convenient way");

Here, a PI is added through:

addProcessingInstruction(ProcessingInstruction pi)

by supplying a created ProcessingInstruction object, and through the convenience method:

addProcessingInstruction(String target, String data)

which performs the same task using the supplied data.

Java and XML

 page 172

8.4.3 Elements

The core of any Document is the data within it, which is enclosed within that Document's elements.
The JDOM Element class is the Java representation of one of those elements, and provides access
to all the data for the element it represents. A JDOM Element instance is namespace-aware, and all
methods that operate upon the Element class and its Attributes can be invoked with a single
String name, or the String local name of the Element and a Namespace reference (which we look
at next). In other words, the following methods are all available to an Element instance:

// Create Element
Element element = new Element("elementName");

// Create Element with namespace
Element element = new Element ("elementName", Namespace.getNamespace(
 "JavaXML", "http://oreilly.com/catalog/javaxml/"));

// Add an attribute
element.addAttribute("attributeName");
element.addAttribute("attributeName", Namespace.getNamespace(
 "JavaXML", "http://www.oreilly.com/catalog/javaxml/"));

// Search for attributes with a specific name
List attributes = element.getAttributes("searchName");

The root element for a document is retrieved from the JDOM Document using
doc.getRootElement(). Each Element then has methods provided to retrieve its children,
through the getChildren() method. For convenience, the Element class provides several
variations on getChildren(), providing a means to retrieve a specific Element through its
namespace and local name, to retrieve all Elements with a specific name in the default namespace,
or to retrieve all nested Elements regardless of name:

public class Element {

 // Retrieve all nested Elements for this Element
 public List getChildren();

 // Retrieve all nested Elements with the specified name
 // (in the default namespace)
 public List getChildren(String name);

 // Retrieve all nested Elements with the specified name
 // and namespace
 public List getChildren(String name, Namespace ns);

 // Retrieve the Element with the specified name - if multiple
 // Elements exists with this name, return the first
 public Element getChild(String name) throws NoSuchElementException;

 // Retrieve the Element with the specified name - if multiple
 // Elements exists with this name, return the first
 public Element getChild(String name, Namespace ns)
 throws NoSuchElementException;

 // Other methods

}

The versions that retrieve a specific Element can throw a NoSuchElementException, or in the case
of the version that returns a List, an empty List. Children can be retrieved by name (with or

Java and XML

 page 173

without namespace), or all children can be retrieved regardless of name. To retrieve a child by
name, use getChild(), and to retrieve all children, use getChildren(). Consider the following
XML document:

<?xml version="1.0"?>

<linux-config>
 <gui>
 <window-manager>
 <name>Enlightenment</name>
 <version>0.16.2</version>
 </window-manager>

 <window-manager>
 <name>KWM for KDE</name>
 <version>1.1.2</version>
 </window-manager>
 </gui>
 <sound>
 <card>
 <name>Sound Blaster Platinum</name>
 <irq>7</irq>
 <dma>0</dma>
 <io start="D800" stop="D81F" />
 </card>
 </sound>
</linux-config>

When the document structure is known ahead of time, as in this example, a specific Element and its
value can be retrieved from the JDOM Document object easily:

Element root = doc.getRootElement();

String windowManager = root.getChild("gui")
 .getChild("window-manager")
 .getChild("name")
 .getContent();

String soundCardIRQ = root.getChild("sound")
 .getChild("card")
 .getChild("irq")
 .getContent();

Note that here, only the first element named window-manager will be returned, which is the defined
behavior of getChild(String name). To get all elements with a name, getChildren(String
name) should be used:

List windowManagers = root.getChild("gui")
 .getChildren("window-managers");

When an Element has pure textual data, it can be retrieved through the getContent() method as
demonstrated in the previous example. When an Element has only Element children, they can be
retrieved using getChildren() . In the fairly rare case that an Element has a combination of text
content, child elements, and comment elements, it's said to have mixed content . The mixed content
of an Element can be obtained through the getMixedContent() method. This method returns a
List of the content that contains String, Element, ProcessingInstruction, and Comment
objects.

Java and XML

 page 174

Technically, getContent() actually returns the String data held within an Element. This can be
seen as different than the content of the Element itself. Additionally, getChildren() technically
only returns the nested Elements, not all the child objects of an Element. The task of retrieving all
content of an Element is left to the more complicated getMixedContent() method. This
simplification eases the task of manipulating XML files for Java developers, removing the need to
perform instanceof operations on all method call results. The method names then, while not
technically accurate, are modeled after developer and user patterns.

Elements are commonly added to other Elements through the addChild(Element) method. You
can add several elements to a JDOM Document at once:

element
 .addChild(new Element("son").setContent("snips and snails"))
 .addChild(new Element("daughter").setContent("sugar and spice")
 .addChild(new Element("grandchild"))
);

This example chains together the adding of elements for convenience. This shorthand is possible
because addChild() returns the Element to which it was added. You must be very careful when
placing parentheses so this technique will work correctly. With one mismatched parenthesis, what
were supposed to be siblings may become parent and child! Child elements can be removed using
the methods removeChild() and removeChildren(). They take the same parameters as
getChild() and getChildren().

Elements are constructed with their names. To accommodate namespaces, there are four
constructors:

// Get a namespace reference
Namespace ns = Namespace.getNamespace("JavaXML",
 "http://www.oreilly.com/catalog/javaxml/");

// Create an element: JavaXML:Book
Element element1 = new Element("Book", ns);

// Create an element: JavaXML:Book
Element element2 = new Element("Book", "JavaXML",
 "http://www.oreilly.com/catalog/javaxml/");

// Create an element: Book
Element element3 = new Element("Book",
"http://www.oreilly.com/catalog/javaxml/");

// Create an element: Book
Element element4 = new Element("Book");

The first two Element instances, element1 and element2, have equivalent names, as the Element
class will handle storing the supplied name and namespace. The third instance, element3, is
assigned to the default namespace, and that namespace is given a URI. The fourth instance creates
an Element without a namespace.

Element content is set using setContent(String content). This replaces any existing content
within the Element, including any Element children. To add the String as an additional "piece" of
the Element's overall mixed content, use the addChild(String content) method.

Java and XML

 page 175

One powerful feature of JDOM is that Elements can be added and removed by manipulating the
List returned from an invocation of getChildren(). Here the last "naughty" child is removed
from the root (to set an example for the others):

// Get the root Element
Element root = doc.getRootElement();

// Get all "naughty" children
List badChildren = root.getChildren("naughty");

// Get rid of the last naughty child
if (badChildren.size() > 0) {
 badChildren.remove(badChildren.size()-1);
}

The Java 2 collection classes support features like set arithmetic and high-speed sorting, so while
the convenience methods on JDOM objects are, well, convenient, for the advanced tasks, it's useful
to manipulate the List objects directly. We now can look at adding namespace mappings to our
Document object, as well as adding and accessing JDOM Attributes.

8.4.3.1 Namespaces

The XML namespaces Recommendation defines the process by which namespace prefixes are
mapped to URIs. For a namespace prefix to be used, the prefix should be mapped to a URI through
the xmlns:[namespace prefix] attribute. In using JDOM, all namespace-prefixes-to-URI
mappings are handled automatically by JDOM at output time.

You have seen that XML namespaces are handled through the org.jdom.Namespace class, which
doubles as a factory for creating new namespaces:

Namespace ns = Namespace.getNamespace("prefix", "uri");

The ns object can then be used by Element and Attribute objects. Additionally, the Namespace
class will only create new objects when needed; requests for existing namespaces receive a
reference to the existing object.

8.4.3.2 Attributes

An attribute of an Element is retrieved using the getAttribute(String name) method. This
method returns an Attribute object whose value is retrieved using getValue(). The following
code gets the "size" attribute on the given element.

element.getAttribute("size").getValue();

A variety of convenient methods are provided for accessing the attribute's value as a specific data
type. These include methods for the Java primitives, such as getIntValue() , getFloatValue(
), getBooleanValue(), and getByteValue(). The methods throw a DataConversionException
if the value does not exist or could not be converted to the requested type. There are matching
companions for each of these methods that allow a default value to be passed in, which is returned
instead of throwing an exception if the requested data conversion cannot be done. This code snippet
retrieves the size as an int, or returns if a conversion cannot occur:

element.getAttribute("size")
 .getIntValue(0);

Java and XML

 page 176

Adding attributes to an element is equally simple. An attribute can be added using an Element's
addAttribute(String name, String value) method, or you can use the more formal
addAttribute(Attribute attribute) method. The Attribute constructor takes in the name of
the Attribute to create (either as a single String parameter, or as a namespace prefix and local
name) and the value to assign to the Attribute:

doc.getRootElement()
 .addAttribute("kernel", "2.2.14") // easy way
 .addAttribute(new Attribute("dist", "Red Hat 6.1")); // formal way

8.4.4 Comments

The JDOM Comment object represents data that is not part of the functional data of the Document,
but is used for human readability and convenience. In XML it's represented by <!-- this syntax
--> . Comments in JDOM are represented by the Comment class with instances kept either at the
document level, or as children of an Element; in other words, both the JDOM Document object and
its Elements can have comments.

To obtain the comments for a Document, the getContent() method is provided, which returns a
List containing all the Comment objects of the document as well as the root Element. Comments
placed before the root appear in the list before the root, and those placed after the root appear later
in the output. To obtain the comments for an Element, getMixedContent() should be called,
which returns all Comment, Element, and String (textual data) objects nested within the Element
in the order in which they appear. As an example, assume we have the following XML file:

<?xml version="1.0"?>

<!-- A comment at the root level: Java and XML, by Brett McLaughlin -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 <JavaXML:Title>Java and XML</JavaXML:Title>

 <!-- A comment nested within the JavaXML:Book element: Contents -->
 <JavaXML:Contents>
 You're reading the contents!
 </JavaXML:Contents>
</JavaXML:Book>

Normally, the comments are not needed by applications, but should they be, this code would
retrieve them:

List docContent = doc.getContent();
List elemContent = root.getMixedContent();

for (int i=0, size=docContent.size(); i<size; i++) {
 Object o = docContent.get(i);
 if (o instanceof Comment) {
 Comment c = (Comment)o;
 String text = c.getText();
 }
}

for (int i=0, size=elemContent.size(); i<size; i++) {
 Object o = elemContent.get(i);
 if (o instanceof Comment) {
 Comment c = (Comment)o;
 String text = c.getText();
 }

Java and XML

 page 177

}

The Comment constructor takes in the text of the comment as its sole argument. The Document
object provides a means for comments to be added through the addComment(Comment) method, and
the Element class provides addChild(Comment) for the same purpose:

// Create the Comment
Comment docComment = new Comment("A comment at the root level");

// Add the comment to the Document object
doc.addComment(docComment);

// Create another Comment
Comment elemComment = new Comment("A comment nested within an element");

// Add the comment to an Element
doc.getRootElement()
 .getChild("Contents")
 .addChild(elemComment);

8.5 Outputting a Document

The process of outputting a JDOM Document object is even simpler than the process of creating
one. The org.jdom.output package provides helper and utility classes for outputting a Document
to various sources. No interface is provided to define required behavior, as output of a Document
can be used in a variety of ways, from something as simple as writing to a file to something as
complex as triggering events for another application component to use.

8.5.1 Standard XML Output

The most common use for XML data within a JDOM Document is to output that data as XML to a
file or another application component, using an OutputStream . Of course, this stream may wrap a
console's output, a file, a URL, or any other construct that can receive data. This task is handled in
JDOM by the org.jdom.output.XMLOutputter class. This class provides the following
constructors and output method:

public class XMLOutputter {

 // Accept defaults: 2 space indent and new line feeds on
 public XMLOutputter();

 // Specify indent, accept default for new line feeds (on)
 public XMLOutputter(String indent);

 // Specify the indention to use and if new line feeds should be used
 public XMLOutputter(String indent, boolean newlines);

 // Output a JDOM Document to a stream
 public void output(Document doc, OutputStream out)throws IOException;

}

When instantiated with the default constructor, this results in a "pretty printing" of the JDOM
Document; other options can be supplied for more compact output (such as turning off new lines
and removing indentation, resulting in the smallest file possible). The following example shows the
SAXTest class we looked at earlier, revised to print the document to the standard output:

Java and XML

 page 178

import java.io.File;
import java.io.IOException;

import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.input.Builder;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;

public class SAXTest {

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: SAXTest [filename to parse]");
 return;
 }

 try {
 // Request document building without validation
 Builder builder = new SAXBuilder(false);
 Document doc = builder.build(new File(args[0]));
 printDocument(doc);
 } catch (JDOMException e) {
 if (e.getRootCause() != null) {
 e.getRootCause().printStackTrace();
 }
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void printDocument(Document doc) throws IOException {
 XMLOutputter fmt = new XMLOutputter();
 fmt.output(doc, System.out);
 }
}

Notice that in our methods that build JDOM Document objects with SAXBuilder and DOMBuilder,
we didn't perform any data massaging or manipulation after building; a built Document is
immediately ready for output, making reading and writing XML (possibly from one source to
another source) extremely easy.

8.5.2 Firing Off SAX Events

We have already discussed applications of JDOM even when the original XML is available only as
a pre-built DOM tree; the DOMBuilder can convert the DOM tree to the much lighter-weight JDOM
Document object, and the JDOM API can be used to manipulate the XML data. In the same manner,
JDOM can communicate with other applications that expect SAX events as input. The
org.jdom.SAXOutputter class provides the ability to fire off SAX events from a supplied JDOM
Document object. This provides a complete isolation level between application components,
allowing you to use JDOM while still interacting with applications that don't use JDOM (or just
haven't caught up yet!). Additionally, a DOMOutputter class is being developed to perform the same
type of task, converting a JDOM Document object into a DOM tree to pass to other application
components. Both of these classes should be complete by the publication of this book, so visit
http://www.jdom.org to obtain these updates, as well as the latest version of the JDOM
implementation classes.

Java and XML

 page 179

More important than these two specific classes is the flexibility they indicate: rather than being tied
to a specific format, JDOM seeks to allow input and output from any type of input source and to
any type of output source. An ApacheOutputter class, for example, could be created to output a
JDOM Document created with ApacheBuilder back into an Apache HTTP configuration file
format. The output formats can be as varied as the input formats, as JDOM provides only an object
model, rather than a specific XML model.

8.5.3 Putting JDOM to Work

As a more complete example of using JDOM, Example 8.5 is a JDOM "test suite" that builds a
JDOM Document object from scratch, using both SAXBuilder and DOMBuilder.

Example 8.5. JDOM Test Suite
import java.io.File;
import java.io.IOException;
import java.io.OutputStream;

import org.jdom.Attribute;
import org.jdom.Comment;
import org.jdom.DocType;
import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.Namespace;
import org.jdom.ProcessingInstruction;
import org.jdom.input.Builder;
import org.jdom.input.DOMBuilder;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;

/**
 * <p>
 * Demonstrate building JDOM Documents from scratch and existing XML
 * data sources.
 * </p>
 *
 * @version 1.0
 */
public class JDOMTest {

 public JDOMTest() {
 }

 /**
 * <p>
 * Build a JDOM <code>Document</code> from scratch
 * </p>
 *
 * @param out <code>OutputStream</code> to write created XML to
 * @throws <code>IOException</code> when output errors occur.
 */
 public void newDocument(OutputStream out)
 throws IOException, JDOMException {

 Namespace ns = Namespace.getNamespace("linux", "http://www.linux.org");
 Document doc =
 new Document(new Element("config", ns))
 .setDocType(new DocType("linux:config",
 "DTD/linux.dtd"))
 .addProcessingInstruction("cocoon-process",

Java and XML

 page 180

 "type=\"xsp\"")
 .addProcessingInstruction(
 new ProcessingInstruction("cocoon-process",
 "type=\"xslt\""));

 doc.getRootElement()
 .addAttribute("kernel", "2.2.14") // easy way
 .addAttribute(
 new Attribute("dist", "RedHat 6.1")) // hard way
 .addChild(new Element("gui", ns)
 .setContent("No Window Manager Installed"))
 .addChild(new Comment("Sound Card Configuration"))
 .addChild(new Element("sound")
 .addChild(new Comment("Sound Blaster Card"))
 .addChild(new Element("card")
 .addChild(new Element("name")
 .setContent("Sound Blaster Platinum")))
);

 XMLOutputter fmt = new XMLOutputter();
 fmt.output(doc, out);
 }

 public void domDocument(File file, OutputStream out)
 throws IOException, JDOMException {

 Builder builder = new DOMBuilder(true);
 Document doc = builder.build(file);

 XMLOutputter fmt = new XMLOutputter();
 fmt.output(doc, out);
 }

 public void saxDocument(File file, OutputStream out)
 throws IOException, JDOMException {

 Builder builder = new SAXBuilder(true);
 Document doc = builder.build(file);

 XMLOutputter fmt = new XMLOutputter();
 fmt.output(doc, out);
 }

 /**
 * <p>
 * Static entry point for JDOM testing.
 * </p>
 */
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: JDOMTest [filename to parse]");
 System.exit(-1);
 }

 try {
 JDOMTest test = new JDOMTest();

 System.out.println(
 "\n\n--");
 System.out.println(
 "Testing creating Document from scratch ...");
 System.out.println(
 "--\n\n");
 test.newDocument(System.out);

Java and XML

 page 181

 System.out.println(
 "\n\n--");
 System.out.println(
 "Testing reading Document using DOM ...");
 System.out.println(
 "--\n\n");
 test.domDocument(new File(args[0]), System.out);

 System.out.println(
 "\n\n--");
 System.out.println(
 "Testing reading Document using SAX ...");
 System.out.println(
 "--\n\n");
 test.saxDocument(new File(args[0]), System.out);

 System.out.println(
 "\n\n--");
 System.out.println(
 "Tests complete. Successful build in place.");

 } catch (Exception e) {
 e.printStackTrace();
 if (e instanceof JDOMException) {
 System.out.println(((JDOMException)e).getRootCause()
 .getMessage());
 } else {
 System.out.println(e.getMessage());
 }
 }
 }

}

Compile the JDOMTest class, and let's take a look at its output. Supplying an XML file to the class,
we can see the file output twice, once built with SAX and once built with DOM, which follows the
new XML data created from scratch. Example 8.6 shows parts of this output.

Example 8.6. Output from JDOMTest Class
$ java JDOMText contents.xml

--
Testing creating tree from scratch ...
--

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE linux:config SYSTEM "DTD/linux.dtd">

<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>

<linux:config xmlns:linux="http://www.linux.org" kernel="2.2.14"
 dist="RedHat 6.1">
 <linux:gui>No Window Manager Installed</linux:gui>
 <!--Sound Card Configuration-->
 <sound>
 <!--Sound Blaster Card-->
 <card>
 <name>Sound Blaster Platinum</name>
 </card>

Java and XML

 page 182

 </sound>
</linux:config>

--
Testing reading tree using DOM ...
--

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>
<!-- Java and XML -->

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 <JavaXML:Title>Java and XML</JavaXML:Title>
 <JavaXML:Contents>
 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Introduction</JavaXML:Heading>
 <JavaXML:Topic subSections="7">What Is It?</JavaXML:Topic>

...

--
Testing reading tree using SAX ...
--

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>
<!-- Java and XML -->

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 <JavaXML:Title>Java and XML</JavaXML:Title>
 <JavaXML:Contents>
 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Introduction</JavaXML:Heading>
...

This output was the result of running JDOMTest with the contents.xml document we have been
working with through the various chapters. The JavaXML:References element (and its children) is
commented out, as our DTD does not allow those elements in the document. Leaving those
elements in results in the following error message (when validation is requested in creating a
SAXBuilder or DOMBuilder instance):

org.jdom.JDOMException: Error on line 59 of XML document: Element type
 "JavaXML:References" must be declared.
 at org.jdom.input.DOMBuilder.build(DOMBuilder.java:121)
 at org.jdom.input.AbstractBuilder.build(AbstractBuilder.java:58)
 at JDOMTest.domDocument(JDOMTest.java:46)
 at JDOMTest.main(JDOMTest.java:79)
Error on line 59 of XML document: Element type "JavaXML:References"
 must be declared.

Java and XML

 page 183

One of the key features of JDOM is this error testing; this provides detailed information about the
location within the XML input where errors occurred, making validation and well-formedness
checking simple. Because input and output of an XML source takes only four lines of code (as
shown in the domDocument() and saxDocument() methods), JDOM can be used to provide a
means to ensure your XML documents are well-formed and valid.

For those of you paying close attention, you may have noticed something we did not have to worry about
in the code above: validation and namespaces cooperating! Because JDOM handles namespaces
internally (rather than depending on DOM Level 2 or SAX 2.0 to supply namespace information), it can
perform validation while still providing namespace support. In fact, JDOM actually turns namespace-
awareness off in SAXBuilder and DOMBuilder! Not only does this allow validation to occur, but it
actually speeds up processing of XML documents.

As a final look at JDOM, we revisit the SAXParserDemo and DOMParserDemo from Chapter 3 and
Chapter 7 briefly. Both of these programs printed out XML documents from an input file; while the
SAXParserDemo provided more of a lifecycle view of the SAX parsing process, DOMParserDemo
was essentially a "pretty-printer" class, outputting the DOM tree in human-readable format. Both
classes allowed a look at an XML document; Example 8.7 shows the source for
com.oreilly.xml.PrettyPrinter, a utility class that performs this same task using JDOM.

Example 8.7. The com.oreilly.xml.PrettyPrinter Utility Class
package com.oreilly.xml;

import java.io.File;

import org.jdom.Document;
import org.jdom.input.Builder;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;

/**
 * <code>PrettyPrinter</code> will output the XML document at a
 * given URI
 *
 * @author
 * Brett McLaughlin
 * @author Jason Hunter
 * @version 1.0
 */
public class PrettyPrinter {

 /**
 * <p>
 * Pretty prints a given XML URI
 * </p>
 */
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: " +
 "java com.oreilly.xml.PrettyPrinter [XML_URI]");
 return;
 }

 String filename = args[0];

 try {
 // Build the Document with SAX and Xerces, no validation
 Builder builder = new SAXBuilder();

Java and XML

 page 184

 // Create the document (without validation)
 Document doc = builder.build(new File(filename));

 // Output the document, use standard formatter
 XMLOutputter fmt = new XMLOutputter();
 fmt.output(doc, System.out);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

At this point, we have taken a bit of a whirlwind tour through JDOM, and only seen a glimpse of its
full functionality. The complete API is documented in Appendix A, and includes all JDOM classes
and interfaces, as well as the methods available for each. The support packages for JDOM,
org.jdom.adapters, org.jdom.input, and org.jdom.output, are also documented in Appendix
A. To continue to illustrate how JDOM is used (as we do with SAX and DOM), we will use JDOM
in the examples throughout the rest of the book. Additionally, we compare JDOM to SAX and
DOM in each example, ensuring that you can perform tasks using all three APIs when needed.
Ultimately, you can decide when each API is useful, and code accordingly. Finally, the most current
version of JDOM and the corresponding Javadoc are available online at http://www.jdom.org and
http://www.newInstance.com.

8.6 What's Next?

With JDOM added to our arsenal, and with our look at JAXP, we are ready to begin looking at
specific applications of XML. Using SAX, DOM, and JDOM, we will discuss web publishing
frameworks, business-to-business applications, XML-RPC, Rich Site Summary (RSS), XML
configurations, and a variety of related topics in the latter half of the book. All topics focus on
leveraging existing tools and adding code to enhance functionality rather than trying to recreate
solutions that are already in place.

Chapter 9. Web Publishing Frameworks
This chapter begins our look at specific Java and XML topics. So far, we have covered the basics of
using XML from Java, looking at the SAX and DOM APIs to manipulate XML and the
fundamentals of using and creating XML itself. We've also looked at how JDOM can provide a
more Java-centric means of using our XML data and documents within Java programs. Now that
you have a grasp on using XML from your code, we will spend time on specific applications. The
next six chapters represent the most significant applications of XML, and, in particular, how those
applications are implemented in the Java space. While there are literally hundreds and soon to be
thousands of important applications of XML, the topics in these chapters are those that continually
seem to be in the spotlight, and that have a significant potential to change the way traditional
development processes occur.

We begin our look at these hot topics with the one XML application that seems to have generated
the largest amount of excitement in the XML and Java communities: the web publishing
framework. Although we have continually emphasized that generating presentation from content is
perhaps over-hyped when compared to the value of the portable data that XML provides, using
XML for presentation styling is still very important. This importance increases when looking at
web-based applications.

Over the next five years, virtually every major application will either be completely web-based, or
at a minimum have a web frontend. At the same time, users are demanding more functionality, and

Java and XML

 page 185

marketing departments are demanding more flexibility in look and feel. The result has been the rise
of the web artist; this new role is different from the webmaster in that little to no Perl, ASP,
JavaScript, or other scripting language coding is part of the job description. The web artist's entire
day is comprised of HTML creation, modification, and development. The rapid changes in business
and market strategy can require a complete application or site overhaul as often as once a week,
often forcing the web artist to spend days changing hundreds of HTML pages. While Cascading
Style Sheets (CSS) have helped, the difficulty of maintaining consistency across these pages has
required a huge amount of time. Even if this less than ideal situation were acceptable, no computer
developer wants to spend his or her life making HTML changes to web pages.

With the advent of server-side Java, this problem has only grown. Servlet developers find
themselves spending long hours modifying their out.println() statements to output HTML, and
often glance hatefully at the marketing department when changes to a site's look require
modifications to their code. The entire Java Server Pages (JSP) specification arguably stemmed
from this situation; however, JSP is not a solution, as it only shifts the frustration to the HTML
developer, who constantly has to avoid making incidental changes to embedded Java code. In
addition, JSP does not provide the clean separation between content and presentation it promises.
What was called for was a means to generate pure data content, and have that content uniformly
styled either at predetermined times (static content generation), or dynamically at runtime (dynamic
content generation).

Of course, you should be nodding your head at this familiar problem if you have ever done any web
development, and hopefully your mind is wandering into the XSL and XSLT technology space. The
problem is that an engine must exist to handle content generation, particularly in the dynamic sense.
Having hundreds of XML documents on a site does no good if there is no mechanism to apply
transformations on them when requested. Add to this the need for servlets and other server-side
components to output XML that should be consistently styled, and you have defined a small set of
requirements for the web publishing framework. In this chapter, we take a look at this framework,
how it can allow you to toss out those long hours of HTML coding, and how it can help you convert
all of those "web artists" into XML and XSL gurus, making you happy, them happy, and allowing
your applications to change look and feel as often as you want.

A web publishing framework attempts to address these complicated issues. Just as a web server is
responsible for responding to a URL request for a file, a web publishing framework is responsible
for responding to a similar request; however, instead of responding with a file, it often will respond
with a published version of a file. In this case, a published file refers to a file that may have been
transformed with XSLT, or massaged at an application level, or converted into another format such
as a PDF. The requestor does not see the raw data that may underlie the published result, but also
does not have to explicitly request that publication occur. Often, a URI base (such as
http://yourHost.com/publish) signifies that a publishing engine that sits on top of the web server
should handle requests. As you may suspect, the concept is much simpler than the actual
implementation of a framework like this, and finding the correct framework for your needs is not a
trivial task.

9.1 Selecting a Framework

If you're getting an idea of the importance of the web publishing framework, you might expect to
find a list of hundreds of possible solutions. This is because the Java language offers an easy
interface into the various XML tools used by web publishing frameworks. Additionally, Java
servlets offer a simple means of handling web requests and responses. However, the list of

Java and XML

 page 186

frameworks is small, and the list of good and stable ones is even smaller. One of the best resources
for seeing what products are currently available is XML Software's list at
http://xmlsoftware.com/publishing/. This list changes frequently enough that it is not worth
repeating here. Still, some important criteria for determining what framework is right for you are
worth mentioning.

9.1.1 Stability

Don't be surprised if you have a hard time finding a product whose version tag is greater than 2.x. In
fact, you may have to search diligently to even find a second-generation framework. While a higher
version number is not a guarantee of stability, it often reflects the amount of time, effort, and review
that a framework has undergone. The XML publishing system is such a new beast that the market is
being flooded with 1.0 and 1.1 products that simply are not stable enough for practical use.

You can also often ascertain stability of a product by the stability of other products from the same
vendor. Often, an entire suite of tools is released by a vendor; if their other tools do not offer SAX
2.0 and DOM Level 2 support, or are all also 1.0 and 1.1 products, you might be wise to pass on the
framework until it has matured a little more, and has conformed to newer XML standards. You
should also try to steer away from platform-specific technologies — if the framework is tied to a
platform (such as Windows), you aren't dealing with a pure Java solution. Remember that a
publishing framework must serve clients on any platform; why be happy with a product that can't
also run on any platform?

9.1.2 Integration with Other XML Tools and APIs

Once you have ensured that your framework is stable enough for your needs, you should make sure
that it has support for a variety of XML parsers and processors. If a framework is tied to a specific
parser or processor, you are really just buying an XML version of Microsoft — you have tied
yourself to one specific implementation of a technology. Although frameworks often integrate well
with a particular parser vendor, determine if parsers can be interchanged. If you have a favorite
processor (or one left to you from previous projects), make sure that processor can still be used.

Support for SAX and DOM is a must. Also, try to find a framework whose developers are
monitoring the specifications of XML Schema, XLink, XPointer, and other emerging XML
technologies. This will indicate if you can expect to see revisions of the framework add support for
these XML specifications, an important indication of the framework's longevity. Don't be afraid to
ask questions about how quickly new specifications can be expected to be integrated into the
product, and insist on a firm answer.

9.1.3 Production Presence

The last, and perhaps most important, question to answer when looking for a web publishing
framework is determining if it is used in production applications. If you cannot be supplied with at
least a few reference applications or sites that are using the framework, don't be surprised if there
aren't any. Vendors (and developers, in the open source realm) should be happy and proud to let you
know where you can check out their frameworks in action. Hesitance in this area is a sign that you
may be more of a pioneer with a product than you wish to be.

Java and XML

 page 187

9.1.4 Making the Decision

Once you have evaluated these criteria, you will probably have a clear answer. Very few
frameworks can positively answer all the questions raised here, not to mention your application
specific concerns. In fact, at the time of this writing, less than five publishing frameworks exist that
support the latest versions of SAX, DOM, and JAXP, are in production at even one application site,
and have at least three significant revisions of code under their belt. These are not listed here
because, honestly, in six months they may not exist, or may be radically changed. The world of web
publishing frameworks is in such flux that trying to recommend you to four or five options and be
assured they will be in existence months from now has a greater chance of misleading you than
helping you.

However, one publishing framework has consistently succeeded and received notice within the Java
and XML community; when considering the open source community in particular, this framework
is often the choice of Java developers. The Apache Cocoon project, founded by Stefano Mazzocchi,
has been a solid framework since its inception. Developed while most of us were still trying to
figure out what XML was, Cocoon is now entering its second generation as an XML publishing
framework based completely in Java. It also is part of the Apache XML project, and has default
support for Apache Xerces and Apache Xalan. It allows any conformant XML parser to be used,
and is based on the immensely popular Java servlet architecture. In addition, there are several
production sites using Apache Cocoon (in its 1.x form) that push the boundaries of traditional web
application development yet still perform extremely well. For this reason, and again in keeping with
the spirit of open source software, we use Apache Cocoon as the framework of choice in this
chapter.

In previous chapters, our choice of XML parser and processor was fairly open; in other words,
examples would work with only small modifications to code when using different vendor
implementations. However, the web publishing framework is not standardized, and each framework
implements wildly different features and conventions. For this reason, the examples in this chapter
using Apache Cocoon are not portable; however, the popularity of the concepts and design patterns
used within Cocoon merit an entire chapter on using the framework. If you do not choose Cocoon,
you should at least look over the examples, as the concepts in web publishing are usable across any
vendor implementation, even though the specifics of the code are not.

9.2 Installation

In other chapters, installation instructions generally involved pointing you at a web site where you
could obtain a distribution of the software and letting you add the included jar file to your class
path. Installing a framework such as Cocoon is not such a trivial task, and we document the
procedures to make this happen here. If you want the very latest versions of the framework, you
should download a copy of CVS, the Concurrent Versioning System. This allows you to obtain the
code from the actual source code repository rather than the less frequent code releases, which
usually occur at version releases. You can get CVS from http://www.cyclic.com/cyclic-
pages/howget.html.

With Cocoon, we look at the 1.x version of the framework. Although by the time you are reading
this, the public 2.0 release will probably be available in a beta form, at this time, Cocoon 2.0 is in an
alpha state, and is only available through CVS access. Because of the high amount of change still
anticipated in the Cocoon 2.0 framework, we will focus on the 1.x version tree, as that is being used
most often today. At the end of this chapter, we do take a brief look at the upcoming features of
Cocoon 2, which is scheduled for a full release late in 2000. If you are looking at using Cocoon in a

Java and XML

 page 188

production environment today, you will definitely want to stay with the 1.x branch until Cocoon 2
has been released and stabilized.

If going through the procedures you find yourself encountering problems, you should take
advantage of the online resources available for Cocoon. The Apache XML project, located at
http://xml.apache.org, hosts the Cocoon project. There are mailing lists available at
http://xml.apache.org/mail.html, as well as a very informative FAQ at
http://xml.apache.org/cocoon/faqs.html. Don't be afraid to ask questions and get involved;
installation of complex application frameworks is rarely simple, and chances are that others may
share your problems and frustrations. With that in mind, let's get down to business.

9.2.1 Getting Ant

Unix and Linux veterans are probably already gearing up to type those familiar commands when
compiling source code:

/home/bmclaugh (mejis)> ./configure
/home/bmclaugh (mejis)> make
/home/bmclaugh (mejis)> make install

The association between source code, make, and autoconf is old and long-standing. However, make
does not translate well with Java code — Windows users have to have additional tools for
compiling on a Windows platform, lengthy configuration has to be performed to allow Javadoc and
other extra commands to be run, RMI compiles (rmic) are complex, and the list goes on. The
solution designed to work so well with Perl, shell scripts, and C code is not robust enough for the
Java paradigm.

Luckily, James Duncan Davidson (of Jakarta, JAXP, and the servlet specification fame) spent some
long nights doing more than just complaining. He began what is now called Ant, which is part of
the Apache Jakarta project. Ant is a Java-based build tool; its configuration is XML based, it is
cross-platform, and can handle any task needed. RMI compiles, Javadoc, external commands, and
more can all be run within this environment. It is Ant that is used for building the Cocoon sources.

The current version of Ant is included when you obtain Cocoon, and is located in the Cocoon lib/
directory. You can also get the latest version of Ant from the Jakarta web site, located at
http://jakarta.apache.org. Instructions for using Ant with Cocoon are included with the Cocoon
distribution, while more general documentation on Ant is available at the Jakarta web site.

9.2.2 Getting Cocoon

With Ant in place, you are ready to obtain the source for Cocoon 1.x. In addition to being able to
download Cocoon from the Apache XML project (http://xml.apache.org), the latest version with
new features is available via CVS. If you are just starting out with Cocoon, you may want to
download a packaged distribution; however, by this time you should be pretty comfortable with
Java and XML code. You may want to obtain the very newest version of Cocoon, the 1.x.dev
version, from the Apache XML CVS repository. You can get the code from CVS with:

cvs -d :pserver:anoncvs@xml.apache.org:/home/cvspublic login
Password: ******* (Password is 'anoncvs')

cvs -d :pserver:anoncvs@xml.apache.org:/home/cvspublic checkout xml-cocoon
...

Java and XML

 page 189

You will then get the Cocoon source distribution in the xml-cocoon directory. This contains the
build file used by Ant, all the required libraries to build Cocoon, and the source itself. Change into
the created directory and you are ready to build Cocoon.

9.2.3 Building Cocoon

At this point, you need to be sure you are back into the main directory of the Cocoon project. To
perform the build, enter the following command on Windows systems:

D:\dev\xml-cocoon> build.bat

A shell script is provided for use on Unix and Linux systems:

$ sh build.sh

The lib/ subdirectory contains all the libraries needed for building Cocoon. These supplied build
scripts will add each jar file in this directory to your class path, which includes the latest versions of
Apache Xerces, Apache Xalan, and other dependencies that work with Cocoon 1.x. Even if you
already have some of these libraries (such as Xerces or Xalan), it is recommended that you use the
supplied libraries (which the scripts take care of), as they are certified to work with the version of
Cocoon retrieved from CVS. When finished, your class path will include the following libraries:

• JDK Tools: tools.jar
• Jakarta Ant: ant.jar
• Servlet API 2.2: servlet_2_2.jar
• Apache Xerces: xerces_x_y_z.jar
• Apache Xalan: xalan_x_y_z.jar
• Apache FOP[1]: fop_x_y_z.jar

[1] This is the same FOP (Formatting Objects Processor) we looked at in Chapter 6, when discussing converting XML to non-textual formats.

• Apache Stylebook[2]: stylebook-x.y-z.jar

[2] Stylebook is a project that handles generation of very complex documents, including HTML, and is used to generate the Cocoon documentation
and web site. The Stylebook project is set to integrate with Cocoon in Cocoon 2.0.

The build script then tells Ant to use the build.xml in the current directory to build the project. Once
executed, your output should look like this:

Cocoon Build System

Building with classpath /usr/java/lib/tools.jar;./lib/xerces_1_0_3.jar;
./lib/xalan_1_0_0.jar;./lib/fop_0_12_1.jar;./lib/servlet_2_2.jar;
./lib/ant.jar
Starting Ant...
Buildfile: build.xml
Project base dir set to: /home/bmclaugh/projects/cocoon
Executing Target: init
------------------- Cocoon 1.7.3-dev [1999-2000] ----------------
Executing Target: prepare
Created dir: /home/bmclaugh/projects/cocoon/build
Executing Target: prepare-projectx
Copying 1 files to /home/bmclaugh/projects/cocoon/src
Executing Target: prepare-xt
Executing Target: prepare-ecma
Executing Target: prepare-ldap
Copying 5 files to /home/bmclaugh/projects/cocoon/build/src

Java and XML

 page 190

Executing Target: prepare-src
Created dir: /home/bmclaugh/projects/cocoon/build/classes
Copying 109 files to D:\dev\xml-cocoon\build\src
Executing Target: compile
Compiling 98 source files to /home/bmclaugh/projects/cocoon/build/classes
Copying 12 support files to /home/bmclaugh/projects/cocoon /build/classes
Executing Target: package
Building jar: /home/bmclaugh/projects/cocoon/build/cocoon.jar
Completed in 24 seconds

You may see slight differences in the version or exact number of files, but no errors should occur; if
they do, make the corrections to your class path indicated by the build program and re-run the build
command. At the end of this process, you should have the complete Cocoon distribution in a single
jar file, cocoon.jar , located in the build/ subdirectory. You should also verify that you have the
sample properties file that Cocoon comes with, cocoon.properties, in the bin/ directory of the
project. If you cannot locate this file, it is also located in the build/classes/org/apache/cocoon/
subdirectory.

You can also use Ant to generate documentation, Javadoc, and perform other tasks related to the
project. These tasks are accomplished by specifying targets to the build command. Targets are
keywords supplied as arguments to Ant; the complete list of supported targets for Cocoon is listed
in the build file, build.xml. The target for documentation is docs , and for Javadoc it is javadocs.
For example, to generate the Cocoon project documentation, perform:

$ sh build.sh docs
Building with classpath /usr/java/lib/tools.jar;./lib/xerces_1_0_3.jar;
./lib/xalan_1_0_0.jar;./lib/fop_0_12_1.jar;./lib/servlet_2_2.jar;
./lib/ant.jar
Starting Ant...
Buildfile: build.xml
Project base dir set to: /home/bmclaugh/projects/cocoon
Executing Target: init
------------------- Cocoon 1.7.3-dev [1999-2000] ----------------
Executing Target: prepare-docs
Replacing ./docs/dtd/ --> dtd/
Replacing ./docs/dtd/ --> dtd/
Executing Target: docs
...

This generates complete project documentation in the build/docs/ subdirectory. Once you have built
Cocoon and any desired optional targets, you should be ready to set up your servlet engine to use
Cocoon.

9.2.4 Configuring the Servlet Engine

Once you have built Cocoon, you need to configure your servlet engine to use Cocoon and tell it
which requests Cocoon should handle. We look at setting up Cocoon to work with the Jakarta
Tomcat servlet engine here;[3] as this is the reference implementation for the Java Servlet API 2.2,
you should be able to mimic these steps for your own servlet engine if you are not using the Tomcat
implementation.

[3] Although the 3.1 build is used in these examples, Cocoon only requires a 2.x version of the servlet API. In addition, configuration options in Tomcat should
not be subject to change with revisions of the engine; in other words, the instructions within this chapter should apply to any 3.x version of Tomcat.

The Cocoon framework is built to operate at an engine level rather than as another servlet in your
engine. Therefore, we need to add Cocoon and its dependencies to the core servlet engine class path
rather than in a particular servlet zone or context. Copy the Cocoon jar file and the Xerces, Xalan,

Java and XML

 page 191

and FOP jar files into the Tomcat lib/ subdirectory, off of the main Tomcat installation directory.
You then need to add these libraries to the engine class path; in Tomcat, this is accomplished
through editing the Tomcat initialization script. For Windows platforms, this is
<TOMCAT_HOME>/bin/tomcat.bat; for Unix platforms, <TOMCAT_HOME>/bin/tomcat.sh. In
these files, you will see the lines that set the class path used by Tomcat when starting up. You
should add the Cocoon distribution and its dependencies before these other entries in the
configuration file. On Windows, this will look like:

set CLASSPATH=.
set CLASSPATH=%TOMCAT_HOME%\classes

rem Cocoon classes and libraries
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xerces_1_0_3.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xalan_1_0_0.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\fop_0_12_1.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\cocoon.jar

set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\webserver.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\jasper.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xml.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\servlet.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar

On Unix platforms, the modified file should look like this:

CLASSPATH=.

Cocoon classes and libraries
CLASSPATH=${CLASSPATH}:${TOMCAT_HOME}/lib/xerces_1_0_3.jar
CLASSPATH=${CLASSPATH}:${TOMCAT_HOME}/lib/xalan_0_20_0.jar
CLASSPATH=${CLASSPATH}:${TOMCAT_HOME}/lib/fop_0_12_1.jar
CLASSPATH=${CLASSPATH}:${TOMCAT_HOME}/lib/cocoon.jar

for i in ${TOMCAT_HOME}/lib/* ; do
 CLASSPATH=${CLASSPATH}:$i
done

CLASSPATH=${CLASSPATH}:${JAVA_HOME}/lib/tools.jar

It is important to ensure that the Cocoon classes precede the rest of the Tomcat classes, particularly
xml.jar. While Xerces, Xalan, and Cocoon all use SAX 2 and DOM Level 2 classes and interfaces,
the Sun Project X parser contained in xml.jar does not yet have SAX 2 and DOM Level 2 support;
if this class and its SAX and DOM versions are found first, the Cocoon framework will error out.

With these libraries added, all that is left is to specify to Cocoon the location of its properties file
(we will look at what this file does a little later). Copy the cocoon.properties file from the Cocoon
root directory into <TOMCAT_HOME>/conf/. In this same directory, you will see web.xml, which
configures the properties for engine-wide servlets. In this file are properties and mappings for
various engine-level servlets; we need to add configuration for Cocoon here. Insert the following
entries into the engine configuration file:

<servlet>
 <servlet-name>
 org.apache.cocoon.Cocoon
 </servlet-name>
 <servlet-class>
 org.apache.cocoon.Cocoon
 </servlet-class>

Java and XML

 page 192

 <init-param>
 <param-name>
 properties
 </param-name>
 <param-value>
 /usr/lib/jakarta-tomcat/conf/cocoon.properties
 </param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>
 org.apache.cocoon.Cocoon
 </servlet-name>
 <url-pattern>
 *.xml
 </url-pattern>
</servlet-mapping>

The location within the file does not matter, as long as you ensure that element nestings are not
disrupted; in other words, the resulting file must remain well-formed XML. You will also need to
insert the correct path to the cocoon.properties file for the value of the properties parameter. This
tells the engine to pass this parameter to the main Cocoon servlet, enabling it to configure itself and
the rest of the Cocoon framework. The servlet-mapping then instructs the engine to direct all URI
requests that end in .xml to the Cocoon framework. With these changes made, you can start (or
restart) Tomcat; ensure that no errors occur and the Cocoon install can be tested.

If everything has been configured correctly, you should be able to access
http://<hostname>:<port>/Cocoon.xml in your web browser. If no errors occur, the HTML output
should look like that shown in Figure 9.1.

Figure 9.1. The output of the Cocoon configuration URI when properly configured

Java and XML

 page 193

If there are errors, you should see a stack trace indicating what problems were encountered. These
typically relate to classes not being in the engine class path that Cocoon needs, the properties file
not being specified in an initial argument to the servlet, or the file specified being unreadable by the
servlet. Correct any errors that result, and restart the engine. Once you receive the output above, you
are ready to see Cocoon in action and configure Cocoon to handle a variety of requests.

9.3 Using a Publishing Framework

Using a good publishing framework like Cocoon doesn't require any special instruction; it is not a
complex application that users must learn to adapt to. In fact, all the uses of Cocoon are based on
simple URLs entered into a standard web browser. Generating dynamic HTML from XML, viewing
XML transformed into PDF files, and even seeing VRML applications generated from XML is
simply a matter of typing the URL to the desired XML file into your browser and watching Cocoon
and the power of XML take action.

9.3.1 Viewing XML Converted to HTML

Now that our framework is in place and correctly handling requests that end in .xml, we can begin
to see it publish our XML files. Cocoon comes with several sample XML files and associated XSL
stylesheets in the project's samples/ subdirectory. However, we have our own XML and XSL from
earlier chapters, so let's transform the partial XML table of contents for our book with the XSL
stylesheet we built in Chapter 6. The XML file should be named contents.xml (and is also available
from the book's web site). Locate where you saved this file, and copy it into the servlet engine's
document root. On a default installation of Tomcat, this is under
<TOMCAT_ROOT>/webapps/ROOT/. The document refers to the stylesheet
XSL/JavaXML.html.xsl. Create the XSL directory in your web document root, and copy the

Java and XML

 page 194

stylesheet we built in Chapter 6 into that directory. You should make sure that the DTD referred to
in the XML document is commented out (remember, validation should rarely occur in production);
also convert the OReillyCopyright entity reference to HTML as discussed in Chapter 6. Although
validation and external entity references are supported by Cocoon, it is easier to view our XML
without worrying about those details for now.

Once you have the XML document and its stylesheet in place, you should be able to access it with
the URL http://<hostname>:<port>/contents.xml in your web browser. If you made all the
modifications discussed in Chapter 6, the transformed XML should look like Figure 9.2.

Figure 9.2. Transformed XML from Chapter 6

This should have seemed almost trivial to you; once Cocoon is set up and configured, serving up
dynamic content is a piece of cake! The mapping from XML extensions to Cocoon should work
across your entire servlet engine.

9.3.2 Viewing PDFs from XML

So far, we have talked almost exclusively about converting XML documents to HTML; when not
looking at this, we have assumed our data was being used in an application-to-application manner.
The format was entirely arbitrary, as both the sending and receiving applications parsed the XML
using the specified DTD or schema. However, a publishing framework offers many more
possibilities. Not only are a variety of markup languages supported as final document formats, but
in addition, Java provides libraries for converting XML to some non-markup-based formats. The
most popular and stable library in this category is the Apache XML group's Formatting Objects
Processor, FOP, which we discussed briefly in Chapter 6. This gives Cocoon or any other
publishing framework the ability to turn XML documents into Portable Document Format (PDF)
documents, which are generally viewed with Adobe Acrobat (http://www.adobe.com).

The importance of being able to convert a document from XML into a PDF cannot be overstated;
particularly for document-driven web sites, such as print media or publishing companies, this could

Java and XML

 page 195

revolutionize web delivery of data. Consider the following XML document, an XML-formatted
excerpt from Chapter 1, shown in Example 9.1.

Example 9.1. XML Version of Chapter 1
<?xml version="1.0"?>

<?cocoon-process type="xslt"?>
<?xml-stylesheet href="XSL/JavaXML.fo.xsl" type="text/xsl"?>

<book>
 <cover>
 <title>Java and XML</title>
 <author>Brett McLaughlin</author>
 </cover>

 <contents>
 <chapter id="chapterOne">
 <title>Chapter 1: Introduction</title>

 <paragraph>XML. These three letters have brought shivers to
 almost every developer in the world today at some point in the
 last two years. While those shivers were often fear at another
 acronym to memorize, excitement at the promise of a new technology,
 or annoyance at another source of confusion for today's
 developer, they were shivers all the same. Surprisingly, almost every
 type of response was well merited with regard to XML. It is another
 acronym to memorize, and in fact brings with it a dizzying array of
 companions: XSL, XSLT, PI, DTD, XHTML, and more. It also brings with
 it a huge promise -- what Java did for portability of code, XML claims
 to do for portability of data. Sun has even been touting the
 rather ambitious slogan "Java + XML = Portable Code + Portable
 Data" in recent months. And yes, XML does bring with it a
 significant amount of confusion. We will seek to unravel and
 demystify XML, without being so abstract and general as to be
 useless, and without diving in so deeply that this becomes just
 another droll specification to wade through. This
 is a book for you, the Java developer, who wants to understand the
 hype and use the tools that XML brings to the table.</paragraph>

 <paragraph>Today's web application now faces a wealth of problems
 that were not even considered ten years ago. Systems that are
 distributed across thousands of miles must perform quickly and
 flawlessly. Data from heterogeneous systems, databases, directory
 services, and applications must be transferred without a single
 decimal place being lost. Applications must be able to communicate
 not only with other business components, but other business systems
 altogether, often across companies as well as technologies. Clients
 are no longer limited to thick clients, but can be web browsers that
 support HTML, mobile phones that support Wireless Application
 Protocol (WAP), or handheld organizers with entirely different markup
 languages altogether. Data, and the transformation of that data, has
 become the crucial centerpiece of every application being developed
 today.</paragraph>
 </chapter>

 </contents>
</book>

We have already seen how XSL stylesheets allow us to transform this document into HTML. But
converting an entire chapter of a book into HTML could result in a gigantic HTML document, and
certainly an unreadable format; potential readers wanting online delivery of a book generally would

Java and XML

 page 196

prefer a PDF document. On the other hand, generating PDF statically from the chapter means
changes to the chapter must be matched with subsequent PDF file generation. Keeping a single
XML document format means the chapter can be easily updated (with any XML editor), formatted
into SGML for printing hard copy, transferred to other companies and applications, and included in
other books or compendiums. Now add to this robust set of features the ability for web users to type
in a URL and access the book in PDF format, and you have a complete publishing system.

Although we don't have the time to cover formatting objects and the FOP for Java libraries in detail,
you can review the entire formatting objects definition within the XSL specification at the W3C at
http://www.w3.org/TR/xsl/. Example 9.2 is an XSL stylesheet that uses formatting objects to
specify a transformation from XML to a PDF document, appropriate for our XML version of
Chapter 1.

Example 9.2. XSL Stylesheet to Transform Example 9.1 into a PDF Document
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:template match="book">
 <xsl:processing-instruction name="cocoon-format">
 type="text/xslfo"
 </xsl:processing-instruction>
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master
 page-master-name="right"
 margin-top="75pt"
 margin-bottom="25pt"
 margin-left="100pt"
 margin-right="50pt">
 <fo:region-body margin-bottom="50pt"/>
 <fo:region-after extent="25pt"/>
 </fo:simple-page-master>
 <fo:simple-page-master
 page-master-name="left"
 margin-top="75pt"
 margin-bottom="25pt"
 margin-left="50pt"
 margin-right="100pt">
 <fo:region-body margin-bottom="50pt"/>
 <fo:region-after extent="25pt"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence>

 <fo:sequence-specification>
 <fo:sequence-specifier-alternating
 page-master-first="right"
 page-master-odd="right"
 page-master-even="left"/>
 </fo:sequence-specification>

 <fo:static-content flow-name="xsl-after">
 <fo:block text-align-last="centered" font-size="10pt">
 <fo:page-number/>
 </fo:block>
 </fo:static-content>

 <fo:flow>

Java and XML

 page 197

 <xsl:apply-templates/>
 </fo:flow>
 </fo:page-sequence>

 </fo:root>
 </xsl:template>

 <xsl:template match="cover/title">
 <fo:block font-size="36pt" text-align-last="centered"
 space-before.optimum="24pt">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="author">
 <fo:block font-size="24pt" text-align-last="centered"
 space-before.optimum="24pt">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="chapter">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="chapter/title">
 <fo:block font-size="24pt" text-align-last="centered"
 space-before.optimum="24pt">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>

 <xsl:template match="paragraph">
 <fo:block font-size="12pt" space-before.optimum="12pt"
 text-align="justified">
 <xsl:apply-templates/>
 </fo:block>
 </xsl:template>
</xsl:stylesheet>

If you create both of these files, saving the chapter as chapterOne.xml, and the XSL stylesheet as
JavaXML.fo.xslwithin a subdirectory called XSL/, you can see the result of the transformation in a
web browser. Make sure you have the Adobe Acrobat Reader and plug-in for your web browser,
and then access the XML document just created. Figure 9.3 shows the results.

Figure 9.3. PDF document from Example 9.1 and Example 9.2.

Java and XML

 page 198

9.3.3 Browser-Dependent Styling

In addition to specifically requesting certain types of transformations, such as a conversion to a
PDF, Cocoon allows for dynamic processing to occur based on the request. A common example of
this is applying different formatting based on the media of the client. In a traditional web
environment, this would allow an XML document to be transformed differently based on the
browser being used. A client using Internet Explorer could be served a different presentation than a
client using Netscape; with the recent wars between versions of HTML, DHTML, and JavaScript
brewing between Netscape and Microsoft, this is a powerful feature to have available. Cocoon
provides built-in support for many common browser types. Locate the cocoon.properties file you
referenced earlier, open it, and scroll to the bottom of the file. You will see the following section
(this may be slightly different for newer versions):

User Agents (Browsers) #

NOTE: numbers indicate the search order. This is very important since
some words may be found in more than one browser description. (MSIE is
presented as "Mozilla/4.0 (Compatible; MSIE 4.01; ...")

for example, the "explorer=MSIE" tag indicates that the XSL stylesheet
associated to the media type "explorer" should be mapped to those
browsers that have the string "MSIE" in their "user-Agent" HTTP header.

browser.0 = explorer=MSIE
browser.1 = opera=Opera
browser.2 = lynx=Lynx
browser.3 = java=Java

Java and XML

 page 199

browser.4 = wap=Nokia
browser.5 = wap=UP
browser.6 = netscape=Mozilla

The keywords after the first equals sign are the items to take note of: explorer, lynx, java, and
netscape, for example, all differentiate between different user-agents, the codes the browsers send
with requests for URLs. As an example of applying stylesheets based on this property, let's create a
sample XSL stylesheet to apply when the client accesses our XML table of contents document with
Internet Explorer. Copy our original stylesheet, JavaXML.html.xsl, to JavaXML.explorer-html.xsl.
Then make the modifications shown in Example 9.3.

Example 9.3. Internet Explorer XSL Stylesheet
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
>

 <xsl:template match="JavaXML:Book">
 <html>
 <head>
 <title>
 <xsl:value-of select="JavaXML:Title" /> (Explorer Version)
 </title>
 </head>
 <body>
 <xsl:apply-templates select="*[not(self::JavaXML:Title)]" />
 </body>
 </html>
 </xsl:template>

 <xsl:template match="JavaXML:Contents">
 <center>
 <h2>Table of Contents (Explorer Version)</h2>
 <small>
 Try Netscape today!
 </small>
 </center>
...

While this is a trivial example, dynamic HTML could be inserted for Internet Explorer 5.0, and
standard HTML could be used for Netscape Navigator, which has less DHTML support. With this
in place, we need to let our XML document know that if the media type (or user-agent) matches up
with the explorer type defined in the properties file, a different XSL stylesheet should be used.
The additional processing instruction shown in Example 9.4 handles this, and can be added to the
contents.xml file.

Example 9.4. XML Document with Multiple Stylesheets Based on Media Type
<?xml version="1.0"?>
<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.explorer-html.xsl" type="text/xsl"
 media="explorer"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>
...

Java and XML

 page 200

Accessing the XML in your Netscape browser yields the same results as before; however, if you
access the page in Internet Explorer, you will see that the document has been transformed with the
alternate stylesheet, and looks like Figure 9.4.

Figure 9.4. Internet Explorer version of generated HTML

9.3.4 WAP and WML

One of the real powers in this dynamic application of stylesheets lies in the use of wireless devices.
Remember our properties file?

browser.0 = explorer=MSIE
browser.1 = opera=Opera
browser.2 = lynx=Lynx
browser.3 = java=Java
browser.4 = wap=Nokia
browser.5 = wap=UP
browser.6 = netscape=Mozilla

The two highlighted entries detect that a wireless agent, such as an Internet-capable phone, is being
used to access content. Just as Cocoon detected whether the incoming web browser was Internet
Explorer or Netscape, responding with the correct stylesheet, a WAP device can be handled by yet
another stylesheet. So far we have looked at the line that specifies a stylesheet to use for WAP
media in our contents.xml file without paying it much attention:

<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.explorer-html.xsl" type="text/xsl"
 media="explorer"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>

Now we take a look at this in more detail. When building a stylesheet for a WAP device, the
Wireless Markup Language (WML) is typically used. This is a variant on HTML, but has a slightly

Java and XML

 page 201

different method of representing different pages. When a wireless device requests a URL, the
returned response must be within a wml element. Within that root element, several cards can be
defined, each through the WML card element. The device downloads multiple cards at one time
(often referred to as a deck) so that it does not have to go back to the server for the additional
screens. Example 9.5 shows a simple XML page using these constructs.

Example 9.5. A Simple WML Page
<wml>
 <card id="index" title="Home Page">
 <p align="left">
 <i>Main Menu</i>

 Title Page

 My Page

 <p>
 </card>

 <card id="title" title="My Title Page">
 Welcome to my Title Page!

 So happy to see you.
 </card>

 <card id="myPage" title="Hello World">
 <p align="center">
 Hello World!
 </p>
 </card>
</wml>

This simple example would serve requests with a menu, and two screens that could be accessed
from links within that menu. The complete WML 1.1 specification is available online at
http://updev.phone.com/dev/ts/ by signing up for a free membership to phone.com's developer
website, located at http://updev.phone.com. Additionally, the UP.SDK can be downloaded; this is a
software emulation of a wireless device that allows testing of your WML pages. With this software,
we can develop an XSL stylesheet to output WML for WAP devices, and test the results by pointing
our UP.SDK browser to http://<hostname>:<port>/contents.xml.

Because phone displays are much smaller, we only want to show a subset of the information in our
XML table of contents. Example 9.6 is an XSL stylesheet that outputs three cards in WML. The
first is a menu with links to the other two cards. The second card generates a table of contents
listing from our contents.xml document. The third card is a simple copyright screen. This stylesheet
can be saved as JavaXML.wml.xsl in the XSL/ subdirectory of your web server's document root.

Example 9.6. XSL Stylesheet to Output WML from XML Table of Contents
<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
 exclude-result-prefixes="JavaXML"
>

 <xsl:template match="JavaXML:Book">
 <xsl:processing-instruction name="cocoon-format">
 type="text/wml"
 </xsl:processing-instruction>

 <wml>
 <card id="index" title="{JavaXML:Title}">

Java and XML

 page 202

 <p align="center">
 <i><xsl:value-of select="JavaXML:Title" /></i>

 Contents

 Copyright

 </p>
 </card>

 <xsl:apply-templates select="JavaXML:Contents" />

 <card id="copyright" title="Copyright">
 <p align="center">
 Copyright 2000, O'Reilly & Associates
 </p>
 </card>
 </wml>
 </xsl:template>

 <xsl:template match="JavaXML:Contents">
 <card id="contents" title="Contents">
 <p align="center">
 <i>Contents</i>

 <xsl:for-each select="JavaXML:Chapter">
 <xsl:number value="position()" format="1: " />
 <xsl:value-of select="JavaXML:Heading" />

 </xsl:for-each>
 </p>
 </card>
 </xsl:template>

</xsl:stylesheet>

Other than the WML tags, most of this example should look familiar. A new XSL function is
introduced, position() , and a new XSL element, xsl:number , displays it. This adds output that
indicates the position in the xsl:for-each loop each element is at; the format attribute allows the
specification of the output format. In our case, we want output similar to this:

1: Introduction
2: Creating XML
...

We also added a processing instruction for Cocoon, with the target specified as cocoon-format .
The data sent, type="text/wml", instructs Cocoon to output this stylesheet with a content header
specifying the output is text/wml (instead of the normal text/html or text/plain). The last new
construct is an important one, and is seen as an attribute added to the root element of the stylesheet:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
 exclude-result-prefixes="JavaXML"
>

By default, any XML namespace declarations other than the XSL namespace are added to the root
element of the transformation output. In our example, the root element of our transformed output,
wml, would have the JavaXML namespace declaration added to it:

<wml xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/" >
...
</wml>

Java and XML

 page 203

This would cause a WAP browser to report an error, as xmlns:JavaXML is not an allowed attribute
for the wml element. The browser is not as forgiving as an HTML browser, and the rest of our
content would not be shown. However, we must declare the namespace so our XSL stylesheet can
handle template matching for the input document, which does use the JavaXML namespace. To
handle this problem, XSL allows the attribute exclude-result-prefixes to be added to the
xsl:stylesheet element. The namespace prefix specified to this attribute will not be added to the
transformed output, which is exactly what we want. Our output would now look like this:

<wml>
...
</wml>

This is understood perfectly by a WAP browser. If you've downloaded the UP.SDK browser, you
can point it to our XML table of contents, and see the results. Figure 9.5 shows the main menu that
results from the transformation using our WML stylesheet when a WAP device requests our
contents.xml file through Cocoon.

Figure 9.5. WML main menu

Figure 9.6 shows the generated table of contents, accessed by clicking the "Link" button when the
"Contents" link is indicated in the display.

Figure 9.6. WML table of contents

Java and XML

 page 204

For more information on WML and WAP, visit http://www.phone.com and
http://www.wapforum.org; both sites have extensive online resources for wireless device
development.

By now, you should have a pretty good idea of the variety of output that can be created with
Cocoon. With a minimal amount of effort and an extra stylesheet, the same XML document can be
served in multiple formats to multiple types of clients; this is one of the reasons the web publishing
framework is such a powerful tool. Without XML and a framework like this, separate sites would
have to be created for each type of client. Now that you have seen how flexible the generation of
output is when using Cocoon, we move on to looking at how Cocoon provides technology that
allows for dynamic creation and customization of the input to these transformations.

9.4 XSP

XSP stands for Extensible Server Pages, and is perhaps the most important development coming
out of the Cocoon project. Certainly you, Constant Reader, are familiar with Java Server Pages (
JSP). JSP (in a nutshell) allow tags and inline Java code to be inserted into an otherwise normal
HTML page, and then when the JSP page is requested, the resulting code is executed and the results
are inserted right into the output HTML.[4] This has taken the Java and ASP worlds by storm,
ostensibly simplifying server-side Java programming and allowing a separation of output and logic.
However, there are still some significant problems. First, JSP does not really provide a separation of
content and presentation. This is the same problem we have been talking about time and time again;
changes to a banner, the color of a font, and text sizes require the JSP (with the inline Java and
JavaBean references) to be modified. It also mingles content (pure data) with presentation in the

Java and XML

 page 205

same way static HTML does. Second, there is no ability to transform the JSP into any other format,
or use it across applications, because the JSP specification is designed primarily for delivery of
output.

[4] This is a drastic oversimplification; the JSP is actually precompiled into a servlet, and a PrintWriteractually handles output. For more
information on JSP, refer to Java Servlet Programming, by Jason Hunter (O'Reilly & Associates).

XSP remedies both these problems. First, XSP is, at its heart, simply XML. Take a look at the
sample XSP page in Example 9.7.

Example 9.7. Sample XSP Page
<?xml version="1.0"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>
<?xml-stylesheet href="myStylesheet.xsl" type="text/xsl"?>

<xsp:page language="java"
 xmlns:xsp="http://www.apache.org/1999/XSP/Core"
>

 <xsp:logic>
 private static int numHits = 0;

 private synchronized int getNumHits() {
 return ++numHits;
 }
 </xsp:logic>

 <page>
 <title>Hit Counter</title>

 <p>I've been requested <xsp:expr>getNumHits()</xsp:expr> times.</p>
 </page>
</xsp:page>

All XML conventions are followed; for now, think of the xsp:logic element contents as "off-
limits" to the XML parser; we'll discuss that later. Other than that, the entire document is XML with
some new elements. In fact, it references an XSL stylesheet that has nothing remarkable about it at
all, as seen in Example 9.8.

Example 9.8. XSL Stylesheet for Example 9.7
<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
>

 <xsl:template match="page">
 <xsl:processing-instruction name="cocoon-format">
 type="text/html"
 </xsl:processing-instruction>
 <html>
 <head>
 <title><xsl:value-of select="title"/></title>
 </head>
 <body>
 <xsl:apply-templates select="*[not(self::title)]" />
 </body>
 </html>
 </xsl:template>

Java and XML

 page 206

 <xsl:template match="p">
 <p align="center">
 <xsl:apply-templates />
 </p>
 </xsl:template>

</xsl:stylesheet>

Thus, XSP easily handles the first major problem of JSP: it allows the separation of content from
presentation. This separation allows developers to handle content generation (as the XSP page can
be generated from a servlet or other Java code as well as being static), while XML and XSL authors
can handle presentation and styling through modification of the XSL stylesheet applied to the XSP
page. Just as easily, XSP solves the other significant deficiency of JSP: because XSP processing
occurs before any stylesheets are applied, the resultant XML document can be transformed into any
other format. This maintains all the advantages of XML, as the XSP page can be transferred
between applications as well as being used just for presentation.

9.4.1 Creating an XSP Page

Now that you have had a taste of XSP, let's build our own XSP page. For this example, let's
continue looking at the XML documents we have already created. We revisit the XML document
we constructed earlier. This document represents a portion of the first chapter of this book, and was
transformed into a PDF document. Instead of simply using this document for display, let's assume
that the author (me!) wants to let his editor view the document as it is being written. However, in
addition to the text of the book, the editor should be able to see comments from the author that the
public should not see: for example, questions about style and formatting. First, let's add the
comment to the chapterOne.xml file we built earlier:

...
 <contents>
 <chapter id="chapterOne">
 <title>Chapter 1: Introduction</title>

 <paragraph>XML. These three letters have brought shivers to
 almost every developer in the world today at some point in the
 last two years. While those shivers were often fear at another
 acronym to memorize, excitement at the promise of a new technology,
 or annoyance at another source of confusion for today's
 developer, they were shivers all the same. Surprisingly, almost every
 type of response was well merited with regard to XML. It is another
 acronym to memorize, and in fact brings with it a dizzying array of
 companions: XSL, XSLT, PI, DTD, XHTML, and more. It also brings with
 it a huge promise-what Java did for portability of code, XML claims
 to do for portability of data. Sun has even been touting the
 rather ambitious slogan "Java + XML = Portable Code + Portable
 Data" in recent months. And yes, XML does bring with it a
 significant amount of confusion. We will seek to unravel and
 demystify XML, without being so abstract and general as to be
 useless, and without diving in so deeply that this becomes just
 another droll specification to wade through. This
 is a book for you, the Java developer, who wants to understand the
 hype and use the tools that XML brings to the table.</paragraph>

 <authorComment>Is the formatting of this first paragraph OK? I
 wonder if we should break this into two separate paragraphs. Let
 me know what you think, Mike.</authorComment>

 <paragraph>Today's web application now faces a wealth of problems

Java and XML

 page 207

 that were not even considered ten years ago. Systems that are
 distributed across thousands of miles must perform quickly and
 flawlessly. Data from heterogeneous systems, databases, directory
 services, and applications must be transferred without a single
 decimal place being lost. Applications must be able to communicate
 not only with other business components, but other business systems
 altogether, often across companies as well as technologies. Clients
 are no longer limited to thick clients, but can be web browsers that
 support HTML, mobile phones that support Wireless Application
 Protocol (WAP), or handheld organizers with entirely different markup
 languages altogether. Data, and the transformation of that data, has
 become the crucial centerpiece of every application being developed
 today.</paragraph>
 </chapter>

 </contents>
</book>

With this comment now in our XML document, let's add a corresponding entry into our XSL
stylesheet, JavaXML.fo.xsl:

<xsl:template match="paragraph" >
 <fo:block font-size="12pt" space-before.optimum="12pt"
 text-align="justified">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

<xsl:template match="authorComment">
 <fo:block font-size="10pt" font-style="italic" color="blue"
 space-before.optimum="12pt"
 text-align="justified">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

With this new entry, the comments will appear slightly smaller than the rest of the text, italicized,
and in blue. Now let's turn our XML document into an XSP page (as in Example 9.9) by adding the
needed processing instructions for Cocoon, and surrounding the elements within a new root
element, xsp:page.

Example 9.9. XSP Version of Example 9.1
<?xml version="1.0"?>

<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>
<?xml-stylesheet href="XSL/JavaXML.fo.xsl" type="text/xsl"?>

<xsp:page
 language="java"
 xmlns:xsp="http://www.apache.org/1999/XSP/Core"
>
<book>
 <cover>
 <title>Java and XML</title>
 <author>Brett McLaughlin</author>
 </cover>

 <!-- Content of Chapter -->

</book>

Java and XML

 page 208

</xsp:page>

Before adding XSP logic to determine whether or not to show the comment, let's build a simple
HTML page letting the viewer select whether he or she is the book's editor. In a real application,
this could be a page that handles authentication and determines a user's role; for our example, it lets
the user select if they are the author, the editor, or just a curious reader, and enter a password for
verification. An HTML page that does this is shown in Example 9.10. You can save this file as
entry.html in your web server's document root.

Example 9.10. HTML Frontend for User to Select a "Role"
<html>
 <head>
 <title>Welcome to the Java and XML Book in Progress</title>
 </head>

 <body>
 <h1 align="center"><i>Java and XML</i> Book in Progress</h1>
 <center>
 <form action="/chapterOne.xml" method="POST">
 Select your role:
 <select name="userRole">
 <option value="author">I'm the Author</option>
 <option value="editor">I'm the Editor</option>
 <option value="reader">I'm a Reader</option>
 </select>

 Enter your password:
 <input type="password" name="password" size="8" />

 <input type="submit" value="Take me to the Book!" />
 </form>
 </center>
 </body>
</html>

Also notice that we submit the HTML form directly to our XSP page. In this example, our XSP acts
similarly to a servlet. We want it to read the request parameters, determine what user role was
selected, authenticate that role using the password supplied, and finally determine whether we
should show the comment. To begin, let's define a boolean variable; this variable will hold the
result of comparing the request parameters to see if the user is an author or editor and supplied a
correct password. We then check the value of that variable, and if it is true, display the
authorComment element:

<xsp:page
 language="java"
 xmlns:xsp="http://www.apache.org/1999/XSP/Core"
>

<book>
 <cover>
 <title>Java and XML</title>
 <author>Brett McLaughlin</author>
 </cover>
...
 is a book for you, the Java developer, who wants to understand the
 hype and use the tools that XML brings to the table.</paragraph>

 <xsp:logic>
 boolean authorOrEditor = false;

Java and XML

 page 209

 // Perform logic to see if user is an author or editor

 if (authorOrEditor) {
 <xsp:content>
 <authorComment>Is the formatting of this first paragraph OK? I
 wonder if we should break this into two separate paragraphs. Let
 me know what you think, Mike.</authorComment>
 </xsp:content>
 }
 </xsp:logic>

 <paragraph>Today's web application now faces a wealth of problems
 that were not even considered ten years ago. Systems that are
...

This shouldn't look too odd to you; other than the XSP-specific tags, we're just defining a variable
and checking its value. If the variable evaluates to true, the authorComment element is added to
the XSP page's output; otherwise, the element is not included in the output. One interesting thing to
note is that we surround the actual XML document output within the xsp:logic block with an
xsp:content element (which in turn is within the outer xsp:page element). This ensures that the
XSP processor does not try to interpret any elements or text within the block as XSP structures.
This again is an improvement to JSP; the same code in JSP might look like this:

<%
 if (authorOrEditor) {
%>
 <authorComment> Is the formatting of this first paragraph OK? I
 wonder if we should break this into two separate paragraphs. Let
 me know what you think, Mike.</authorComment>
<%
 }
%>

This is not very structured, as the JSP block ends before the authorComment element begins; then a
new block is appended after the element, which closes the brackets opened in the first JSP block. It
is very easy to mismatch coding structures or forget to add matching JSP blocks; the XSP paradigm
forces every open element to be closed (standard XML well-formedness) and one block of code is
matched with one element.

With our logical structures in place, we just need to interpret the request parameters. We use the
built-in XSP variable request , which mimics the Servlet HttpServletRequest object. The
following code additions read the value of the userRole and password request parameters (if they
exist); the value is then compared with the roles that can see the comments (author and editor). If a
match occurs, the password is checked as well. If the password matches the key for the supplied
role, the boolean variable is set to true, and the authorComments element is part of the XML
output:

<xsp:logic>
 boolean authorOrEditor = false;

 // Perform logic to see if user is an author or editor
 <![CDATA[
 String[] roleValues = request.getParameterValues("userRole");
 String[] passwordValues = request.getParameterValues("password");
 if ((roleValues != null) && (passwordValues != null)) {
 String userRole = roleValues[0];
 String password = passwordValues[0];

Java and XML

 page 210

 if (userRole.equals("author") && password.equals("brett")) {
 authorOrEditor = true;
 } else
 if (userRole.equals("editor") && password.equals("mike")) {
 authorOrEditor = true;
 }
]]>
 }

 if (authorOrEditor) {
 <xsp:content>
 <authorComment>Is the formatting of this first paragraph OK? I
 wonder if we should break this into two separate paragraphs. Let
 me know what you think, Mike.</authorComment>
 </xsp:content>
 }
</xsp:logic>

Notice that we enclose a good bit of this logic within a CDATA tag. Remember that XSP is still
evaluated as XML, and must follow the rules of an XML document; but the double quotes and
ampersands we use in the Java fragments are not allowed in XML documents; instead of escaping
these characters, and getting a very strange XSP fragment, we use the CDATA tag so that we can
write standard Java code. Without this, we would have to code as follows:

<xsp:logic>
 boolean authorOrEditor = false;

 String[] roleValues =
 request.getParameterValues("userRole");
 String[] passwordValues =
 request.getParameterValues("password");
 if ((roleValues != null) &&
 (passwordValues != null)) {
 String userRole = roleValues[0];
 String password = passwordValues[0];
 if (userRole.equals("author") &&
 password.equals("brett")) {
 authorOrEditor = true;
 } else
 if (userRole.equals("editor") &&
 password.equals("mike")) {
 authorOrEditor = true;
 }
 }
...
</xsp:logic>

You can now test out our entry page and the resultant PDF generated from the XML. You should
get output similar to Figure 9.7 if you direct your web browser to
http://<hostname>:<port>/entry.html.

Figure 9.7. Entry HTML page

Java and XML

 page 211

Select the role of author, and use the password "brett"; otherwise use the editor role with the
password "mike." Either case gives you the PDF output shown in Figure 9.8.

Figure 9.8. Generated PDF with comments showing

The one thing we have not yet done is isolate our logic from our content. Just as JSP allows
inclusion of JavaBeans to abstract the content and presentation from the logic of an application
component, XSP allows tag libraries to be created. These tag libraries can then allow XML tags to
trigger the matching code within a tag library.

Java and XML

 page 212

9.4.2 Using XSP Tag Libraries

In addition to showing comments based on the user, we should indicate that the chapter is in a draft
state; additionally, the current date can be shown to indicate the date of the draft (the intention
would be that the date be frozen when the chapter is considered complete). Instead of adding inline
Java tags to load the current date, we can create a custom tag library for this purpose. While we are
at it, let's look at creating an XSP element that takes in the chapter number and title and formats the
complete title. This function will handle the insertion of the draft date we have been talking about.
To do this, we first need to create a tag library that is available to our XSP page. Much of the tag
library is based on an XSL stylesheet. We can start with the skeleton in Example 9.11, which passes
anything it receives through as output. Save this skeleton as JavaXML.xsp.xsl in the XSL/
subdirectory. Be sure to include the JavaXML namespace declaration, as we will use it to match
elements within that namespace used in our XSP pages.

Example 9.11. XSP Logicsheet
<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsp="http://www.apache.org/1999/XSP/Core"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
>
 <xsl:template match="xsp:page">
 <xsp:page>
 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 </xsl:copy>

 <xsl:apply-templates/>
 </xsp:page>
 </xsl:template>

 <xsl:template match="@*|*|text()|processing-instruction()">
 <xsl:copy>
 <xsl:apply-templates
 select="@*|*|text()|processing-instruction()"/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

By matching the xsp:page tag, we ensure that all elements are matched and handled within this
stylesheet, or logicsheet in XSP parlance. We can now add Java methods for the templates within
this logicsheet to call:

<xsl:template match="xsp:page" >
 <xsp:page>
 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 </xsl:copy>

 <xsp:structure>
 <xsp:include>java.util.Date</xsp:include>
 <xsp:include>java.text.SimpleDateFormat</xsp:include>
 </xsp:structure>

 <xsp:logic>
 private String getDraftDate() {
 return (new SimpleDateFormat("MM/dd/yyyy"))

Java and XML

 page 213

 .format(new Date());
 }

 private String getTitle(int chapterNum, String chapterTitle) {
 return "Chapter " + chapterNum + ": " + chapterTitle;
 }
 </xsp:logic>

 <xsl:apply-templates/>
 </xsp:page>
</xsl:template>

Several new XSP elements are introduced here. First, xsp:structure is used to surround several
xsp:include statements. These work just like their Java counterpart, include , by making the
specified Java classes available for use by their unqualified name (rather than the complete package
name). Once these are available, we define and implement two methods: one that creates a chapter
title from the chapter number and textual title, and one that returns the current date as a formatted
String. These methods are available to any elements within this logicsheet.

We now need to define the element that specifies when an XSP result should replace an XML
element. We have already defined the JavaXML namespace in the document root element, so we use
that as the namespace for our tag library elements. Add the following template:

<!-- Create formatted title -->
<xsl:template match="JavaXML:draftTitle">
 <xsp:expr>getTitle(<xsl:value-of select="@chapterNum" />,
 "<xsl:value-of select="@chapterTitle" />")
 </xsp:expr> - <xsp:expr>getDraftDate()</xsp:expr>
</xsl:template>

<xsl:template match="@*|*|text()|processing-instruction()">
 <xsl:copy>
 <xsl:apply-templates
 select="@*|*|text()|processing-instruction()"/>
 </xsl:copy>
</xsl:template>

When a document with this tag library uses the element JavaXML:draftTitle, the result of the
method getTitle() will be prepended to a dash (-), and then the returned value of the
getDraftDate() method will be appended to that result. The JavaXML:draftTitle element also
expects two attributes to be declared: the chapter number and the textual title of the chapter. We
signify to the XSP processor that we are calling a defined method by enclosing the method call
within a set of < xsp:expr> tags. To indicate that the second argument (the chapter title) is a
String, we enclose it within quotes. Since the chapter number should be treated as an int, it is left
without quotation marks.

Once you have completed the XSP logicsheet (available online at the book's web site as well), you
need to make it accessible to Cocoon. This can be done one of two ways: the first is to specify the
location of the file as a URI, which allows the servlet engine (and therefore Cocoon) to locate the
logicsheet. For example, to add our XSP logicsheet to Cocoon's set of resources through its URI,
you could add the following line to your cocoon.properties file on a Unix-based system:

processor.xsp.library.context.java =
 resource://org/apache/cocoon/processor/xsp/library/java/context.xsl
processor.xsp.library.cookie.java =
 resource://org/apache/cocoon/processor/xsp/library/java/cookie.xsl

Java and XML

 page 214

processor.xsp.library.global.java =
 resource://org/apache/cocoon/processor/xsp/library/java/global.xsl
processor.xsp.library.request.java =
 resource://org/apache/cocoon/processor/xsp/library/java/request.xsl
processor.xsp.library.response.java =
 resource://org/apache/cocoon/processor/xsp/library/java/response.xsl
processor.xsp.library.session.java =
 resource://org/apache/cocoon/processor/xsp/library/java/session.xsl
processor.xsp.library.util.java =
 resource://org/apache/cocoon/processor/xsp/library/java/util.xsl

processor.xsp.library.JavaXML.java =
 file:///usr/local/jakarta-tomcat/webapps/ROOT/XSL/JavaXML.xsp.xsl

For Windows systems, this would be:

processor.xsp.library.context.java =
 resource://org/apache/cocoon/processor/xsp/library/java/context.xsl
processor.xsp.library.cookie.java =
 resource://org/apache/cocoon/processor/xsp/library/java/cookie.xsl
processor.xsp.library.global.java =
 resource://org/apache/cocoon/processor/xsp/library/java/global.xsl
processor.xsp.library.request.java =
 resource://org/apache/cocoon/processor/xsp/library/java/request.xsl
processor.xsp.library.response.java =
 resource://org/apache/cocoon/processor/xsp/library/java/response.xsl
processor.xsp.library.session.java =
 resource://org/apache/cocoon/processor/xsp/library/java/session.xsl
processor.xsp.library.util.java =
 resource://org/apache/cocoon/processor/xsp/library/java/util.xsl

processor.xsp.library.JavaXML.java =
 file:///C:/java/jakarta-tomcat/webapps/ROOT/XSL/JavaXML.xsp.xsl

While this is handy for testing, it is not a very good solution for uncoupling your logicsheets from
the servlet engine, and also adds quite a bit of maintenance overhead when adding new logicsheets:
a new line would have to be added to the Cocoon properties file for new logicsheets to be
available.[5] An alternative method for loading logicsheets is to allow specification of a resource in
the servlet engine's classpath. This allows all of your custom logicsheets to be added to a jar file,
and that jar file to be added to the servlet engine classpath. In addition, new logicsheets can be put
within the jar file, providing a central location for storing your custom XSP logicsheets. From the
XSL/ subdirectory in your web server's document root, perform the following command to create a
jar file that contains our logicsheet:

[5] Additionally, there are some rare occurrences where the 1.7.x version of the Cocoon engine has problems loading a logicsheet from a file://
reference. Using the classpath and resource:// alternative is a way to be sure you avoid these problems.

jar cvf logicsheets.jar JavaXML.xsp.xsl

Move the created logicsheets.jar archive into your <TOMCAT_HOME>/lib/ directory with the
other Cocoon libraries. Now we need to add this library to Tomcat's class path; edit the tomcat.sh or
tomcat.bat file, located in the <TOMCAT_HOME>/bin/ directory. In Unix, the edited file would
look like this:

CLASSPATH=.

Cocoon classes and libraries
CLASSPATH=${CLASSPATH}:${TOMCAT_HOME}/lib/xerces_1_0_3.jar
CLASSPATH=${CLASSPATH}:${TOMCAT_HOME}/lib/xalan_0_20_0.jar

Java and XML

 page 215

CLASSPATH=${CLASSPATH}:${TOMCAT_HOME}/lib/fop_0_12_1.jar
CLASSPATH=${CLASSPATH}:${TOMCAT_HOME}/lib/cocoon.jar
CLASSPATH=${CLASSPATH}:${TOMCAT_HOME}/lib/logicsheets.jar

for i in ${TOMCAT_HOME}/lib/* ; do
 CLASSPATH=${CLASSPATH}:$i
done

CLASSPATH=${CLASSPATH}:${JAVA_HOME}/lib/tools.jar

And on Windows:

set CLASSPATH=.
set CLASSPATH=%TOMCAT_HOME%\classes

rem Cocoon classes and libraries
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xerces_1_0_3.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xalan_1_0_0.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\fop_0_12_1.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\cocoon.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\logicsheets.jar

set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\webserver.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\jasper.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xml.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\servlet.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar

With our logicsheet available, we can now let Cocoon know where to look for JavaXML namespace
references within XSP pages. Edit the cocoon.properties file you earlier put in the
<TOMCAT_HOME>/conf/ directory. Locate the section that lists the various Cocoon XSP resources, and
add the new logicsheet reference:

processor.xsp.library.context.java =
 resource://org/apache/cocoon/processor/xsp/library/java/context.xsl
processor.xsp.library.cookie.java =
 resource://org/apache/cocoon/processor/xsp/library/java/cookie.xsl
processor.xsp.library.global.java =
 resource://org/apache/cocoon/processor/xsp/library/java/global.xsl
processor.xsp.library.request.java =
 resource://org/apache/cocoon/processor/xsp/library/java/request.xsl
processor.xsp.library.response.java =
 resource://org/apache/cocoon/processor/xsp/library/java/response.xsl
processor.xsp.library.session.java =
 resource://org/apache/cocoon/processor/xsp/library/java/session.xsl
processor.xsp.library.util.java =
 resource://org/apache/cocoon/processor/xsp/library/java/util.xsl

processor.xsp.logicsheet.JavaXML.java = resource://JavaXML.xsp.xsl

Because our logicsheet is not nested within any subdirectories in the logicsheets.jar file, we simply
use the name of the logicsheet as its resource path. Finally, you will need to restart the servlet
engine. This will reload the cocoon.properties file, and the logicsheet will be available for use. As
the Cocoon engine is used to handle requests, any XSP page that declares that it uses the JavaXML
will have available to it the logicsheet specified as the JavaXML library. So our XSP page needs to
add a namespace declaration for the JavaXML namespace:

<?xml version="1.0"?>

<?cocoon-process type="xsp"?>

Java and XML

 page 216

<?cocoon-process type="xslt"?>
<?xml-stylesheet href="XSL/JavaXML.fo.xsl" type="text/xsl"?>

<xsp:page
 language="java"
 xmlns:xsp="http://www.apache.org/1999/XSP/Core"
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
>
<book>
...

With the tag library now available for use, we can finally add in the JavaXML:draftTitle element
to our XML document, chapterOne.xml :

<contents>
 <chapter id="chapterOne">
 <title>
 <JavaXML:draftTitle chapterNum="1"
 chapterTitle="Introduction"
 />
 </title>

We replace the hardcoded chapter title with the element defined in our tag library. This should
generate the title with the chapter number, chapter title, and the date of the draft. Accessing this new
version of our XSP page results in the output shown in Figure 9.9.

Figure 9.9. Output of XSP using a tag library

Java and XML

 page 217

Certainly these are simple examples, and we have only scratched the surface of what XSP allows.
Even this simple example allows the title to be converted to a different form when the chapter is
complete, without modifying the content or presentation of the page, but only the XSP logicsheet.
In the same way, XSP allows the creation of very strict contracts separating presentation from
content from application logic. Adding server-side Java components such as Enterprise JavaBeans
can bring business logic into the equation. Rather than using a less flexible solution like JSP that is
coupled to HTML and a presentation format, using XSP allows a looser coupling of components
and thus a better solution for application development. XSP also promises to be key in the
upcoming version of Cocoon, Cocoon 2.0, which we look at now.

9.5 Cocoon 2.0 and Beyond

The next generation of Cocoon, Cocoon 2.0, promises to take the web publishing framework a
gigantic leap forward. Cocoon 1.x, which is primarily based on XML being transformed via XSL,
still has some serious limitations. First, it does not reduce the management costs of large sites
significantly. While one XML document can be transformed into different client views, a
significant number of documents will still exist. Generally, either long URIs (such as
/content/publishing/books/javaxml/contents.xml), a large number of virtual path mappings
(/javaxml mapped to /content/publishing/books/javaxml), or a combination of the two, result. In
addition, a strict separation of presentation from content from logic is still difficult to accomplish,
and even more difficult to manage.

Cocoon 2 focuses on enforcing the contracts between these different layers, therefore reducing
management costs. XSP is a centerpiece in this design. In addition, the sitemap (which we look at in
a moment) allows the distinction between XSP, XML, and static HTML pages to be hidden from
the prying user. Advanced pre-compilation and memory considerations will also be introduced to
make Cocoon 2 an even more significant advance over Cocoon 1.x than Cocoon 1.x was over a
standard web server.

9.5.1 Servlet Engine Mappings

A significant change in Cocoon 2 is that it is no longer requires a simple mapping for XML
documents. While this works well in the 1.x model, it still leaves management of non-XML
documents completely up to the webmaster, possibly someone completely different from the person
responsible for the XML documents. Cocoon 2 seeks to take over management of the entire web
site. For this reason, the main Cocoon servlet (org.apache.cocoon.servlet.CocoonServlet in
the 2.0 model) is generally mapped to a URI, such as /Cocoon. This could also be mapped to the
root of the web server itself (simply "/") to completely control a site. The URL requested then
follows the servlet mapping: http://myHost.com/Cocoon/myPage.xml or
http://myHost.com/Cocoon/myDynamicPage.xsp, for example.

With this mapping in place, even static HTML documents can be grouped with XML documents.
This allows the management of all files on the server to be handled by a central person or group. If
HTML and XML documents must be mixed in a directory, no confusion needs to occur, and
uniform URIs can be used. Cocoon 2 will happily serve HTML as well as any other document type;
with a mapping from the root of a server to Cocoon, the web publishing framework actually
becomes invisible to the client.

9.5.2 The Sitemap

Another important introduction to Cocoon 2 is the sitemap . In Cocoon, a sitemap provides a central
location for administration of a web site. Cocoon uses this sitemap to decide how to process the

Java and XML

 page 218

request URIs it receives. For example, when Cocoon receives a request like
http://myCocoonSite.com/Cocoon/javaxml/chapterOne.html, the Cocoon servlet dissects the request
and determines that the actual URI requested is /javaxml/chapterOne.html. However, suppose that
the file chapterOne.html should map not to a static HTML file, but to the transformation of an XML
document (as in our earlier examples). The sitemap can handle this. Take a look at the sitemap
shown in Example 9.12.

Example 9.12. Sample Cocoon 2.0 Sitemap
<sitemap>
 <process match="/javaxml/*.html">
 <generator type="file" src="/docs/javaxml/*.xml"
 <filter type="xslt">
 <parameter name="stylesheet" value="/styles/JavaXML.html.xsl"/>
 </filter>
 <serializer type="html"/>
 </process>

 <process match="/javaxml/*.pdf">
 <generator type="file" src="/docs/javaxml/*.xml"
 <filter type="xslt">
 <parameter name="stylesheet" value="/styles/JavaXML.pdf.xsl"/>
 </filter>
 <serializer type="fop"/>
 </process>
 </sitemap>

Although the sitemap DTD is being finalized as this book goes to production, changes
could be introduced in beta-testing. Take the example sitemap as a flavor of what is to
come in Cocoon 2 rather than a definitive sample.

Cocoon matches the URI /javaxml/chapterOne.html to the sitemap directive /javaxml/*.html. It
then determines that this is an actual file, and the source for that file should be determined by using
the mapping /docs/javaxml/*.xml, which translates to /docs/javaxml/chapterOne.xml (the
filename we want to have transformed). The XSLT filter is then applied; the stylesheet to use,
JavaXML.html.xsl, is also specified in the sitemap. The resulting transformation is then displayed to
the user. In addition, the XML file could be an XSP file that is processed before being converted to
XML and then styled.

This same process can render a PDF from the request
http://myCocoonSite.com/Cocoon/javaxml/chapterOne.pdf, all with a few extra lines in the sitemap
(shown above). This also means that the processing instructions in the individual XML documents
can be completely removed, a significant change from Cocoon 1.x. First, uniform application of
stylesheets and processing can occur based on a directory location. Simply creating XML and
placing it in the /docs/javaxml/ directory in the example means the document can be accessed as
HTML or PDF. It is also trivial to change the stylesheet used for all documents, something very
difficult and tedious to do in Cocoon 1.x. Instead of making a change to each XML document, only
the single line in the sitemap needs to be changed.

The Cocoon sitemap is still being developed, and there will probably be quite a few additional
enhancements and changes to its format and structure by the time Cocoon 2.0 goes final. To get
involved, join the mailing lists at cocoon-users@xml.apache.org and cocoon-dev@xml.apache.org.
The Apache XML project at http://xml.apache.org has details about how to get involved with these
lists and the Cocoon project.

Java and XML

 page 219

9.5.3 Producers and Processors

One final improvement that Cocoon 2 will include is precompiled and event-based producers and
processors . In Cocoon, a producer handles the transformation of a request URI into an XML
document stream. A processor then takes an input stream (currently the XML document in a DOM
tree) into output readable by the client. We have not covered producers and processors in the
Cocoon 1.x model because they are going to drastically change in the Cocoon 2.0 model; any
producers and processors currently being used will most likely be useless and have to be rewritten
in Cocoon 2.0.

Cocoon 2 moves from using DOM for these structures to the more event-based SAX (or even
JDOM!), wrapped within a DOM structure. As a producer had to generate an XML document in
memory, the corresponding DOM structure could get extremely large. This eventually drained
system resources, particularly when performing complex tasks such as large transformations or
handling formatting objects (PDF generation). For these reasons, DOM will be a simple wrapper
around SAX-based events in Cocoon 2, allowing producers and processors to be very slim and
efficient.

In addition, producers and processors will be pre-complied versions of other formats. For example,
XSL stylesheets can be precompiled into processors, and XSP pages can be precompiled into
producers. This further increases performance while removing load from the client. These and other
changes continue to use a component model, allowing Cocoon to be a very flexible, very pluggable
framework. Keep up on the latest changes by monitoring the Cocoon web site, and look for Cocoon
2 in late 2000.

9.6 What's Next?

In the next chapter, we take a look at a technology that allows XML to be used as a data format in
an important request and response model: XML-RPC. XML Remote Procedure Calls allow clients
in a distributed system to request that tasks be executed on a server (or servers) on another portion
of the network. Until recently, RPC has declined in popularity, mostly due to the surge of RMI-
based technologies in the Java space (most notably, EJB). However, with XML as a data format,
XML-RPC is a new solution for many problems that could not be solved cleanly or efficiently
without RPC. We take a look at XML-RPC next, and in particular, at the Java libraries available.

Chapter 10. XML-RPC
We now take a look at yet another exciting development associated with XML: XML-RPC. XML-
RPC is actually just a specific flavor of RPC, which stands for Remote Procedure Calls. If you are
new to development, or have only worked with the Java language, remote procedure calls may be
new ground for you; if you've been around the block in the development world, you may be a bit
rusty, as RPC has fallen out of vogue in recent years. In this chapter we look at why those three
little letters in front of RPC are revolutionizing what was becoming a computing dinosaur, and how
to use XML-RPC from the world of Java. We also spend some time at the end of this chapter
looking at real-world applications of XML-RPC, trying to shed some light not only on how to use
this technology, but when to use it.

If you are part of the tidal wave of object-oriented development that has come along in the past
three to five years, even hearing the word "procedure" may send shivers running down your back.
Procedural languages such as PL/SQL and ANSI C are not popular, for a long list of very good
reasons. You have probably been scolded for calling a Java method a function or procedure before,

Java and XML

 page 220

and almost certainly know better than to write "spaghetti code," code that has method after method
chained together in a long line. RPC has fallen by the wayside much as these languages and
techniques have, because of the new, object-oriented ways of achieving the same results, often with
better design and performance. Surprisingly, though, the rise of XML has brought with it the rise
and prominence of APIs specifically built for XML-RPC, and a gradual trend towards using XML-
RPC in specific situations despite the connotations it carries.

Before trying to use these APIs, it is worth spending some time looking at what RPC is and how it
compares to similar Java technologies, most notably Remote Method Invocation (RMI). If you do
choose to use XML-RPC in your applications (and you almost surely will want to at some point), be
assured that you will probably have to justify your choice to other developers, particularly those
who may have just read books on EJB or RMI. Certainly there are places for all these technologies,
but understanding the proper application of each is critical to your success not only as a developer,
but as a team member and mentor. Keeping in mind these reasons for understanding the concepts
behind these remote methodologies, let's take a look at the two most popular ways to operate with
objects across a network: RPC and RMI.

10.1 RPC Versus RMI

If you haven't been under a rock for the last year, you should be aware that RMI is taking the Java
world by storm. The entire EJB (Enterprise JavaBeans) specification is founded upon RMI
principles, and you will be hard-pressed to write a three-tier application without using RMI, even if
indirectly. In other words, if you don't know how to use RMI yet, you may want to pick up Java
Enterprise in a Nutshell, by David Flanagan, Jim Farley, William Crawford, and Kris Magnusson,
or Java Distributed Computing, by Jim Farley (both published by O'Reilly & Associates) and spend
some time looking into this useful technology.

10.1.1 What Is RMI?

In short, RMI is remote method invocation. That seems fairly simple: RMI allows a program to
invoke methods on an object when the object is not located on the same machine as the program.
This is at the heart of distributed computing in the Java world, and is the backbone of EJB as well
as many enterprise application implementations. Without getting into too much detail, RMI uses
client stubs and skeletons to describe the methods a remote object has available for invocation. The
client acts upon these stubs (typically Java interfaces), and RMI handles the "magic" of translating
requests to a stub into network calls. This call invokes the method on the machine with the actual
object, and then streams the result back across the network. Finally, the stub returns this result to the
client that made the original method call, and the client moves on. The main idea you should get a
hold on is that the client doesn't typically worry about the RMI and network details; it uses the stub
as if it were the actual object with implemented methods. RMI (using JRMP™, Java's remote
protocol) makes all this network communication happen behind the scenes, allowing the client to
deal with a generic exception (java.rmi.RemoteException) and spend more time handling
business rules and application logic. RMI also allows different protocols (such as Internet Inter-
ORB Protocol [IIOP]) to be used, allowing communication between Java and CORBA objects,
often in different languages such as C or C++.

RMI does carry with it a cost, though. First, using RMI is resource intensive. There are quite a few
classes that must be used, and although these are part of the core Java Development Kit (JDK), they
still use memory and resources when instantiated. In addition, JRMP provides very poor
performance, and writing a remote protocol to replace it is not a simple task. As clients issue RMI
calls, sockets must be opened and maintained, and the number of sockets can affect system
performance, particularly when the system is accessible via a network (which then requires more

Java and XML

 page 221

sockets to be opened for HTTP access). RMI also requires a server or provider to bind objects to.
Until an object is bound to a name on one of these providers, the object is not accessible to other
programs. This requires using an RMI registry, a Lightweight Directory Access Protocol (LDAP)
directory server, or a variety of other Java Naming and Directory Interface (JNDI) services.
Finally, RMI can involve a lot of coding, even with all the helpful RMI server classes you get with
the JDK; a remote interface describing the methods available to be invoked must be coded (as well
as quite a few other interfaces if you are using EJB). This also means that adding an additional
method to the server class results in a change to the interface and recompilation of the client stubs,
something that is often not desirable and sometimes not possible.

10.1.2 What Is RPC?

RPC is remote procedure calls. Where RMI lets you interoperate directly with a Java object, RPC is
built in more of a dispatch fashion. Instead of dealing with objects, RPC lets you use standalone
methods (yes, we can call them procedures here!) across a network. Although this limits
interactivity, it does make for a slightly simpler interface to the client. You can think of RPC as
being a way to use "services" on remote machines, while RMI allows you to use "servers" on
remote machines; the subtle difference is that RMI typically is driven entirely by the client, with
events occurring when methods are invoked remotely. RPC is often built more as a class or set of
classes that work to perform tasks with or without client intervention; however, at times these
classes service requests from clients, and execute "mini" tasks for the clients. We will look at some
examples shortly to help clarify these definitions.

RPC, while not as interactive an environment as RMI, does offer some significant advantages. RPC
allows disparate systems to work together. While RMI allows the use of IIOP for connecting Java to
CORBA servers and clients, RPC allows literally any type of application intercommunication
because the transport protocol can be HTTP. Since virtually every language in use today has some
means of communicating via HTTP, RPC is very attractive for programs that must connect to
legacy systems. RPC is also typically more lightweight than RMI (particularly when using XML as
the encoding, which we look at next); while RMI often has to load entire Java classes over the
network (such as code for applets and custom helper classes for EJB), RPC only has to pass across
the request parameters and the resulting response, generally encoded as textual data. RPC also fits
very nicely into the API model, allowing systems that are not part of your specific application to
still access information from your application; this means that changes to your server do not have to
result in changes to other clients' application code; with pure textual data transfer and requests,
additional methods can be added without client recompilation, and minor changes are sufficient to
use these new methods.

The problem with RPC has traditionally been the encoding of data in transfer; imagine trying to
represent a Java Hashtable or Vector in a very lightweight way through text. When you consider
that these structures can, in turn, hold other Java object types, the data representation quickly
becomes tricky to write; it also has to remain a format that is usable by all the disparate
programming languages, or the advantages of RPC are lessened. Until recently, an inverse
relationship had been developing between the quality and usability of the encoding and its
simplicity; in other words, the easier it became to represent complex objects, the more difficult it
became to use the encoding in multiple programming languages without proprietary extensions and
code. Elaborate textual representations of data were not standardized and required completely new
implementations in every language to be usable. Certainly by now you should see where this
discussion is leading.

Java and XML

 page 222

10.1.3 XML-RPC

The greatest obstacle to using RPC has traditionally been its encoding. And then XML came along,
and changed everything! Not only did XML provide a very simple, textual representation of data, it
provided a standard for the structure of that data. Concerns about proprietary solutions became
moot when the W3C released the XML 1.0 specification, assuring RPC coders that XML was not
going anywhere anytime soon. In addition, SAX provided a lightweight, standard way to access
XML, making it much easier to implement RPC libraries. This left only transmission over HTTP
(something people have been doing for over a decade) and the specific encoding and decoding APIs
for XML-RPC implementers to write. After a few beta implementations of XML-RPC libraries, it
became clear that XML was also a very fast and lightweight encoding, resulting in better
performance for XML-RPC libraries than expected; XML-RPC is now a viable and stable solution
for remote procedure calls.

For you, the Java developer, XML-RPC provides a way to handle simple creation of "hooks" into
your application and its services, for your own use as well as for other application clients in
different divisions or even companies. It also uncouples these APIs from Java if clients are unable
to use the Java language directly. Finally, XML-RPC removes RMI from the technologies that have
to be learned to use distributed services (at least initially). We spend this chapter looking at how to
implement an XML-RPC server and client, as well as an example of how a server can operate
independently of clients, yet still provide XML-RPC accessible interfaces to interoperate with and
query its data. Although we do not take a look at RMI in depth in this chapter, we will continually
compare the XML-RPC solution to RMI, pointing out why XML-RPC is a better solution for some
types of tasks.

10.2 Saying Hello

If you've made it through these several pages of discussion, you probably are at least partially
convinced that XML-RPC has some usefulness and that it might be the right solution for some of
your development problems. To try to elaborate on XML-RPC, we now look at building some
actual working Java code using XML-RPC. In the great tradition of programming, we start with a
simple "Hello World" type program. We want to have our XML-RPC server register a handler. This
handler takes in a Java String parameter, the user's name, and returns "Hello" and the user's name;
for example, the method might return "Hello Brett" when invoked. Then we need a server to make
our handler available for XML-RPC clients. Finally, we build a simple client to connect to the
server and request the method invocation.

In a practical case, the XML-RPC server and handler would be on one machine, usually a heavy-
duty server, and the client on another machine, invoking the procedure calls remotely. However, if
you don't have multiple machines available, you can still use the examples locally. Although this
will be much faster than an actual client and server, you can still see how the pieces fit together and
get a taste of XML-RPC.

10.2.1 Getting XML-RPC Libraries

As we said earlier, a lot of work has already gone into RPC, and more recently XML-RPC. Like
using SAX, DOM, and JDOM for XML handling, there is no reason to reinvent the wheel when
there are good, even exceptional, Java packages in existence for your desired purpose. The center
for information about XML-RPC and links to libraries for Java as well as many other languages is
http://www.xml-rpc.com. Sponsored by Userland (http://www.userland.com), this site has a public
specification on XML-RPC, information on what data types are supported, and some tutorials on

Java and XML

 page 223

XML-RPC use. Most importantly, it directs you to the XML-RPC package for Java. Following the
link on the main page, you are directed to Hannes Wallnofer's site at http://helma.at/hannes/xmlrpc.

On Hannes's site is a description of the classes in his XML-RPC package as well as instructions on
use. Download the archive file and expand the files into your development area or IDE. You should
then be able to compile these classes; there is one Java servlet example that requires the servlet
classes (servlet.jar for Servlet API 2.2). You can obtain these classes with the Tomcat servlet
engine by pointing your web browser to http://jakarta.apache.org. If you do not wish to play with
the servlet example, the servlet classes are not required for the programs in this chapter.

The XML-RPC classes are packages within a zip file, xmlrpc-java.zip. You will need to extract from this
archive all the source code within the xmlrpc-java/src/ directory. There is no included jar distribution, so
manual compilation of these classes is required. Once compiled, you may want to jar the classes yourself
for easy inclusion in your classpath.

The core distribution (which does not include the applet or regular expression examples in the
downloaded archive) is made up of eight classes, all in the helma.xmlrpc package. They are
XmlRpc, the core class; XmlRpcClient, which is used to connect to an XML-RPC server;
XmlRpcServer, which is the server itself; XmlRpcHandler, which allows fine-grained control over
XML encoding and processing; and several support and helper classes. XmlRpcException is the
exception thrown by these classes; XmlRpcServlet demonstrates how to use a servlet as the HTTP
response handler; WebServer is a lightweight HTTP server built specifically for handling XML-
RPC requests; and Benchmark allows timing a roundtrip XML-RPC request using a specific SAX
driver. Not included in the distribution, but required for operation, are the SAX classes (which you
should have from earlier examples) and a SAX driver; in other words, you need a complete XML
parser implementation that supports SAX. We continue to use Apache Xerces in our examples,
although the libraries support any SAX 1.0-compatible driver.

Once you have all the source files compiled, ensure that the XML-RPC classes, SAX classes, and
your XML parser classes are all in your environment's class path. This should have you ready to
write your own custom code and start the process of "saying hello." Keep the XML-RPC source
files handy, as looking at what is going on under the hood can aid in your understanding of our
example.

10.2.2 Writing the Handler

The first thing we need to do is write the class and method we want to be invoked remotely. This is
often called a handler. Beware, though, as the XML-RPC server mechanism that dispatches
requests is also often called a handler; again, naming ambiguity rears its ugly head. A clearer
distinction can be drawn as follows: an XML-RPC handler is a method or set of methods that takes
an XML-RPC request, decodes its contents, and dispatches the request to a class and method. A
response handler , or simply handler, is any method that can be invoked by an XML-RPC handler.
With the XML-RPC libraries for Java, we do not need to write an XML-RPC handler, as one is
included as part of the helma.xmlrpc.XmlRpcServer class. We only need to write a class with one
or more methods that we register with the server.

It might surprise you to learn that creating a response handler requires no subclassing or other
special treatment in our code. Any method can be invoked via XML-RPC as long as its parameter
and return types are supported (able to be encoded) by XML-RPC. Table 10.1 lists all currently
supported Java types that can be used in XML-RPC method signatures.

Table 10.1, XML-RPC Supported Java Types

Java and XML

 page 224

XML-RPC Data Type Java Data Type
int int

boolean boolean

string java.lang.String
double double
dateTime.iso8601 java.util.Date

struct java.util.Hashtable
[1]

array java.util.VectorChapter 10a
base64 byte[]

[1] Of course, the struct and array types must only contain other legal XML-RPC types.

Although this list includes only a small number of types, you will find that they handle most of the
XML-RPC requests that can be made over a network. Because we only want to take in one String
parameter, and return a String, our method fits these requirements. We can write our simple
handler class now (shown in Example 10.1).

Example 10.1. Handler Class with Method to Be Invoked Remotely
/**
 * <code>HelloHandler</code> is a simple handler that can
 * be registered with an XML-RPC server.
 *
 * @version 1.0
 */
public class HelloHandler {

 /**
 * <p>
 * This will take in a <code>String</code> and return
 * a hello message to the user indicated.
 * </p>
 *
 * @param name <code>String</code> name of person to say Hello to.
 * @return <code>String</code> - hello message.
 */
 public String sayHello(String name) {
 return "Hello " + name;
 }

}

This really is as simple as it seems. The method signature takes in and returns legal XML-RPC
parameters, so we can safely register it with our XML-RPC server and know it will be callable via
XML-RPC.

10.2.3 Writing the Server

With our handler ready, we need to write a program to start up the XML-RPC server, listen for
requests, and dispatch these requests to the handler. For our example, we will use the
helma.xmlrpc.WebServer class as the request handler. Although we could use a Java servlet,
using this lightweight web server implementation allows us to avoid running a servlet engine on our
XML-RPC server. We spend more time at the end of this chapter discussing servlets in the context
of an XML-RPC server. For our server, we want to allow the specification of a port to start the
server on, and then have the server listen for XML-RPC requests until shut down. We then need to

Java and XML

 page 225

register the class we created with the server, and specify any other application-specific parameters
to the server.

We can create the skeleton for this class (shown in Example 10.2) now; we need to import the
WebServer class and also ensure that a port number is given to the program on the command line
when the server is started.

Example 10.2. Skeleton for Hello XML-RPC Server
import helma.xmlrpc.WebServer;

/**
 * <code>HelloServer</code> is a simple XML-RPC server
 * that will make the <code>HelloHandler</code> class available
 * for XML-RPC calls.
 *
 * @version 1.0
 */
public class HelloServer {

 /**
 * <p>
 * Start up the XML-RPC server and register a handler.
 * </p>
 */
 public static void main(String[] args) {
 if (args.length < 1) {
 System.out.println(
 "Usage: java HelloServer [port]");
 System.exit(-1);
 }

 // Start the server on specified port
 }

}

Before actually starting the server, we need to specify the SAX driver for use in parsing and
encoding XML. The default SAX driver for these libraries is James Clark's XP parser, available at
http://www.jclark.com. We instead request the Apache Xerces parser by specifying the SAX
Parser implementation class to the XML-RPC engine.[2] This is done through the setDriver()
method, a static method belonging to the XmlRpc class. This class underpins the WebServer class,
but we must import it and use it directly to make this change in SAX drivers. The
ClassNotFoundException is thrown by this method, so must be caught in case the driver class
cannot be located in your class path at runtime. Add the necessary import statement and methods to
your HelloServer class now:

[2] Currently there are no XML-RPC libraries that support SAX 2.0 and implement the XMLReader interface. It is expected that by late 2000, these
updates will occur; as the Apache Xerces SAXParser class implements both the SAX 1.0 Parser interface and SAX 2.0 XMLReader interface,
no code needs to be changed in the examples if SAX 2.0 updates are made to the libraries. However, if you are using a different vendor's parser, you may need
to specify a SAX 2.0 class if the XML-RPC libraries are modified to use SAX 2.0.

import helma.xmlrpc.WebServer;
import helma.xmlrpc.XmlRpc;
...
 /**
 * <p>
 * Start up the XML-RPC server and register a handler.
 * </p>
 */

Java and XML

 page 226

 public static void main(String[] args) {
 if (args.length < 1) {
 System.out.println(
 "Usage: java HelloServer [port]");
 System.exit(-1);
 }

 try {
 // Use the Apache Xerces SAX Driver
 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // Start the server

 } catch (ClassNotFoundException e) {
 System.out.println("Could not locate SAX Driver");
 }
 }
...

At this point, we are ready to add the main portion of our code, which creates the HTTP listener that
services XML-RPC requests, and then registers some handler classes that are available for remote
procedure calls. Creating the listener is very simple; the WebServer helper class we have been
discussing can be instantiated by supplying it the port to listen to, and just that easily, our server is
servicing XML-RPC requests. Although as of yet we have no classes available to be called, we do
have a working XML-RPC server. Let's add in the line to create and start the server, as well as a
status line for display purposes. We also need to add another import statement and exception
handler, this one for java.io.IOException. Because the server must start up on a port, it can
throw an IOException if the port is inaccessible or if other problems occur in server startup. The
modified code fragment is:

import java.io.IOException;

import helma.xmlrpc.WebServer;
import helma.xmlrpc.XmlRpc;
...
 /**
 * <p>
 * Start up the XML-RPC server and register a handler.
 * </p>
 */
 public static void main(String[] args) {
 if (args.length < 1) {
 System.out.println(
 "Usage: java HelloServer [port]");
 System.exit(-1);
 }

 try {
 // Use the Apache Xerces SAX Driver
 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // Start the server
 System.out.println("Starting XML-RPC Server...");
 WebServer server = new WebServer(Integer.parseInt(args[0]));

 } catch (ClassNotFoundException e) {
 System.out.println("Could not locate SAX Driver");
 } catch (IOException e) {
 System.out.println("Could not start server: " +
 e.getMessage());

Java and XML

 page 227

 }
 }
...

Compile this class and give it a try; it is completely functional, and should print out the status line
and then pause, waiting for requests. We now need to add our handler class to the server so that it
can receive requests.

One of the most significant differences between RMI and RPC is how methods are made available.
In RMI, a remote interface has the method signature for each remote method. If a method is
implemented on the server class, but no matching signature is added to the remote interface, the
new method cannot be invoked by an RMI client. This makes for quite a bit of code modification
and recompilation in the development of RMI classes. This process is quite a bit different, and is
generally considered easier and more flexible, in RPC. When a request comes in to an RPC server,
the request contains a set of parameters and a textual value, usually in the form
"classname.methodname." This signifies to the RPC server that the requested method is in the class
"classname" and is named "methodname." The RPC server then tries to find a matching class and
method that takes as input to that method parameter types that match the types within the RPC
request. Once a match is made, the method is called, and the result is encoded and sent back to the
client.

What this fairly long and somewhat complex discussion means is that the method requested is never
explicitly defined in the XML-RPC server, but rather in the request from the client. Only a class
instance is registered with the XML-RPC server. You can add methods to that class, restart the
XML-RPC server with no code changes (allowing it to register an updated class instance), and then
immediately request the new methods within your client code. As long as you can determine and
send the correct parameters to the server, the new methods are instantly accessible. This is one of
the advantages of XML-RPC over RMI, in that it more closely can represent an API; there are no
client stubs, skeletons, or interfaces that must be updated. If a method is added, the method
signature can be published to the client community and used immediately.

Now that you've read how easily an RPC handler can be used, let's register one in our example. The
WebServer class allows the addition of a handler through the addHandler() method. This method
takes as input a name to register the handler class to, and an instance of the handler class itself. This
is typically accessed by instantiating a new class with its constructor (using the new keyword),
although in the next section we look at using other methods, in the event that an instance should be
shared instead of created by each client. In our current example, instantiating a new class is an
acceptable solution. Let's register our HelloHandler class to the name "hello." We also add some
additional status lines to let us see what is occurring in the server as it adds the handler:

/**
 * <p>
 * Start up the XML-RPC server and register a handler.
 * </p>
 */
 public static void main(String[] args) {
 if (args.length < 1) {
 System.out.println(
 "Usage: java HelloServer [port]");
 System.exit(-1);
 }

 try {
 // Use the Apache Xerces SAX Driver
 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

Java and XML

 page 228

 // Start the server
 System.out.println("Starting XML-RPC Server...");
 WebServer server = new WebServer(Integer.parseInt(args[0]));

 // Register our handler class
 server.addHandler("hello", new HelloHandler());
 System.out.println(
 "Registered HelloHandler class to \"hello\"");

 System.out.println("Now accepting requests...");

 } catch (ClassNotFoundException e) {
 System.out.println("Could not locate SAX Driver");
 } catch (IOException e) {
 System.out.println("Could not start server: " +
 e.getMessage());
 }
 }

You can now recompile this source file and start up the server. Your output should look similar to
Example 10.3.[3]

[3] If you are on a Unix machine, you must be logged in as the root user to start a service up on a port lower than 1024. To avoid these problems, consider using
a higher numbered port, as shown in Example 10.3.

Example 10.3. Starting the HelloServer XML-RPC Server Class
$ java HelloServer 8585
Starting XML-RPC Server...
Registered HelloHandler class to "hello"
Now accepting requests...

Believe it or not, it is really that simple! We can write a client for our server, and then test
communications across a network using XML-RPC. This is another advantage of XML-RPC; the
barrier for entry into coding servers and clients is extremely low, particularly compared to the
complexity of using RMI. Read on, and see that creating a client is just as straightforward.

10.2.4 Writing the Client

With our server running and accepting requests, we have taken care of the hardest part of coding
our XML-RPC application (believe it or not, that was the hard part!). Now we need to construct a
simple client to call our sayHello() method remotely. This is made simple by using the
helma.xmlrpc.XmlRpcClient . This class takes care of many of the details on the client side that
its analogs, XmlRpcServer and WebServer, do on the server. To write our client, we need this class
as well as the XmlRpc class; our client must handle encoding of the request, so we must again set the
SAX driver class to use with the setDriver() method. Let's begin our client code with these
required import statements, checking for an argument to pass as the parameter to our sayHello()
method on the server, and some exception handling. Create the Java source file shown in Example
10.4 and save it as HelloClient.java.

Example 10.4. An XML-RPC Client
import helma.xmlrpc.XmlRpc;
import helma.xmlrpc.XmlRpcClient;

/**
 * <code>HelloClient</code> is a simple XML-RPC client
 * that makes an XML-RPC request to <code>HelloServer</code>.
 *

Java and XML

 page 229

 * @version 1.0
 */
public class HelloClient {

 /**
 * <p>
 * Connect to the XML-RPC server and make a request.
 * </p>
 */
 public static void main(String args[]) {
 if (args.length < 1) {
 System.out.println(
 "Usage: java HelloClient [your name]");
 System.exit(-1);
 }

 try {
 // Use the Apache Xerces SAX Driver
 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // Specify the Server

 // Create request

 // Make a request and print the result

 } catch (ClassNotFoundException e) {
 System.out.println("Could not locate SAX Driver");
 }
 }

}

As with the rest of the code in this chapter, this should seem simple and straightforward. To create
an XML-RPC client, we need to instantiate the XmlRpcClient class, which requires the hostname
of the XML-RPC server to connect to. This should be a complete URL, including the http://
protocol prefix. In creating the client, a java.net.MalformedURLException can be thrown when
this URL is in an unacceptable format. We can add this class to our list of imported classes,
instantiate our client, and add the required exception handler:

import java.net.MalformedURLException;

import helma.xmlrpc.XmlRpc;
import helma.xmlrpc.XmlRpcClient;
...
 /**
 * <p>
 * Connect to the XML-RPC server and make a request.
 * </p>
 */
 public static void main(String args[]) {
 if (args.length < 1) {
 System.out.println(
 "Usage: java HelloClient [your name]");
 System.exit(-1);
 }

 try {
 // Use the Apache Xerces SAX Driver
 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

Java and XML

 page 230

 // Specify the server
 XmlRpcClient client =
 new XmlRpcClient("http://localhost:8585/");

 // Create request

 // Make a request and print the result

 } catch (ClassNotFoundException e) {
 System.out.println("Could not locate SAX Driver");
 } catch (MalformedURLException e) {
 System.out.println(
 "Incorrect URL for XML-RPC server format: " +
 e.getMessage());
 }
 }
...

Although no actual RPC calls are being made, we now have a fully functional client application.
You can compile and run this application, although you won't see any activity, as no connection is
made until a request is initiated.

Make sure you use the port number in your source code that you plan to specify to the
server when you start it up. Obviously, this is a poor way to implement connectivity
between our client and server; changing the port the server listens to requires changing
the source code of our client! In the next chapter, we will look at how to address this
issue.

Hopefully you are excited about the ease with which this client and our server are coming together,
and how little work is required to make use of XML-RPC.

Still, our program is not of much use until it actually makes a request and receives a response. To
encode the request, we must invoke the execute() method on our XmlRpcClient instance. This
method takes in two parameters: the name of the class identifier and method to invoke, which is one
single String parameter, and a Vector of the method parameters to pass in to the specified method.
The class identifier is the name we registered to our HelloHandler class on the XML-RPC server;
although this identifier can be the actual name of the class, it is often something more readable and
meaningful to the client, and in our case it is "hello." The name of the method to invoke is appended
to this, separated from the class identifier with a period, in the form [class identifier].[method
name]. The parameters must be in the form of a Java Vector, and should include any parameter
objects that are needed by the specified method. In our simple sayHello() method, this is a
String with the name of the user, which should have been specified on the command line.

Once the XML-RPC client encodes this request, it sends the request to the XML-RPC server. The
server then locates the class that matches the request's class identifier, and looks for a matching
method name. If a matching method name is found, the parameter types for the method are
compared with the parameters in the request. If a match occurs, the method is executed. If multiple
methods are found with the same name, the parameters determine which method is invoked; this
process allows normal Java overloading to occur in the handler classes. The result of the method
invocation is encoded by the XML-RPC server, and sent back to the client as a Java Object (which
in turn could be a Vector of Objects!). This result can then be cast to the appropriate Java type,
and used in the client normally. If a matching class identifier/method/parameter signature is not
found, an XmlRpcException is thrown back to the client. This ensures that the client is not trying to
invoke a method or handler that does not exist, or sending in incorrect parameters.

Java and XML

 page 231

All this happens with a few additional lines of Java code: we must import the XmlRpcException
class, as well as java.io.IOException ; this latter is thrown when communication between the
client and server causes error conditions. We then add the Vector class and instantiate it, adding to
it our single String parameter. This allows us to invoke the execute() method with the name of
our handler, the method to call, and our parameters; the result of this call is cast to a String which
is then printed out to the screen. In this example, the local machine is running the XML-RPC server
on port 8585:

import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Vector;

import helma.xmlrpc.XmlRpc;
import helma.xmlrpc.XmlRpcClient;
import helma.xmlrpc.XmlRpcException;
...
 /**
 * <p>
 * Connect to the XML-RPC server and make a request.
 * </p>
 */
 public static void main(String args[]) {
 if (args.length < 1) {
 System.out.println(
 "Usage: java HelloClient [your name]");
 System.exit(-1);
 }

 try {
 // Use the Apache Xerces SAX Driver
 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // Specify the server
 XmlRpcClient client =
 new XmlRpcClient("http://localhost:8585/");

 // Create request
 Vector params = new Vector();
 params.addElement(args[0]);

 // Make a request and print the result
 String result =
 (String)client.execute("hello.sayHello", params);

 System.out.println("Response from server: " + result);

 } catch (ClassNotFoundException e) {
 System.out.println("Could not locate SAX Driver");
 } catch (MalformedURLException e) {
 System.out.println(
 "Incorrect URL for XML-RPC server format: " +
 e.getMessage());
 } catch (XmlRpcException e) {
 System.out.println("XML-RPC Exception: " + e.getMessage());
 } catch (IOException e) {
 System.out.println("IO Exception: " + e.getMessage());
 }
 }
...

Java and XML

 page 232

Surprisingly enough, that's all that is required to make this work! You can compile this code, and
then open a command shell for running our example code.

10.2.5 Talk to Me

Make sure that you have the XML-RPC classes and our example classes in your environment's class
path. You also need to confirm that Apache Xerces or your chosen SAX driver is in your class path
and accessible, as the examples must load these classes for parsing. Once that is set up, start the
HelloServer class by giving it a port number. On Windows, use the start command to start the
server in a separate process:

D:\prod\Java and XML\WEB-INF\classes>start java HelloServer 8585
Starting XML-RPC Server...
Registered HelloHandler class to "hello"
Now accepting requests...

In Unix, use the background processing command (&) to make sure you can run your client as well
(or open another terminal window and duplicate your environment settings):

$ java HelloServer &
Starting XML-RPC Server...
Registered HelloHandler class to "hello"
Now accepting requests...

You can then run your client by specifying your name to the program as a command-line argument.
You should quickly see a response (similar to that shown in Example 10.5) as the HelloServer
receives your request, handles it, and returns the result of the sayHello() method, which is then
printed by our client.

Example 10.5. Running the HelloClient Class
$ java HelloClient Brett
Response from server: Hello Brett

You have just seen XML-RPC in action. Certainly this is not a particularly useful example, but it
should have given you an idea of the basics and shown you the simplicity of coding an XML-RPC
server and client in Java. With these fundamentals, we can move on to a more realistic example. In
the next section, we build a more practical and useful server, and take a look at what XML-RPC
handlers more often look like. We then create a client (similar to our HelloClient) to test our new
code.

10.3 Putting the Load on the Server

As instructional as our Hello example has been in demonstrating how to use XML-RPC with Java,
it isn't very realistic. In addition to being a trivial example, the server is not very flexible and the
handler itself doesn't give any indication of how a practical XML-RPC handler might operate. Here
we try to give examples of using XML-RPC in a production environment by increasing the
usefulness of the handler and the usability of the server. These, while still not code you might want
to immediately add to your current project, should at least begin to demonstrate to you how XML-
RPC might be of use in your future projects, and how to build applications that can use XML-RPC
but are not limited by it.

Java and XML

 page 233

10.3.1 A Shared Handler

Our HelloHandler class was simple but useless in a practical application. Remember that we said
most XML-RPC uses relate to letting events occur on a server that is more suited for complex tasks,
while allowing a thin client to request procedures be executed and use the returned results. In
addition, it is possible that part or even all of the computations needed to respond to a request can
be done in advance; in other words, the handler class may be running tasks and ensuring that results
are already available when a method call comes in. As a Java coder, threads and shared instance
data should leap to your mind. Here we take a look at a very simple Scheduler class to illustrate
these principles.

Our scheduler should allow clients to add and remove events. We also want to be able to query our
scheduler for a list of all events in the queue. To make this a little more practical (and to have a task
for our server to perform later), we want the result of an events query to return the events sorted by
the time they occur. These events for our example will simply be a String event name and a time
for the event (in a java.util.Date format). Though this is not a complete scheduler
implementation, it can demonstrate how to let the server do some behind-the-scenes work for us.

First we will code our addEvent() and removeEvent() methods. Because these are both client-
triggered events, there is nothing particularly remarkable about them; what is worth thinking about
is how to store these events in our Scheduler class. Although our XML-RPC server will instantiate
this class, and that instance will be used for all XML-RPC calls that come into that server, it is
possible and even probable that other classes or even XML-RPC servers may interact with our
scheduler as well. If we store a list of events as a member variable of our class, multiple instances
will not be able to share data. To solve this problem in our example, we will make our storage
static, causing it to be shared across all Scheduler class instances. To store both an event name and
an event time, a Hashtable would seem appropriate, allowing the use of key-value pairs. In
addition to this Hashtable, we store the names of the events in a Vector . Although this uses some
extra storage space (and memory in the Java Virtual Machine), we can sort our Vector and not have
to deal with sorting our Hashtable; the advantage here is that we can swap the event names in our
Vector (a single swap) and not have to swap the event times in our Hashtable (two swaps for each
exchange). Let's code the skeleton of this class, and add these first two methods to allow addition
and removal of events. For now, we add our storage as well, but we leave the implementation of the
retrieval and sorting of events for later. Example 10.6 is a code listing for this new handler.

Example 10.6. The Scheduler Class
import java.util.Date;
import java.util.Hashtable;
import java.util.Vector;

/**
 * <code>Scheduler</code> is a class that allows
 * addition, removal, and retrieval of a list of events, sorted
 * by their occurrence time.
 *
 * @version 1.0
 */
public class Scheduler {

 /** List of event names (for sorting) */
 private static Vector events = null;

 /** Event details (name, time) */
 private static Hashtable eventDetails = null;

Java and XML

 page 234

 /**
 * <p>
 * This will initialize the storage.
 * </p>
 */
 public Scheduler() {
 events = new Vector();
 eventDetails = new Hashtable();
 }

 /**
 * <p>
 * This will add the requested event.
 * </p>
 *
 * @param eventName <code>String</code> name of event to add.
 * @param eventTime <code>Date</code> of event.
 * @return <code>boolean</code> - indication of if event was added.
 */
 public boolean addEvent(String eventName, Date eventTime) {
 // Add this event to the list of events
 if (!events.contains(eventName)) {
 events.addElement(eventName);
 eventDetails.put(eventName, eventTime);
 }

 return true;
 }

 /**
 * <p>
 * This will remove the requested event.
 * </p>
 *
 * @param eventName <code>String</code> name of event to remove.
 * @return <code>boolean</code> - indication of if event was removed.
 */
 public synchronized boolean removeEvent(String eventName) {
 events.remove(eventName);
 eventDetails.remove(eventName);

 return true;
 }

}

Our addEvent() method adds the name of the event to both storage objects, and the time to the
Hashtable. Our removeEvent() method does the converse. Both methods return a boolean
value. Although in the example this value is always true, in a more complex implementation, this
value could be used to indicate problems in the addition or removal of events.

With the ability to add and remove events, we now need to add a method that returns a list of
events. This method returns all events added to the event store, regardless of what client or
application added those events; in other words, these could be events added by a different XML-
RPC client, a different XML-RPC server, another application, or a standalone implementation of
this same scheduler. Since we have to return a single Object result, we can return a Vector of
formatted String values that contain the name of each event and its time. Certainly, in a more
useful implementation this might return the Vector of events, or some other form of the events in a
typed format (with the date as a Date object, etc.). This method acts more as a view of the data,
though, and does not allow the client to further manipulate it. To return this list of events, we use

Java and XML

 page 235

the event store and the java.text.SimpleDateFormat class, which allows textual formatting of
Date objects. Iterating through all events, a String is created with the event name and the time it is
set for; each String is inserted into the Vector result list, and this list is then returned to the client.
Let's add the required import statement and the code to return the events in the store to the
scheduler code:

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Hashtable;
import java.util.Vector;
...
 /**
 * <p>
 * This returns the current listing of events.
 * </p>
 *
 * @return <code>Vector</code> - list of events.
 */
 public Vector getListOfEvents() {
 Vector list = new Vector();

 // Create a Date Formatter
 SimpleDateFormat fmt =
 new SimpleDateFormat("hh:mm a MM/dd/yyyy");

 // Add each event to the list
 for (int i=0; i<events.size(); i++) {
 String eventName = (String)events.elementAt(i);
 list.addElement("Event \"" + eventName +
 "\" scheduled for " +
 fmt.format(
 (Date)eventDetails.get(eventName)));
 }

 return list;
 }
...

At this point, we could use this class as an XML-RPC handler without any problems. However, the
point of this exercise is to look at how work can be done by the server while the client is performing
other tasks. The getListOfEvents() method assumes that the event list (the Vector variable
events) is ordered in the correct way when this method is called; this means that sorting has
already occurred. We haven't written code to sort our events yet, but more importantly, we haven't
written code to trigger this sorting. Furthermore, as the event store gets large, sorting it can be very
time-consuming, and this task should not cause the client to wait for it to complete. First we must
add a method that our class can use to sort the events. For simplicity, a bubble sort is used;
discussion of sorting algorithms is beyond the scope of this book, so this code is presented without
any explanation of its workings. At the end of the method, though, the Vector variable events is
sorted in order of the time the events within it occur. For information on this and other sorting
algorithms, you should refer to Algorithms in Java, by Robert Sedgewick and Tim Lindholm
(Addison-Wesley). The algorithm and method to handle sorting of the events is presented here, and
should be added to your code:

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;

Java and XML

 page 236

/**
 * <code>Scheduler</code> is a class that allows
 * addition, removal, and retrieval of a list of events, sorted
 * by their occurrence time.
 *
 * @author Brett McLaughlin
 * @version 1.0
 */
public class Scheduler {

 /** List of event names (for sorting) */
 private static Vector events = null;

 /** Event details (name, time) */
 private static Hashtable eventDetails = null;

 /** Flag to indicate if events are sorted */
 private static boolean eventsSorted;

 // Other existing method implementations

 /**
 * <p>
 * Sort the events in the current list.
 * <p>
 */
 private synchronized void sortEvents() {
 if (eventsSorted) {
 return;
 }

 // Create array of events as they are (unsorted)
 String[] eventNames = new String[events.size()];
 events.copyInto(eventNames);

 // Bubble sort these
 String tmpName;
 Date date1, date2;
 for (int i=0; i<eventNames.length - 1; i++) {
 for (int j=0; j<eventNames.length - i - 1; j++) {
 // Compare the dates for these events
 date1 = (Date)eventDetails.get(eventNames[j]);
 date2 = (Date)eventDetails.get(eventNames[j+1]);
 if (date1.compareTo(date2) > 0) {

 // Swap if needed
 tmpName = eventNames[j];
 eventNames[j] = eventNames[j+1];
 eventNames[j+1] = tmpName;

 }
 }
 }

 // Put into new Vector (ordered)
 Vector sortedEvents = new Vector();
 for (int i=0; i<eventNames.length; i++) {
 sortedEvents.addElement(eventNames[i]);
 }

 // Update the global events
 events = sortedEvents;
 eventsSorted = true;

Java and XML

 page 237

 }
...
}

In addition to the core algorithm, we import the java.util.Enumeration class and add a boolean
member variable, eventsSorted. This flag allows short-circuiting of the execution of the sorting
when the events are already ordered. Although we have not yet added code to update this flag, we
can easily do so. Our sorting method already indicates that events are sorted at its completion. Our
constructor should initially set this value to true, indicating that all events are in order. It is only
when events are added that the list may become unordered, so in our addEvents() method we
need to set this flag to false if an event is added. This will let our Scheduler class know that
something should occur that will trigger the sort. Then when the getListOfEvents() method is
invoked, the events will be ordered and ready for retrieval. Let's add code to our constructor and the
method for adding events that will update this flag:

/**
 * <p>
 * This will initialize the storage.
 * </p>
 */
 public Scheduler() {
 events = new Vector();
 eventDetails = new Hashtable();
 eventsSorted = true;
 }

 /**
 * <p>
 * This will add the requested event.
 * </p>
 *
 * @param eventName <code>String</code> name of event to add.
 * @param eventTime <code>Date</code> of event.
 * @return <code>boolean</code> - indication of if event was added.
 */
 public boolean addEvent(String eventName, Date eventTime) {
 // Add this event to the list of events
 if (!events.contains(eventName)) {
 events.addElement(eventName);
 eventDetails.put(eventName, eventTime);
 eventsSorted = false;
 }

 return true;
 }

We do not need to make any changes to the removeEvent() method, as removing an entry does
not affect the order of the events. The ideal mechanism to handle server-side processing while
freeing the client for further action is a thread that sorts events. With this thread started in the JVM,
client processing can continue without waiting for the thread to complete. This is particularly
important in a multi-threaded environment where synchronization and threads waiting for object
locks would be in use. In this example, we avoid those issues (this is a chapter about XML-RPC,
not threading), but you can add the relevant code to handle these issues fairly easily. In our
example, we want to create an inner class that extends Thread, and does nothing but invoke the
sortEvents() method. We then add to our addEvents() method code that creates and starts this
thread when events are added. This results in the addition of events triggering a re-sorting of the
events, but allows the client to continue with its actions (which might include adding additional

Java and XML

 page 238

events, which in turn starts more threads to sort the data). When the client does request the list of
events, the events should be sorted when returned, all without the client ever waiting on this action
to occur, or having to spend processing power to make it happen. The addition of the inner class to
sort, and code to run that class as a thread in our addEvents() method rounds out the Scheduler
class:

public class Scheduler {
...
 public boolean addEvent(String eventName, Date eventTime) {
 // Add this event to the list of events
 if (!events.contains(eventName)) {
 events.addElement(eventName);
 eventDetails.put(eventName, eventTime);
 eventsSorted = false;

 // Start thread on server sorting
 SortEventsThread sorter = new SortEventsThread();
 sorter.start();
 }

 return true;
 }
...
 /**
 * <p>
 * This inner class handles starting the sorting as
 * a <code>Thread</code>.
 */
 class SortEventsThread extends Thread {

 /**
 * <p>
 * Start the sorting.
 * </p>
 */
 public void run() {
 sortEvents();
 }
 }

}

You can now compile the modified source code, and we have a threaded scheduler that performs
the process-intensive task of sorting on the server, allowing any clients to work uninterrupted while
that sorting occurs. This is still a simple example of using a handler class properly, but it does
introduce the concepts of resource distribution and letting a server handle the workload when
possible. To complement this more advanced handler class, we next look at building a more robust
XML-RPC server implementation.

10.3.2 A Configurable Server

Our XML-RPC server class still needs some work. The current version requires us to specifically
add our handler classes to the server in the code. This means that the addition of a new handler class
requires coding and recompilation. Not only is this undesirable from a change control perspective,
but it is annoying and time-consuming. Obtaining the newest code from a source control system,
adding the change, and testing to add one or two handlers is not practical, and won't win you friends
among your management. What is preferred is to have a robust server that can read this sort of

Java and XML

 page 239

information from a configuration file and load the needed classes at runtime. We can build a
lightweight server to do this now.

To begin, we create a new server class. You can either start from scratch, or copy and paste from
the HelloServer class given earlier in this chapter. We start by setting up our framework, adding
the required import statements, and instantiating our server, similar to the earlier example; however,
we do not add any code that registers handlers, as we will write a helper method to load the needed
information from a file. The one change from our earlier version is that we require an additional
command-line parameter; this parameter should be the name of a file. We will read this file in our
methods later to add handlers to the server. You can create the LightweightXmlRPcServer class
(part of the com.oreilly.xml utility package), which continues to use the thin WebServer helper
class, with the code shown in Example 10.7. The complete com.oreilly.xml package is also
available for download at http://www.oreilly.com/catalog/javaxml or http://www.newInstance.com.

Example 10.7. The LightweightXmlRpcServer Class
package com.oreilly.xml;

import java.io.IOException;

import helma.xmlrpc.XmlRpc;
import helma.xmlrpc.WebServer;

/**
 * <code>LightweightXmlRpcServer</code> is a utility class
 * that will start an XML-RPC server listening for HTTP requests
 * and register a set of handlers, defined in a configuration file.
 *
 * @author
 * Brett McLaughlin
 * @version 1.0
 */
public class LightweightXmlRpcServer {

 /** The XML-RPC server utility class */
 private WebServer server;

 /** Port number to listen on */
 private int port;

 /** Configuration file to use */
 private String configFile;

 /**
 * <p>
 * This will store the requested port and configuration file
 * for the server to use.
 * </p>
 *
 * @param port <code>int</code> number of port to listen to
 * @param configFile <code>String</code> filename to read for
 * configuration information.
 */
 public LightweightXmlRpcServer(int port, String configFile) {
 this.port = port;
 this.configFile = configFile;
 }

 /**
 * <p>
 * This will start up the server.

Java and XML

 page 240

 * </p>
 *
 * @throws <code>IOException</code> when problems occur.
 */
 public void start() throws IOException {
 try {
 // Use Apache Xerces SAX Parser
 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 System.out.println("Starting up XML-RPC Server...");
 server = new WebServer(port);

 // Register handlers

 } catch (ClassNotFoundException e) {
 throw new IOException("Error loading SAX parser: " +
 e.getMessage());
 }
 }

 /**
 * <p>
 * Provide a static entry point.
 * </p>
 */
 public static void main(String[] args) {

 if (args.length < 2) {
 System.out.println(
 "Usage: " +
 "java com.oreilly.xml.LightweightXmlRpcServer " +
 "[port] [configFile]");
 System.exit(-1);
 }

 LightweightXmlRpcServer server =
 new LightweightXmlRpcServer(Integer.parseInt(args[0]),
 args[1]);

 try {
 // Start the server
 server.start();
 } catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }

}

There is really nothing remarkable here. We ensure that the required parameters are passed in and
start the server on the requested port. We now need to add in methods to load our handlers from a
file, and then add those handlers one by one to our server.

Because each handler needs a name and an associated class, we can create a configuration file that
has these two pieces of information. With Java, it is easy to load and instantiate a class with its
complete package and name. This means we can completely represent a new handler with a pair of
textual values. Within this file, we can add both our original HelloHandler class as well as our new
Scheduler class. Since we are writing the file parser as well, we can arbitrarily decide to use
commas as delimiters and the pound sign (#) as a comment marker. In fact, you can use whatever
format you wish as long as you write code that uses your conventions in parsing the file. Create the
configuration file shown in Example 10.8 that will add the HelloHandler class under the class

Java and XML

 page 241

identifier "hello" and the Scheduler class under the class identifier "scheduler," and save it as
xmlrpc.conf.

Example 10.8. XML-RPC Handler Configuration File
Hello Handler: sayHello()
hello,HelloHandler

Scheduler: addEvent(), removeEvent(), getEvents()
scheduler,Scheduler

For documentation purposes, we specify the methods available to each handler in our comments.
This allows future maintainers of our code to know what methods are available for each handler.

Java's I/O classes make it easy to load this file and read its contents. We can create a helper method
that reads the specified file and stores the pairs of values in a Java Hashtable. This object can then
be passed on to another helper that loads and registers each handler. This example method does not
do extensive error checking, which a production ready server might, and it simply ignores any line
without a pair of comma-separated values; certainly it is easy enough to add in error handling if you
want to use this code in your applications. Once we find a line with a pair of values, the line is
broken up and the class identifier and class name are stored as an entry within the Hashtable. Add
the import statements for the required classes and then the new getHandlers() method to the
LightweightServer class now:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.Hashtable;

import helma.xmlrpc.XmlRpc;
import helma.xmlrpc.WebServer;
...
 /**
 * <p>
 * This is a method that parses the configuration file
 * (in a very simplistic manner) and reads the handler
 * definitions supplied.
 * </p>
 *
 * @return <code>Hashtable</code> - class id/class pairs.
 * @throws <code>IOException</code> - when errors occur in
 * reading/parsing the file.
 */
 private Hashtable getHandlers() throws IOException {

 Hashtable handlers = new Hashtable();

 BufferedReader reader =
 new BufferedReader(new FileReader(configFile));
 String line = null;

 while ((line = reader.readLine()) != null) {
 // Syntax is "handlerName, handlerClass"
 int comma;

 // Skip comments
 if (line.startsWith("#")) {
 continue;
 }

Java and XML

 page 242

 // Skip empty or useless lines
 if ((comma = line.indexOf(",")) < 2) {
 continue;
 }

 // Add the handler name and the handler class
 handlers.put(line.substring(0, comma),
 line.substring(comma+1));
 }

 return handlers;
 }
...

Instead of adding code to save the result of this method, we can use that result as input to a method
that iterates through the Hashtable and adds each handler to the server. The code needed to
accomplish this task is not complicated; the only notable items are that the addHandler() method
of WebServer requires an instantiated class as a parameter. This requires us to take the name of the
class to register from the Hashtable, load that class into the JVM with Class.forName(), and
then instantiate that class with newInstance(). This is the methodology used in class loaders and
other dynamic applications in Java, but may be unfamiliar to you if you are new to Java or have not
had to dynamically instantiate classes from a textual name before. Once the class is loaded in this
way, it and the class identifier are passed to the addHandler() method, and the iteration
continues. Once the contents of the Hashtable are loaded, the server is set up and ready to go. We
use the Enumeration class to cycle through the keys in the Hashtable, so we must add this import
statement to our file:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.Enumeration;
import java.util.Hashtable;

import helma.xmlrpc.XmlRpc;
import helma.xmlrpc.WebServer;
...
 /**
 * <p>
 * This will register the handlers supplied in the XML-RPC
 * server (typically from <code>{@link #getHandlers()}</code>.
 * </p>
 *
 * @param handlers <code>Hashtable</code> of handlers to register.
 */
 private void registerHandlers(Hashtable handlers) {
 Enumeration handlerNames = handlers.keys();

 // Loop through the requested handlers
 while (handlerNames.hasMoreElements()) {
 String handlerName = (String)handlerNames.nextElement();
 String handlerClass = (String)handlers.get(handlerName);

 // Add this handler to the server
 try {
 server.addHandler(handlerName,
 Class.forName(handlerClass).newInstance());

 System.out.println("Registered handler " + handlerName +
 " to class " + handlerClass);

Java and XML

 page 243

 } catch (Exception e) {
 System.out.println("Could not register handler " +
 handlerName + " with class " +
 handlerClass);
 }
 }
 }
...

This is simply a complement to our getHandlers() method; in fact, it takes the result of that
method as input. It uses the String values within the Hashtable and registers each, and just that
simply, our server is running and will have any handlers in the configuration file loaded and
available for remote calls. Be aware that we could have just as easily consolidated these methods
into one larger method. However, the purpose of the two methods is significantly different; while
one, getHandlers(), deals with parsing a file, the other, registerHandlers(), deals with
registering handlers once information about the handlers is available. With this methodology, we
can change the way we parse the configuration file (or even have it read from a database or other
medium) without having to worry about the way the handlers are registered. In fact, in the next
chapter we remove the getHandlers() method in lieu of a helper class that reads this information
from an XML configuration file! In this case, a good design decision early in the process (here)
avoids a lot of change to our working code later in the process (in the next chapter).

Once you have added these two helper methods, add their invocation to the start() method of
our server class:

/**
 * <p>
 * This will start up the server.
 * </p>
 *
 * @throws <code>IOException</code> when problems occur.
 */
 public void start() throws IOException {
 try {
 // Use Apache Xerces SAX Parser
 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 System.out.println("Starting up XML-RPC Server...");
 server = new WebServer(port);

 // Register handlers
 registerHandlers(getHandlers());

 } catch (ClassNotFoundException e) {
 throw new IOException("Error loading SAX parser: " +
 e.getMessage());
 }
}

We add a try -catch block around the method invocations we have added so that we can
distinguish between exceptions that occur in the server itself (the outer block) as opposed to
exceptions that occur specifically related to the loading of handlers. In this latter case, we report the
error as being generated by our handler methods. Compile this code, ensure you have created the
configuration file, and our server is ready for use.

Java and XML

 page 244

10.3.3 A Useful Client

Our client has no new concepts or techniques in it; just as our HelloClient class was simple, so is
the SchedulerClient class. It needs to start up an XML-RPC client, invoke handler methods, and
print out the result of those handlers. The complete code for the client is here. Comments indicate
what is occurring, and since this is all ground we have covered you can simply enter the code in
Example 10.9 into your editor and compile it.

Example 10.9. The SchedulerClient Class
import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Calendar;
import java.util.Date;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;

import helma.xmlrpc.XmlRpc;

import helma.xmlrpc.XmlRpcClient;
import helma.xmlrpc.XmlRpcException;

/**
 * <code>SchedulerClient</code> is an XML-RPC client
 * that makes XML-RPC requests to <code>Scheduler</code>.
 *
 * @version 1.0
 */
public class SchedulerClient {

 /**
 * <p>
 * Add events to the Scheduler.
 * </p>
 *
 * @param client <code>XmlRpcClient</code> to connect to
 */
 public static void addEvents(XmlRpcClient client)
 throws XmlRpcException, IOException {

 System.out.println("\nAdding events...\n");

 // Parameters for events
 Vector params = new Vector();

 // Add an event for next month
 params.addElement("Proofread final draft");

 Calendar cal = Calendar.getInstance();
 cal.add(Calendar.MONTH, 1);
 params.addElement(cal.getTime());

 // Add the event
 if (((Boolean)client.execute("scheduler.addEvent", params))
 .booleanValue()) {
 System.out.println("Event added.");
 } else {
 System.out.println("Could not add event.");
 }

 // Add an event for tomorrow

Java and XML

 page 245

 params.clear();
 params.addElement("Submit final draft");

 cal = Calendar.getInstance();
 cal.add(Calendar.DAY_OF_MONTH, 1);
 params.addElement(cal.getTime());

 // Add the event
 if (((Boolean)client.execute("scheduler.addEvent", params))
 .booleanValue()) {
 System.out.println("Event added.");
 } else {
 System.out.println("Could not add event.");
 }

 }

 /**
 * <p>
 * List the events currently in the Scheduler.
 * </p>
 *
 * @param client <code>XmlRpcClient</code> to connect to
 */
 public static void listEvents(XmlRpcClient client)
 throws XmlRpcException, IOException {

 System.out.println("\nListing events...\n");

 // Get the events in the scheduler
 Vector params = new Vector();
 Vector events =
 (Vector)client.execute("scheduler.getListOfEvents", params);
 for (int i=0; i<events.size(); i++) {
 System.out.println((String)events.elementAt(i));
 }
 }

 /**
 * <p>
 * Static entry point for the demo.
 * </p>
 */
 public static void main(String args[]) {

 try {
 // Use the Apache Xerces SAX Parser Implementation
 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // Connect to server
 XmlRpcClient client =
 new XmlRpcClient("http://localhost:8585/");

 // Add some events
 addEvents(client);

 // List events
 listEvents(client);

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

 }

Java and XML

 page 246

}

As you are entering this code, notice that the events are added in reverse order of the event time.
Our server should rearrange these events with the sortEvents() method to facilitate correctly
ordered results when the getListOfEvents() method is called. We can see that our server takes
care of this sorting next.

10.3.4 Talk to Me (Again)

Once you have entered in the code for the handler, server, and client, compile all of the source files.
You also will need to create the configuration file that lists handlers to register with the XML-RPC
server that we discussed in that section. First, start up the XML-RPC server as a separate process:

D:\prod>start java com.oreilly.xml.LightweightXmlRpcServer 8585
 D:\prod\conf\xmlrpc.conf

In Unix, use:

$ java com.oreilly.xmlrpc.LightweightServer 8585 conf/xmlrpc.conf &

You should see the server indicate that the handlers in the supplied configuration file are registered
to the names you provided:

Starting up XML-RPC Server...
Registered handler scheduler to class Scheduler
Registered handler hello to class HelloHandler

If you never stopped the previous XML-RPC server, HelloServer, you will get an
error trying to start another server on the same port. Be sure to stop the HelloServer
before trying to start the LightweightXmlRpcServer.

Finally, execute your client and see the results:

$ java SchedulerClient

Adding events...

Event added.
Event added.

Listing events...

Event "Submit final draft" scheduled for 10:13 AM 02/14/2000
Event "Proofread final draft" scheduled for 10:13 AM 03/13/2000

You should not notice a significant pause as your client adds and lists events, yet the server still
sorts the events in a separate thread within the server JVM (and bubble sorting is not a quick
algorithm!). You have written your first useful XML-RPC application!

10.4 The Real World

We conclude this chapter with a short look at some important details of using XML-RPC in the real
world. This continues the focus on allowing you to use XML not because it is the newest and
neatest technology, but because it is the best for solving certain situations. All of the knowledge
within this book, all the XML specifications, and other XML books will not make your application

Java and XML

 page 247

operate as well as it could, if you do not know when and how to use XML and XML-RPC
correctly! This section, then, highlights some of the common issues that arise in using XML-RPC.

10.4.1 Where's the XML in XML-RPC?

After working through this chapter, you may have been surprised that we didn't write any SAX,
DOM, or JDOM code. In fact, we used very little XML directly at all. This is because the XML-
RPC libraries were responsible for the encoding and decoding of the requests that our client sent to
and from the server. While this may seem a little bit of a letdown, as you didn't write any code that
directly manipulates XML, you are definitely using XML technology. The simple request to the
sayHello() method was actually translated to an HTTP call that looks like Example 10.10.

Example 10.10. XML-RPC Request After Encoding
POST /RPC2 HTTP/1.1
User-Agent: Tomcat Web Server/3.1 Beta (Sun Solaris 2.6)
Host: newInstance.com
Content-Type: text/xml
Content-length: 234

<?xml version="1.0"?>
<methodCall>
 <methodName>hello.sayHello</methodName>
 <params>
 <param>
 <value><string>Brett</string></value>
 </param>
 </params>
</methodCall>

The XML-RPC libraries on the server receive this and decode it, matching it with a handler method
(if one is available that matches). The requested Java method is then invoked, and the server
encodes the result back into XML, as shown in Example 10.11.

Example 10.11. XML-RPC Response After Encoding
HTTP/1.1 200 OK
Connection: close
Content-Type: text/xml
Content-Length: 149
Date: Mon, 11 Apr 2000 03:32:19 CST
Server: Tomcat Web Server/3.1 Beta-Sun Solaris 2.6

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>Hello Brett</string></value>
 </param>
 </params>
</methodResponse>

All this communication happens without you having to worry about the details.

10.4.2 Shared Instances

In our examples, we looked at using static data objects to share data across multiple instances of the
same class. However, there are times when an instance itself is shared. This may not be because of
an XML-RPC need, but because of a need to use the class differently on the server. For example,

Java and XML

 page 248

the singleton design pattern in Java mandates that only one instance of a class ever be created, and
that instance is shared across all applications. This is usually accomplished by using a static method
called getInstance() instead of constructing the object:

Scheduler scheduler;
// Get the single instance, which is managed in the Scheduler class
scheduler = Scheduler.getInstance();
// Add an event for right now
scheduler.addEvent("Picnic", new Date());

To ensure that no classes directly instantiate the Scheduler class, the constructor is usually made
private or protected. While this works fine in that it forces clients to use the code shown above to
get an instance, it can also cause confusion when trying to use the class as an XML-RPC handler.
Remember that registering a handler has always been accomplished with the instantiation of the
handler class. However, the WebServer class requires only a valid instance as a parameter, not
necessarily a new instance. For example, the following code would be a perfectly acceptable way to
add a handler:

WebServer server = new WebServer(8585);
// Create a handler class
HelloHandler hello = new HelloHandler();
server.addHandler("hello", hello);

The server class does not distinguish between these methodologies, as long as the handler class is
instantiated when it gets passed into the addHandler() method. So we can make a small change to
this code if we want to add an instance of the singleton Scheduler class described previously:

WebServer server = new WebServer(8585);
// Pass in the singleton instance
server.addHandler("scheduler", Scheduler.getInstance());

This passes in the shared instance just as if the class was being instantiated through a constructor
with the new keyword, and preserves any information shared across the singleton class. You will
find that many classes used in services such as XML-RPC are built as singletons to avoid the use of
static data variables, as a shared instance allows the data to be stored in member variables; the
single instance then operates upon those member variables for all client requests.

10.4.3 To Servlet or Not To Servlet

The use of a servlet as an XML-RPC server has become a popular option recently (for more details
on servlets, see Jason Hunter's Java Servlet Programming [O'Reilly & Associates]). In fact, the
XML-RPC Java classes that you downloaded include a servlet with the distribution. It is both legal
and common to use a servlet in this way, having the servlet do nothing but field XML-RPC
requests. However, this is not always the best idea.

If you have a machine that must serve other HTTP requests for Java tasks, then certainly a servlet
engine is a good choice for handling the details of these requests. In this case, running a servlet as
an XML-RPC server would be a good idea. However, one of the advantages of XML-RPC is it
allows handler classes with complex, process-intensive tasks to be separated from other application
code. Our Scheduler class could be placed on a server with classes that performed complex
indexing, algorithmic modeling, and perhaps graphical transformations. All of these functions are
very expensive for application clients to perform. However, to add a servlet engine and accept
application requests for other tasks as well as the XML-RPC handling greatly reduces the

Java and XML

 page 249

processing power available to these handler classes. In this case, the only requests that should be
coming to the server are for these handler classes.

In the case where only XML-RPC requests are accepted (as indicated above), it is rarely a good idea
to use a servlet for the XML-RPC server. The provided WebServer class is very small, very light,
and designed specifically for handling XML-RPC requests over HTTP. A servlet engine is designed
for accepting any HTTP request, and is not tuned as well for XML-RPC requests in particular. Over
time, you will begin to see performance degradation in the servlet engine as compared to the
WebServer class. Unless you have a compelling reason to use a servlet for other non-XML-RPC
tasks, it would be wise to stick with the lightweight XML-RPC server designed for the purpose you
need.

10.5 What's Next?

By now you should start to feel you could use XML in a variety of ways, as our topical chapters
give you some practical applications of XML. The next chapter continues the focus on XML in the
real world by looking at XML for configurations. Enterprise JavaBeans are using XML for EJB
deployment descriptors files, many server products are using XML for configuration files, and
XML is coming into its own as a format for configuration data. We will look at why this trend has
started, and examine how to use XML for storing data purely for application use and not for
transferal between applications. We also spend time discussing why databases and directory servers
are not going away anytime soon, and how to ensure you use XML wisely, but not in inappropriate
situations.

Chapter 11. XML for Configurations
In this chapter, we look at the use of XML for configuration data. This differs from our XML
coverage in other chapters in that we are not using XML to transfer data between applications, or
for generating a presentation layer; we are simply using XML to store data. To understand the
motivation for using XML for configuration data, you need only write an application that uses
extensive properties files, or code a server that is configured via files on a filesystem rather than
command-line arguments. In both cases, the format of the files to supply information to the
application becomes arbitrary and usually proprietary. The developer working on configuration
often decides on a format, codes a file reader, and the application becomes locked into that format
forever. Certainly this is not the most long-term view of application programming and development.

As developers and system engineers realized the maintenance problems that an approach like this
can cause (forgetting where a comma belongs, being unsure what marks a comment, etc.), it became
clear that a standard was needed to represent this type of data that would not immediately cause an
application's configuration mechanism to become proprietary. One standard solution that is being
used today, but is still lacking functionality, is Java properties files and the java.util.Properties
class. Introduced in the Java Development Kit (JDK) 1.0, these constructs provide a more Java-
centric means of storing data and configuration information. However, they do not provide for any
sort of grouping or hierarchy. A client application had just as much access and visibility into a
server's information as the server did into the client's data, and developers were unable to perform
any sort of logical grouping within these files. In addition, having hierarchical configuration
parameters had become popular; this nesting of information was difficult to accomplish in other
solutions without creating even more complex (and still very proprietary) file formats. XML nicely
solved all of these issues and offered a standard, simple way to represent application configuration
information. The format also lends itself to being a multi-purpose administration tool. Consider that
XML allows a generic application to be coded that can load a DTD or schema and then a
configuration file, and allows a user to add, update, delete, and modify information with such a tool.

Java and XML

 page 250

With one XML configuration file or hundreds, from one format to many, this same application
could provide an interface for administration. Compared to the variety of password, shadow, user
and group, initialization script, and other files on servers today, this is a significant improvement in
simplicity and ease of use.

Because XML was being used in many applications already, it became a natural extension to add
parsing and handling of configuration files that were converted to XML. Applications that do not
utilize XML can easily begin to use XML by introducing XML configuration files; this is much
easier to do than to add support for XML data transferal or XML transformations. All in all, it
seemed an excellent fit for a variety of applications. When the Enterprise JavaBeans (EJB) 1.1
specification was released, dictating that all EJB deployment descriptors would be in XML format,
the use of XML for configuration information exploded. Many who were concerned about
introducing the overhead of an XML parser or worried about the longevity of XML suddenly found
themselves having to use XML to deploy their business objects in EJB servers. This made a
migration of all application configuration data to XML logical and even decreased the complexity
of many applications. In this chapter we look at how you can use XML for configuration data
within your applications.

First we spend some time looking at a current use of XML for configuration data. The EJB
deployment descriptor is examined with an eye towards important design decisions made in the
specification of that file. This will prepare us to write our own configuration files in XML. We then
create a configuration file for our XML-RPC server and clients that we built in Chapter 10. With
this file built, we look at coding some utility classes to parse and load this information into our
XML-RPC classes, adding flexibility to our server and clients. Using the JDOM interfaces for
parsing, we can easily load the configuration information. Finally, we end with a look at XML in
relation to other important data storage mechanisms, databases and directory servers. This will cast
our use of XML for configuration data in the light of the "real world" and help you make wise
decisions about when to use XML as a data source and when not to.

11.1 EJB Deployment Descriptors

Before we begin creating our own configuration files and programs to read and use those files, a
look at existing formats and patterns in this area will help. Although this is not a book about EJB,
spending some time investigating the EJB deployment descriptors can aid us in understanding how
XML-based configuration files work, as well as suggest ideas on how to structure our file format
and data. We discuss some of the most important design decisions here and relate them to the EJB
deployment descriptor.

Before looking at the design of the deployment descriptor itself, though, we should look at why its
overall EJB design lent itself to using XML at all. The EJB 1.0 specification required serialized
deployment descriptors; unfortunately, that was the only guideline given. This resulted in each EJB
vendor providing a proprietary format for their server's deployment descriptors, and then forcing the
application developer to run a tool (or even write their own tool) to serialize the descriptor. EJB,
and Java in general, had lost its claim to WORA, Write Once Run Anywhere. XML provided a
standard means of handling the deployment descriptor, as well as removing the need for proprietary
tools to serialize the descriptors. In addition, Sun provides an EJB DTD that ensures each vendor's
deployment descriptors conform to the same specifications, allowing EJBs to be highly platform-
and vendor-independent.

Java and XML

 page 251

11.1.1 The Basics

As with any XML document, the EJB deployment descriptor has a DTD to which it conforms. A
schema, as we have already discussed, will probably replace this in future revisions of the
specification. In either case, the important concept here is that XML documents used for
configuration, even more so than for other purposes, must have a set of constraints put upon them.
Without constraints, the information could be incorrect or useless to a server, often causing an
entire application to fail as a result. Once the constraints have been identified, the deployment
descriptor begins with its root element, ejb-jar . Although this may seem a trivial item to note, the
naming of a root element is an important part of authoring any XML document. This element faces
the rather enormous task of having to represent all the information within the XML document it
belongs to. Particularly when others may have to use or maintain your documents, proper naming
here can avoid confusion, and poor naming can cause it. The relevant portions of an XML
deployment descriptor that adheres to the EJB specification are shown here:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <description>
 This ejb-jar file contains assembled enterprise beans that are
 Part of the employee self-service application.
 </description>

 ...
</ejb-jar>

Using namespaces (which were in their infancy when the EJB 1.1 specification was developed) can
add clarity to the naming of your document's root and other elements. This aids in identification of
the purpose of the document; consider the ambiguity removed by using a namespace such as
DeploymentDescriptor or even simple EJB-DD in the EJB deployment descriptor. Any questions
about the use of the document are removed when viewing these namespace prefixes on elements.

11.1.2 Organization

Just as naming is critical for document clarity, organization is crucial to the usability of your
configuration files in XML. Not only do the organization and nesting of elements and attributes in
your document help in understanding the purpose of a document, they can ensure that applications
can share configurations and reuse similar information. It is equally important to know when not to
try to store information across configurations. This is particularly relevant as we look at the EJB
deployment descriptor; each EJB is intended to act independently of all others, knowing only the
information supplied to it by its container. It is a problem if beans can operate with each other
outside the strict confines designed by the bean developer, as performance and business logic can be
subverted. For this reason, each EJB entry is completely independent of all others.

In the following example, a session bean is described in XML:

<enterprise-beans>
 <session>
 <description>
 The EmployeeServiceAdmin session bean implements the session
 used by the application's administrator.
 </description>

Java and XML

 page 252

 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <home>com.wombat.empl.EmployeeServiceAdminHome</home>
 <remote>com.wombat.empl.EmployeeServiceAdmin</remote>
 <ejb-class>com.wombat.empl.EmployeeServiceAdmin-Bean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Bean</transaction-type>

 <resource-ref>
 <description>
 This is a reference to a JDBC database.
 EmployeeService keeps a log of all the transactions
 being performed through the EmployeeService bean
 for auditing purposes.
 </description>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 </session>
</enterprise-beans>

In addition to the isolation of this session bean from any other beans, elements are used to logically
group elements and data. The resource-ref element encloses information relevant to a particular
environment entry. This makes it easy for the application parsing and using the data as well as
developers and system administrators maintaining the application to locate and update information
about the bean or EJB server.

A larger grouping not as immediately evident is the enterprise-beans element. This would allow
information specific to the container that does not apply to beans to be included without being
mixed in with information specific to EJBs. This is an important distinction, and we will use it to
separate configuration information from our XML-RPC server and our XML-RPC clients later in
this chapter. Finally, any number of beans can be added to this "parent" element; although we only
looked at one session bean here, multiple elements can be added of type session and entity,
representing multiple beans in the jar file that would be created.

Although we have only briefly looked at this XML file, you should be starting to think about what
sort of naming and organization should be used in your own applications as well as our XML-RPC
example. Hopefully, you have some ideas of your own about structuring configuration files; almost
every application has different needs and will require a unique XML document structure and set of
constraints. Now that you have seen an example use of configuring an application server in XML
and have started thinking about creating a configuration file of your own, let's do just that for our
XML-RPC classes.

11.2 Creating an XML Configuration File

To try to put some of this knowledge into use, we look at using an XML-based configuration file
for the XML-RPC classes we wrote in the last chapter. Certainly this is an excellent example of
using XML for configuration information; we already have an XML parser available (used in the
XML-RPC server), and it is possible that we could use this same configuration file for both clients
and servers. Additionally, this configuration could be edited by XML IDEs instead of our having to
create a proprietary interface for editing the file in a proprietary format. This can reduce the code
that needs to be written for complex applications.

Java and XML

 page 253

Before we start writing our configuration file, we need to define the information that will be in this
file. The pieces of information we want to include are:

• Port for the XML-RPC server to start on
• Parser class for the server to use as a SAX driver
• Handlers for the XML-RPC server
• Class identifier
• Class name
• Hostname for the XML-RPC clients to connect to
• Port for XML-RPC clients to connect to
• Parser class for the server to use as a SAX driver

This provides all the information needed for both our clients and server to start without needing any
user input other than the location of the XML configuration file itself. With these requirements in
mind, let's begin writing the XML configuration file.

11.2.1 Getting Started

Just as in the case of the EJB deployment descriptor, our file must include the standard XML prolog
information. This is simple enough, and the only other details we need to decide on are a namespace
and root element for our document. Although in a production situation we might use a namespace
indicative of the purpose of the document, such as XMLRPC or XmlRpcConfig, here we continue to
use JavaXML to identify the configuration file with the examples in the rest of the book. We use the
same namespace declaration as in other chapters and examples as well. The root element then
becomes an identifier of what the document actually is used for; simply using xmlrpc-config
seems a good choice for this. It is often the case, particularly in more complex XML documents,
that the simplest solutions are the best ones. Naming XML elements and attributes is no exception
to this rule.

With these initial determinations and decisions made, let's start creating our XML configuration file
for our XML-RPC classes. The initial XML declaration and root element with namespace
declaration are given here:

<?xml version="1.0"?>

<JavaXML:xmlrpc-config
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
>

</JavaXML:xmlrpc-config>

Other options that can be added at this point include a reference to a DTD or schema to constrain
the document as well as processing instructions to applications that might parse and use this
configuration. For our example, we omit these, as our program will simply parse the document as is
and return the needed configuration information to the XML-RPC server and clients.

11.2.2 Organization

With the skeleton of the configuration file set, organization of the file needs to be determined. This
includes both grouping of elements and a determination of whether any configuration information
will be shared across servers and clients. The best methodology for making organizational decisions
is to group the file much as you would group the configuration information if writing it by hand.
Our original information requirements are small, and this process is easy to perform.

Java and XML

 page 254

The following pieces of information are simple, and we can consider them part of the information
needed by our server:

• Port for XML-RPC server to start on
• Parser class for server to use as a SAX driver

The following pieces of information will be repeated numerous times, and can be grouped into a set
of handlers, with each handler within that set having a class identifier and a class name:

• Handlers for XML-RPC server
• Class identifier
• Class name

The XML-RPC client uses the last three pieces of information; however, the port used by the client
is the same for the XML-RPC server, and the SAX driver is most likely the same as well. It makes
sense to share this information so that changes only need to be made in one XML element, rather in
separate elements for the client and server. With the port and SAX driver class being shared, it
makes sense to also group the hostname into this set of shared information. Even though only the
client uses it, it fits in well with the port number to use for XML-RPC requests.

• Hostname for XML-RPC clients to connect to
• Port for XML-RPC clients to connect to
• Parser class for client to use as a SAX Driver

By simply "talking through" the information to be included, we have determined that we have two
basic groups of configuration information: "shared information" used by both the server and client,
and " handler information," which has "handler" entries for each XML-RPC handler. This will
result in two basic groupings in our configuration file, with the latter of these two having elements
nested within it describing each grouping. We look at each in turn next.

11.2.2.1 Shared information

There is very little to note in adding a hostname, port number, and SAX driver class for our server
and clients to use at startup and connection time. Even the element names for these three pieces of
information are simple to arrive at: hostname, port, and parserClass. Again, simple solutions are
generally the most effective. As an example of using attributes as well as elements, we add in an
attribute for the port element named type. The idea is that the value of this element is either
"protected" or "unprotected." When the port is protected, some additional actions would need to
take place to connect, such as encoding the request through SSL. In our example XML-RPC
classes, the server listens on an unprotected port; however, using this attribute adds flexibility if we
want to use secure ports at a later point in the application's evolution:

<JavaXML:xmlrpc-config
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
>

 <!-- Configuration Information for Server and Clients -->
 <JavaXML:hostname>newInstance</JavaXML:hostname>
 <JavaXML:port type="unprotected">8585</JavaXML:port>
 <JavaXML:parserClass>
 org.apache.xerces.parsers.SAXParser
 </JavaXML:parserClass>

</JavaXML:xmlrpc-config>

Java and XML

 page 255

11.2.2.2 XML-RPC handlers

The first thing we want to do in defining our handlers is to ensure they are only used by our XML-
RPC server. Although we have no other information besides the handler configuration applicable to
only the server, it is possible and even probable that at some point, more server-specific information
will be added to the configuration file. Rather than having our parser look for a specific set of
elements (and adding to those elements when we add new configuration information), we can have
it look for a server-specific element name, such as xmlrpc-server. Server applications can read
this information, while clients can ignore it without having to know the specifics of the information
contained within the grouping. It also makes the information's purpose easier to discern for human
eyes. We use this element (xmlrpc-server) to enclose our handler information.

We also should group all of our handlers together, and use an element simply named handlers to
do this. Again, this grouping makes it simple to determine the purpose and use of the configuration
information within the file. Add the configuration information needed for specifying the
HelloHandler and Scheduler classes as XML-RPC handlers to the XML-RPC server
configuration section:

<JavaXML:xmlrpc-config
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
>

 <!-- Configuration Information for Server and Clients -->
 <JavaXML:hostname>newInstance.com</JavaXML:hostname>
 <JavaXML:port type="unprotected">8585</JavaXML:port>
 <JavaXML:parserClass>
 org.apache.xerces.parsers.SAXParser
 </JavaXML:parserClass>

 <!-- Server Specific Configuration Information -->
 <JavaXML:xmlrpc-server>

 <!-- List of XML-RPC handlers to register -->
 <JavaXML:handlers>
 <JavaXML:handler>
 <JavaXML:identifier>hello</JavaXML:identifier>
 <JavaXML:class>HelloHandler</JavaXML:class>
 </JavaXML:handler>

 <JavaXML:handler>
 <JavaXML:identifier>scheduler</JavaXML:identifier>
 <JavaXML:class>Scheduler</JavaXML:class>
 </JavaXML:handler>
 </JavaXML:handlers>

 </JavaXML:xmlrpc-server>

</JavaXML:xmlrpc-config>

Even in this small document, alternatives for data representation are available. It would also be
possible to use the following structure for representing our handlers:

<handler id="hello" class="HelloHandler" />

In almost any document, you will have to make choices about not only what data is stored, but also
how that data is stored. In our example, we choose to use a handler element; this is based on the
possibility that we may later want to add additional information about that handler, such as a
description or a network location to load the class from. By using an element with nested child

Java and XML

 page 256

elements, we can easily add this information as new child elements; adding attributes for each new
piece of data could make our XML configuration class hard to read with long lines of text for a
single element.

11.2.3 Document Constraints

We mentioned that in the EJB deployment descriptor file, a DTD was referenced to ensure that no
illegal elements or attributes were used, and that any server could read the XML file. We need to do
the same thing with our XML configuration file. Creating a DTD (simple with such a small file) can
ensure that our applications have a set of constraints they can expect the configuration file to adhere
to. Example 11.1 is a complete DTD for the configuration file we have created.

Example 11.1. DTD for XML-RPC Configuration File
<!ELEMENT JavaXML:xmlrpc-config (JavaXML:hostname,
 JavaXML:port,
 JavaXML:parserClass,
 JavaXML:xmlrpc-server)>
<!ATTLIST JavaXML:xmlrpc-config
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:hostname (#PCDATA)>
<!ELEMENT JavaXML:port (#PCDATA)>
<!ATTLIST JavaXML:port
 type (protected|unprotected) "unprotected"
>
<!ELEMENT JavaXML:parserClass (#PCDATA)>
<!ELEMENT JavaXML:xmlrpc-server (JavaXML:handlers)>
<!ELEMENT JavaXML:handlers (JavaXML:handler)+>
<!ELEMENT JavaXML:handler (JavaXML:identifier,
 JavaXML:class)>
<!ELEMENT JavaXML:identifier (#PCDATA)>
<!ELEMENT JavaXML:class (#PCDATA)>

With this file in place, we only need to reference it within our XML configuration file:

<?xml version="1.0"?>

<!DOCTYPE JavaXML:xmlrpc-config SYSTEM "DTD/XmlRpc.dtd">

<JavaXML:xmlrpc-config
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
>
...
</JavaXML:xmlrpc-config>

In this example, the DTD is saved as XmlRpc.dtd in a DTD/ subdirectory.

11.2.4 Final Preparations

We have moved very swiftly through creating our configuration file and its constraints; once you
understand the mechanics of XML, the only difficulty in creating a configuration format is making
good design decisions. This means using simple and clear names, grouping elements in logical
ways, and determining when information should be shared for multiple applications. Once these
decisions are made, actually creating the XML file can take only a few minutes. With our example,
the information we need to include in the configuration file is minimal, making our job even easier.
The complete configuration file is shown in Example 11.2 so you can see how simple this file
actually is.

Java and XML

 page 257

Example 11.2. The Complete XML Configuration File for the XML-RPC Classes
<?xml version="1.0"?>

<!DOCTYPE JavaXML:xmlrpc-config SYSTEM "DTD/XmlRpc.dtd">

<JavaXML:xmlrpc-config
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
>

 <!-- Configuration Information for Server and Clients -->
 <JavaXML:hostname>newInstance.com</JavaXML:hostname>
 <JavaXML:port type="unprotected">8585</JavaXML:port>
 <JavaXML:parserClass>
 org.apache.xerces.parsers.SAXParser
 </JavaXML:parserClass>

 <!-- Server Specific Configuration Information -->
 <JavaXML:xmlrpc-server>

 <!-- List of XML-RPC handlers to register -->
 <JavaXML:handlers>
 <JavaXML:handler>
 <JavaXML:identifier>hello</JavaXML:identifier>
 <JavaXML:class>HelloHandler</JavaXML:class>
 </JavaXML:handler>

 <JavaXML:handler>
 <JavaXML:identifier>scheduler</JavaXML:identifier>
 <JavaXML:class>Scheduler</JavaXML:class>
 </JavaXML:handler>
 </JavaXML:handlers>

 </JavaXML:xmlrpc-server>

</JavaXML:xmlrpc-config>

Once you have created this file, save it as xmlrpc.xml and make sure it is accessible by your Java
application code. Next we look at adding a SAX class that reads this information and makes it
available to the XML-RPC server and clients for use.

11.3 Reading an XML Configuration File

To allow our XML-RPC classes to use our configuration file, we must create a helper class that
parses the information and then makes it available to the server and clients. Although we could
build this behavior into methods within the XML-RPC classes (similar to how the getHandlers()
method was used in our LightweightServer class), using a separate class allows this class to be
shared by both the clients and server, reducing duplication of code. We have already determined the
information that needs to be obtained and can begin by writing a skeleton class with accessor
methods for that data. The actual contents of the member variables we use will be populated by the
parsing behavior we write in a moment.

11.3.1 Getting the Configuration Information

We could add code directly to the com.oreilly.xml.LightweightXmlRpcServer class to parse a
configuration file; we could then add similar code to our XML-RPC clients that performed the same
task. However, this results in a lot of duplicate code. Instead, another com.oreilly.xml utility
class is introduced here: XmlRpcConfiguration. The beginnings of this class are shown in
Example 11.3; a constructor takes in either a filename or an InputStream to read XML

Java and XML

 page 258

configuration data from. Simple accessor methods are also provided to access the configuration data
once it has been loaded. By isolating the input and output of the class from specific XML
constructs, we can change the parsing mechanism (which we look at next) without changing our
XML-RPC server and client code; this is a much more object-oriented approach than embedding
XML parsing code within our server and client code.

Example 11.3. The XmlRpcConfiguration Class to Read XML Configuration Data
package com.oreilly.xml;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;
import java.io.IOException;
import java.util.Hashtable;

/**
 * <code>XmlRpcConfiguration</code> is a utility class
 * that will load configuration information for XML-RPC servers
 * and clients to use.
 *
 * @author
 * Brett McLaughlin
 * @version 1.0
 */
public class XmlRpcConfiguration {

 /** The stream to read the XML configuration from */
 private InputStream in;

 /** Port number server runs on */
 private int portNumber;

 /** Hostname server runs on */
 private String hostname;

 /** SAX Driver Class to load */
 private String driverClass;

 /** Handlers to register in XML-RPC server */
 private Hashtable handlers;

 /**
 * <p>
 * This will set a filename to read configuration
 * information from.
 * </p>
 *
 * @param filename <code>String</code> name of
 * XML configuration file.
 */
 public XmlRpcConfiguration(String filename)
 throws IOException {

 this(new FileInputStream(filename));
 }

 /**
 * <p>
 * This will set a filename to read configuration
 * information from.
 * </p>
 *

Java and XML

 page 259

 * @param in <code>InputStream</code> to read
 * configuration information from.
 */
 public XmlRpcConfiguration(InputStream in)
 throws IOException {

 this.in = in;
 portNumber = 0;
 hostname = "";
 handlers = new Hashtable();

 // Parse the XML configuration information
 }

 /**
 * <p>
 * This returns the port number the server listens on.
 * </p>
 *
 * @return <code>int</code> number of server port.
 */
 public int getPortNumber() {
 return portNumber;
 }

 /**
 * <p>
 * This returns the hostname the server listens on.
 * </p>
 *
 * @return <code>String</code> hostname of server.
 */
 public String getHostname() {
 return hostname;
 }

 /**
 * <p>
 * This returns the SAX driver class to load.
 * </p>
 *
 * @return <code>String</code> - name of SAX driver class.
 */
 public String getDriverClass() {
 return driverClass;
 }

 /**
 * <p>
 * This returns the handlers the server should register.
 * </p>
 *
 * @return <code>Hashtable</code> of handlers.
 */
 public Hashtable getHandlers() {
 return handlers;
 }

}

With this skeleton in place, we can add JDOM parsing behavior to load the member variables with
configuration data. To ensure that this information is ready when needed, we call the parsing
method in the class constructor. The intent of providing these basic accessor methods is to hide the

Java and XML

 page 260

details of how the configuration information is obtained from the classes and applications that use
the information. Changes to JDOM version, or even to using an entirely different method of
accessing the XML data, affect only this class; changes do not have to be made to the XML-RPC
clients and server. This provides a highly maintainable method of getting configuration information.

11.3.2 Loading the Configuration Information

With our class skeleton created, we can begin outlining the details of the parsing behavior we need.
In this situation, we have a simple task because we know the structure of the XML document
coming in (thanks to our DTD and its constraints). Thus we can directly access the elements in the
document for which we need to obtain values. The best way to think about this is as a hierarchical
tree structure; we can then "walk" the tree and obtain values for the elements we need information
from. Figure 11.1 shows our XML configuration file represented in this fashion.

Figure 11.1. Tree view of XML configuration file

With this model in mind, it is simple to use the getChildren() and getChild() methods that
JDOM provides to navigate to each of the XML elements we want to obtain data from; we can then
invoke getContent() on the resultant elements and use those values in our application. We need
to import the needed JDOM classes (and the Java support classes), create a new method to parse our
configuration, and then invoke that method from the XmlRpcConfiguration constructor. The code
to load the configuration information from the XML document is shown here:

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;
import java.io.IOException;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.List;

import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.Namespace;
import org.jdom.input.Builder;
import org.jdom.input.DOMBuilder;
...
 /**

Java and XML

 page 261

 * <p>
 * This will set a filename to read configuration
 * information from.
 * </p>
 *
 * @param in <code>InputStream</code> to read
 * configuration information from.
 */
 public XmlRpcConfiguration(InputStream in)
 throws IOException {

 this.in = in;
 portNumber = 0;
 hostname = "";
 handlers = new Hashtable();

 // Parse the XML configuration information
 parseConfiguration();
 }
...
 /**
 * <p>
 * Parse the XML configuration information and
 * make it available to clients.
 * </p>
 *
 * @throws <code>IOException</code> when errors occur.
 */
 private void parseConfiguration() throws IOException {
 try {
 // Request DOM Implementation and Xerces Parser
 Builder builder =
 new DOMBuilder("org.jdom.adapters.XercesDOMAdapter");

 // Get the Configuration Document, with validation
 Document doc = builder.build(in);

 // Get the root element
 Element root = doc.getRootElement();

 // Get the JavaXML namespace
 Namespace ns = Namespace.getNamespace("JavaXML",
 "http://www.oreilly.com/catalog/javaxml/");

 // Load the hostname, port, and handler class
 hostname =
 root.getChild("hostname", ns).getContent();
 driverClass =
 root.getChild("parserClass", ns).getContent();
 portNumber =
 root.getChild("port", ns).getIntContent(0);

 // Get the handlers
 List handlerElements =
 root.getChild("xmlrpc-server", ns)
 .getChild("handlers", ns)
 .getChildren("handler", ns);

 Iterator i = handlerElements.iterator();
 while (i.hasNext()) {
 Element current = (Element)i.next();
 handlers.put(current.getChild("identifier", ns)
 .getContent(),
 current.getChild("class", ns)

Java and XML

 page 262

 .getContent());
 }
 } catch (JDOMException e) {
 // Log an error
 throw new IOException(e.getMessage());
 }
 }

Once the class has been instantiated, the information needed to configure both XML-RPC servers
and clients is parsed and loaded into member variables. The only feature not implemented here is
error logging; this should be added in a production application, but is omitted here for the sake of
space and clarity in the code. Once the root element has been obtained (doc.getRootElement()),
JDOM is used to locate the elements based on the tree structure we looked at in Figure 11.1; once
each element is located, its textual content is obtained and used to populate member data.

In this example, we used the DOMBuilder class to generate the J DOM Document object. This is a
completely arbitrary decision, as once the Document object is built, there are no ties to either SAX or
DOM. It would be just as easy (and actually much faster) to use SAX for creating the JDOM Document
through the SAXBuilder class; throughout the book, both models are used to demonstrate the
flexibility of JDOM. This also illustrates the possibility of completely new implementations being
developed to create the tree, based neither on SAX nor DOM.

Since there are multiple handler elements, we use the getChildren() method to obtain a List of
those elements, and then iterate through the list handling each element individually. With this
addition, your compiled class is ready for use in our XML-RPC classes from last chapter.

11.3.3 Using the Configuration Information

Not surprisingly, we have taken care of the hard part of using XML for configuration data. With our
XmlRpcConfiguration class, we have an easy means of getting at this configuration data. All our
server and client now need as arguments is the XML configuration file to pass to the
XmlRpcConfiguration helper class. In a production application, this could also be specified as a
constant within a constants file or class, or specified as an initial argument if the application was a
Java servlet.

11.3.3.1 Updating the server

First we can make the modifications to our LightweightXmlRpcServer class to use the XML
configuration information instead of the textual properties file from last chapter. We also remove
the command-line argument specifying a port, as that is now included within the configuration file.
This involves modifying our constructor to only take in a configuration file, using the
XmlRpcConfiguration class to access the port number and handlers to register, and removing the
getHandlers() method from our server class. These changes are shown in Example 11.4.

Example 11.4. The LightweightXmlRpcServer Class Using an XML Configuration File
/**
 * <code>LightweightXmlRpcServer</code> is a utility class
 * that will start an XML-RPC server listening for HTTP requests
 * and register a set of handlers, defined in a configuration file.
 *
 * @author
 * Brett McLaughlin
 * @version 1.0
 */
public class LightweightXmlRpcServer {

Java and XML

 page 263

 /** The XML-RPC server utility class */
 private WebServer server;

 /** Configuration file to use */
 private XmlRpcConfiguration config;

 // The port number and filename variables are removed

 /**
 * <p>
 * This will store the configuration file for the server to use.
 * </p>
 *
 * @param configFile <code>String</code> filename to read for
 * configuration information.
 * @throws <code>IOException</code> when the server cannot read
 * its configuration information.
 */
 public LightweightXmlRpcServer(String configFile)
 throws IOException {

 config = new XmlRpcConfiguration(configFile);
 }

 /**
 * <p>
 * This will start up the server.
 * </p>
 *
 * @throws <code>IOException</code> when problems occur.
 */
 public void start() throws IOException {
 try {
 // Load the SAX Driver class
 XmlRpc.setDriver(config.getDriverClass());

 System.out.println("Starting up XML-RPC Server...");
 server = new WebServer(config.getPortNumber());

 // Register handlers
 registerHandlers(config.getHandlers());

 } catch (ClassNotFoundException e) {
 throw new IOException("Error loading SAX parser: " +
 e.getMessage());
 }
 }

 // The getHandlers() method is removed from the source code

 /**
 * <p>
 * Provide a static entry point.
 * </p>
 */
 public static void main(String[] args) {

 if (args.length < 1) {
 System.out.println(
 "Usage: " +
 "java com.oreilly.xml.LightweightXmlRpcServer " +
 "[configFile]");
 System.exit(-1);

Java and XML

 page 264

 }

 // Creation of server moved into try/catch block
 // to let client know if errors occur in startup

 try {
 // Load configuration information
 LightweightXmlRpcServer server =
 new LightweightXmlRpcServer(args[0]);

 // Start the server
 server.start();
 } catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }

}

These changes enable our server to use the new XML file for loading its configuration information,
as well as to report errors when they occur in loading the configuration information. Our existing
registerHandlers() method works well with the returned Hashtable from a call to the
getHandlers() method from the XmlRpcConfiguration class, so no changes are necessary there.
While the output from starting up the XML-RPC server with these changes does not seem very
exciting (shown in Example 11.5), we have made a major improvement to our application.

Example 11.5. Output from the Modified LightweightXmlRpcServer Class
$ java com.oreilly.xml.LightweightXmlRpcServer conf/xmlrpc.xml
Starting up XML-RPC Server...
 Port: 8585
 Registered handler scheduler to class Scheduler
 Registered handler hello to class HelloHandler

11.3.3.2 Updating the client

Modifying our client to use the new configuration information is even easier than modifying our
server was! With the XmlRpcConfiguration class imported, our SchedulerClient can retrieve the
hostname and port number to connect to for making XML-RPC requests. Make the changes shown
in Example 11.6.

Example 11.6. The SchedulerClient Class Using an XML Configuration File
import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Calendar;
import java.util.Date;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;

import com.oreilly.xml.XmlRpcConfiguration;

import helma.xmlrpc.XmlRpc;

import helma.xmlrpc.XmlRpcClient;
import helma.xmlrpc.XmlRpcException;

public class SchedulerClient {

 // addEvents() and listEvents() method implementations

Java and XML

 page 265

 public static void main(String args[]) {
 if (args.length < 1) {
 System.out.println(
 "Usage: java SchedulerClient [configFile]");
 System.exit(-1);
 }

 try {
 // Load Configuration File
 XmlRpcConfiguration config =
 new XmlRpcConfiguration(args[0]);

 // Load the SAX Driver class
 XmlRpc.setDriver(config.getDriverClass());

 // Connect to server
 XmlRpcClient client =
 new XmlRpcClient("http://" +
 config.getHostname() + ":" +
 config.getPortNumber());

 // Add some events
 addEvents(client);

 // List events
 listEvents(client);

 } catch (MalformedURLException e) {
 System.out.println(
 "Incorrect URL for XML-RPC server format: " +
 e.getMessage());
 } catch (XmlRpcException e) {
 System.out.println("XML-RPC Exception: " +
 e.getMessage());
 } catch (IOException e) {
 System.out.println("IO Exception: " + e.getMessage());
 } catch (ClassNotFoundException e) {
 System.out.println("Couldn't locate SAX parser: " +
 e.getMessage());
 }

 }

 ...
}

These same changes can be easily made to the HelloClient example as well. Both clients will
(almost disappointingly) output exactly the same results as in the last chapter; however, as in the
case of our server, a major improvement has been made. Changing the host and port number that
accepts requests requires one XML (textual) change, and affects both the server and client classes as
soon as they are restarted. This is a significant aid in configurability and application maintenance.
Before moving on to the next chapter, we do want to look at some other alternatives for storing this
type of configuration information, and see how they compare with XML.

11.4 The Real World

As we continue through our topical discussions, the line between a realistic use of XML and our
examples is becoming thinner. Our XML-RPC server in this chapter is close to being ready for
production use; it has a flexible configuration file format, it registers handlers dynamically, and

Java and XML

 page 266

maintains a lightweight structure for handling XML-RPC requests. However, the use of XML for
pure data, as discussed in this chapter, is as new an idea as most of our other XML topics. As with
RMI versus RPC, it is possible to overuse the technology. In this section, we compare XML as a
data storage medium with other more traditional formats, discussing when one format is preferable
over the other, as well as comparing JDOM with other solutions for accessing our underlying XML
data.

11.4.1 XML Versus Databases

Depending on who you ask, databases (and, in particular, relational databases) are either here, never
to be replaced, or are any minute going to literally disappear off the face of the planet in favor of
object-oriented databases and XML data stores. As is usually the case, the reality of the situation is
somewhere in the middle of these two extremes. Ten years ago, anyone questioning the longevity of
a relational database management system (RDBMS) would have been laughed at. Five years ago,
this possibility might have been acknowledged with the advent of the object-oriented database
management system (OODBMS), but still received with skepticism and some chuckles. However,
the last two years have made this a serious consideration; with the OODBMS, XML has rocketed to
the forefront, and there are serious computer scientists and developers who claim that XML can
completely replace traditional backend database systems for storage.

The truth of the matter? The RDBMS is not going anywhere anytime soon, if ever. Even ignoring
serious issues such as relational data representation in XML, the DBMS technology is a core part of
too many applications in use today. Although XML may be a realistic possibility for some smaller
applications without legacy data or legacy application dependencies, most large-scale production
applications must interface with existing data. This data is almost always maintained in a relational
database (with Oracle being the most popular commercial product, and MySQL the most popular
free product). Since almost all of the major players in the commercial world, as well as those
influential in technology development, use these systems, it is not a wise bet to assume that XML is
going to replace, or even crowd, the database management system space. The pure size of the data
stored in many of these established systems (gigabytes and often terabytes) makes XML a poor
choice for a data representation. Even in the ideal project for XML, which would be a new project
without any ties to existing data or applications that depend on a DBMS, it is likely that at some
point the application will have to interface with older systems. Certainly, selling management on an
expensive migration of legacy data to an XML format is difficult when traditional development
practices work equally well. So don't count on seeing Oracle's data storage format go XML, or on
Sybase closing down their doors anytime soon; use XML for configuration and transport as much as
possible, but leaving legacy data in large quantities alone for now is the wise choice.

Still, there is something of a happy medium for those of you anxious to use XML as a pure storage
medium. Products are being released today that provide an XML layer over relational data, as well
as other types of data (directory services, for example, which we look at next). As these mapping
tools continue to mature, proponents of dealing with data in an XML format can choose to add a
thin mapping layer over their existing legacy databases, effectively creating an XML data
repository. In the same way, newer companies that do choose to use complete XML data store
solutions can interact with older systems through these same mapping tools. The most promising
product to date has been Castor, an open source project under the ExoLab[1] umbrella. For more
information on Castor and ML data binding tools, visit http://castor.exolab.org.

[1] Although we have not mentioned ExOffice and the ExoLab group before, they are strong proponents of open source technologies, particularly as those
technologies relate to XML and Java. For more information, check out http://www.exolab.orgonline.

Java and XML

 page 267

11.4.2 XML Versus Directory Services and LDAP

Another fairly recent upstart in the technology and data space is the Lightweight Directory Access
Protocol (LDAP) and directory services. From the first steps in research at Berkeley and Michigan
to Netscape's now widespread Directory Server (http://www.netscape.com), LDAP has become a
hot topic in its own right. With the rise of XML, there has been a fair bit of confusion as to when
directory services are appropriate to use instead of XML. While directory services are well
recognized as useful for company directories and integration of company-wide mail, addressing,
and calendaring services, using the LDAP protocol has become popular for configuration
information. Storing information about application configuration as well as about how to respond to
key application events (such as authentication) is commonly handled with a directory server. This
provides faster search and retrieval than a database, and the hierarchical format of most directory
servers lends itself well to configuration information. With this chapter on XML for storing the
same type of data, the question of when to use LDAP and when to use XML is particularly
pertinent.

The surprising answer to this query is that the question itself is not valid! There is really not a
comparison between LDAP and XML, as the two serve orthogonal purposes. Where LDAP and
directory services are about making technology or components available by some specific name,
XML is about the storage and transmission of the data involved with those components. In fact, a
more appropriate question is "When will LDAP and XML integrate?" The answer lies in the same
technologies for XML data binding that we mentioned in regards to databases; the Castor project
actually has a complete XML-to-LDAP binding. Additionally, directory services are moving
towards a uniform data storage medium; XML certainly could be this medium. As the hierarchical
structures of LDAP and XML are close matches, don't be surprised to see a marriage between
LDAP services and XML storage.

11.4.3 JDOM, SAX, or DOM

In looking at alternatives to XML, it is also important to address alternatives to how we access
XML. Although you have seen how easily JDOM allowed us to access our XML configuration
information, we take a brief look here at those alternatives. As you implement XML applications in
the real world, understanding why a choice is made is often as important as making the choice
itself. For that reason, let's look at our alternatives for accessing XML data from Java.

In accessing our XML configuration data, we used JDOM in our method to get the desired values:

private void parseConfiguration() {
 try {
 // Request DOM Implementation and Xerces Parser
 Builder builder =
 new DOMBuilder("org.jdom.adapters.XercesDOMAdapter");

 // Get the Configuration Document, with validation
 Document doc = builder.build(in);

 // Get the root element
 Element root = doc.getRootElement();

 // Get the JavaXML namespace
 Namespace ns = Namespace.getNamespace("JavaXML",
 "http://www.oreilly.com/catalog/javaxml/");

 // Load the hostname, port, and handler class
 hostname =

Java and XML

 page 268

 root.getChild("hostname", ns).getContent();
 driverClass =
 root.getChild("parserClass", ns).getContent();
 portNumber =
 root.getChild("port", ns).getIntContent(0);

 // Get the handlers
 List handlerElements =
 root.getChild("xmlrpc-server", ns)
 .getChild("handlers", ns)
 .getChildren("handler", ns);

 Iterator i = handlerElements.iterator();
 while (i.hasNext()) {
 Element current = (Element)i.next();
 handlers.put(current.getChild("identifier", ns)
 .getContent(),
 current.getChild("class", ns)
 .getContent());
 }
 } catch (JDOMException e) {
 // Log an error
 throw new IOException(e.getMessage());
 }
}

To give you an idea of how JDOM is different from SAX and DOM, the next two sections show
how this information could be accessed using SAX or DOM.

11.4.3.1 SAX

The biggest challenge in writing SAX code is that it does not follow an object-oriented style as
much as it does a hierarchical one. Because SAX events occur sequentially, it is not possible to deal
with children of elements directly. Instead, storage has to be allocated to save the name of the
element being processed, as the data for that element occurs in a subsequent callback. SAX parsing
generally involves reading a document and storing the data passed to the characters() callback
with the name of the element last processed (through the startElement() callback). Then at the
end of processing the element (endElement()) or the document (endDocument()), this
information is loaded from storage and used. While SAX and this sequential approach are
sometimes faster than DOM (or JDOM with a DOM implementation), the resulting code is
generally not as clear and easy to debug. The parseConfiguration() method, rewritten to use
SAX, is shown here:

private void parseConfiguration() {
 try {
 XMLReader parser =
 XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");

 parser.setContentHandler(new ConfigurationHandler());

 parser.parse(new InputSource(in));

 } catch (Exception e) {
 // Log an error
 }
}

Java and XML

 page 269

A SAX XMLReader implementation is loaded and then a ContentHandler implementation is
registered. As is typical with SAX, the bulk of application code is within the ContentHandler
instance, shown here:

/**
 * <p>
 * This inner class will handle callbacks indicating
 * when configuration information is read.
 * </p>
 */
class ConfigurationHandler extends DefaultHandler {

 /** Storage for element contents */
 private Hashtable storage;

 /** The name of the element last reported */
 private String currentElement;

 /** Element name constants */
 private static final String HOSTNAME_ELEMENT = "hostname";
 private static final String PORTNUMBER_ELEMENT = "port";
 private static final String DRIVER_CLASS_ELEMENT = "parserClass";
 private static final String HANDLER_ELEMENT = "handler";
 private static final String HANDLER_ID_ELEMENT = "identifier";
 private static final String HANDLER_CLASS_ELEMENT = "class";

 /**
 * <p>
 * This will initialize the storage.
 * </p>
 */
 public ConfigurationHandler() {
 storage = new Hashtable();
 }

 /**
 * <p>
 * Capture the name of the element being reported.
 * </p>
 */
 public void startElement(String namespaceURI, String localName,
 String rawName, Attributes atts)
 throws SAXException {

 currentElement = localName;
 }

 /**
 * <p>
 * Add whatever character data is being reported
 * to the data for the current element already
 * in storage.
 * </p>
 */
 public void characters(char[] ch, int start, int end)
 throws SAXException {

 String data = new String(ch, start, end).trim();

 if (storage.containsKey(currentElement)) {
 data =
 (String)storage.get(currentElement) +
 data.trim();

Java and XML

 page 270

 }

 storage.put(currentElement, data);
 }

 /**
 * <p>
 * Since nested information is stored within a handler element,
 * and that element can occur multiple times, handle
 * storage of a handler's data every time the end
 * of that element is reached.
 * </p>
 */
 public void endElement(String namespaceURI, String localName,
 String rawName) throws SAXException {

 // Add handler if completed
 if (localName.equals(HANDLER_ELEMENT)) {
 String handlerName =
 (String)storage.get(HANDLER_ID_ELEMENT);
 String handlerClass =
 (String)storage.get(HANDLER_CLASS_ELEMENT);

 // Add this to the outer class's storage
 handlers.put(handlerName, handlerClass);

 storage.remove(HANDLER_ID_ELEMENT);
 storage.remove(HANDLER_CLASS_ELEMENT);
 }
 }

 /**
 * <p>
 * Save collected information at the end of a
 * document, since we can be guaranteed all elements
 * have been processed.
 * </p>
 */
 public void endDocument() throws SAXException {
 hostname = (String)storage.get(HOSTNAME_ELEMENT);
 driverClass = (String)storage.get(DRIVER_CLASS_ELEMENT);

 try {
 portNumber =
 Integer.parseInt(
 (String)storage.get(PORTNUMBER_ELEMENT));
 } catch (NumberFormatException e) {
 // Log error
 }
 }
}

Javadoc is provided to describe what is occurring at each step. When the startElement() method
is invoked, the name of the reported element is stored. This is then the key for the Hashtable of
element/data values, which is populated through each call to characters(). After processing each
handler element, the class identifier and class name must be saved, as subsequent reports of
another handler element would overwrite the current data. Finally, in endDocument(), the
hostname, port, and parser class are saved as well.

While this code is certainly functional, and even not too complex (with the help of good
documentation), it is a lot more code that is a lot less readable than our method using JDOM.

Java and XML

 page 271

Additionally, as the number of elements in an XML document increases to fifty, one hundred, or
more, the SAX code becomes increasingly complex, as more constants are defined and more logic
is added to the callback methods. The JDOM fragment, however, does not increase nearly as
quickly in complexity, because JDOM provides access to the complete XML document through its
API.

11.4.3.2 DOM

Using DOM to access XML data is, in a sense, the opposite extreme of SAX. DOM does provide a
complete view of an XML document, but in fact dictates that the document is completely read into
memory before it is ever accessed programmatically. Although this is not a significant problem with
smaller files, it can be cumbersome with large XML documents.

Additionally, DOM does not provide a standard interface for acquiring the DOM Document object.
This results in explicit imports of vendor-specific classes or advanced reflection to avoid those
imports. It also provides a very formal representation of a tree structure; the textual content of an
element is only available as a child Node of that element, and must be accessed in that manner,
rather than directly from the element itself. The parseConfiguration() method using DOM is
shown here:

private void parseConfiguration() {
 org.apache.xerces.parsers.DOMParser parser =
 new org.apache.xerces.parsers.DOMParser();
 handlers = new Hashtable();
 parser.setFeature("http://xml.org/sax/features/namespaces", true);

 try {
 parser.parse(uri);
 doc = parser.getDocument();
 Element root = doc.getDocumentElement();

 // Get hostname
 NodeList nodes =
 doc.getElementsByTagNameNS(NAMESPACE_URI, "hostname");

 if (nodes.getLength() > 0) {
 hostname = nodes.item(0).getFirstChild()
 .getNodeValue();
 } else {
 hostname = "";
 }

 // Get port number
 nodes =
 root.getElementsByTagNameNS(NAMESPACE_URI, "port");
 if (nodes.getLength() > 0) {
 portNumber =
 Integer.parseInt(
 nodes.item(0).getFirstChild()
 .getNodeValue());
 } else {
 portNumber = 0;
 }

 // Get handlers
 nodes =
 root.getElementsByTagNameNS(NAMESPACE_URI, "handler");
 for (int i=0; i<nodes.getLength(); i++) {
 Element handlerNode = (Element)nodes.item(i);

Java and XML

 page 272

 NodeList handlerNodes =
 handlerNode.getElementsByTagNameNS(
 NAMESPACE_URI, "identifier");

 String handlerID =
 handlerNodes.item(0).getFirstChild()
 .getNodeValue();

 handlerNodes =
 handlerNode.getElementsByTagNameNS(
 NAMESPACE_URI, "class");
 String handlerClass =
 handlerNodes.item(0).getFirstChild()
 .getNodeValue();

 handlers.put(handlerID, handlerClass);
 }

 } catch (Exception e) {

 // Set to default values
 portNumber = 0;
 hostname = "";
 }
}

While certainly a shorter code fragment than our SAX example, DOM is still very verbose. In
addition to the direct interaction with the Apache Xerces parser (or whatever vendor you are using
for DOM tree creation), there are several other non-intuitive structures to work with. Notice how
the textual value of a node is obtained:

hostname = nodes.item(0).getFirstChild()
 .getNodeValue();

Because the hostname element is considered to have child nodes, which include textual values for
the element, the first child's value has to be obtained, rather than the value of the Node representing
the hostname element itself. This is a prime cause of bugs when using DOM: a DOM Element has
no textual value; instead, it may have children that are Text Nodes, and those actually have the
value desired.

Finally, the structure returned from calls like getElementsByTagName() and getChildNodes()
is a DOM NodeList instead of a Java Vector or List. This object has its own accessor methods
(getLength() and item()), which differ from what Java collection classes have available. This
design makes using DOM less Java-centric than dealing with JDOM, which uses standard Java
objects for return types.

Certainly both SAX and DOM can accomplish the tasks that JDOM can; the question is if there is
anything they offer that makes using them worth the penalties paid in readability of code.
Additionally, with the JDOM SAXBuilder class, JDOM can perform at a level comparable to SAX,
while still allowing a tree structure to be kept in memory (through the JDOM Document object), and
while still remaining more lightweight than DOM. You can check for later versions and
implementations of JDOM online at http://www.jdom.org. Finally, JDOM provides an abstraction
layer over parsers and implementations that SAX emulates through XMLReaderFactory and that
DOM ignores altogether. Sun's JAXP begins to help this situation, but is still slow to show support
for newer versions of SAX and DOM. Ultimately, you will need to decide which API supports your
projects best, as well as provides the simplest entry point for the new developers you will have to
add to your teams.

Java and XML

 page 273

11.5 What's Next?

At this point, we have read, parsed, transformed, and used XML in a variety of formats. We have
used XML for content and presentation, for procedure calls across a network, and for telling an
application how to behave on startup and execution. Next, we complement this store of reading and
using XML with writing XML. In Chapter 12, we look at the other half of XML handling,
mutability. This will round out your XML toolbox to include the ability to have your applications
generate XML documents at runtime, often changing the inputs of other application components.

Chapter 12. Creating XML with Java
We now take a look at the one portion of manipulating XML that we have yet to address: creating
and modifying XML. So far, all of our applications have used existing XML documents as constant
data, never making changes to the original document. This is often the case in programming XML-
based applications today; however, more and more leading edge technologies create XML
documents in memory (such as XSP, which we looked at in Chapter 9). Other common applications
that might need to modify XML data include XML editors and development environments as well
as configuration managers, which we explore in this chapter.

In the last chapter, we created an XML configuration file for storing information related to
configuring our XML-RPC classes. The assumption we made at that point was that changes to these
configuration parameters would require a user (most likely a systems administrator) to edit the
configuration file by hand and make modifications. Then (hopefully) the user would validate the
modified XML document and restart the XML-RPC server and clients. However, this can be a very
error-prone approach. First, it assumes that no mistakes are made when entering the new
information. Second, it assumes that the user making the changes has the self-discipline to validate
the modified XML document, ensuring correct and valid data has been entered. Even if both of
these events occur every time modifications are made, which is unlikely in a real-world scenario,
the configuration becomes more complicated if the client and server are on different machines. If
the XML-RPC server is distributed as well, the configuration file then exists in another location; it
is possible and even probable that four, five, or even more separate copies of the file exist, all on
different servers. Any change to one of these files must result in the change being duplicated to all
the other files. A Java application or servlet to modify the configuration file and then automatically
update all the various locations is a good solution for this problem, and in this situation, the Java
code must be able to modify XML.

We will explore modifying an XML document, and then saving the changed document, in this
chapter. This final format could be another XML text file on a hard drive, a stream that is passed to
another application component, or XML that is transformed and output as HTML. The Java APIs
for programmatically working with XML make all of this possible.

12.1 Loading the Data

As in the previous chapters, the best way to learn to use these technologies and APIs is to actually
code something useful with them. To demonstrate how to go about doing this, we take a look at
further enhancing the functionality of our suite of XML-RPC classes and tools. In the last chapter,
we migrated all of our configuration information to an XML configuration file. We have already
created a class to read in this information and to use the loaded information for starting up our
XML-RPC clients and server using the JDOM interfaces (as well as having looked at SAX and
DOM alternatives). Now we will write a simple tool to update and modify this configuration
information and then save the changes to the original configuration file.

Java and XML

 page 274

In this section, we look at two components of this process: our utility class,
com.oreilly.xml.XmlRpcConfiguration, that currently loads the configuration data, and a Java
servlet to provide a user interface for editing the data. First we add mutator methods to our utility
class that complement our accessor methods from Chapter 11. These will allow the servlet we build,
as well as other applications, to modify the data within the utility class. Once we have created this
entry point for applications to modify the configuration data, we will create a servlet to display the
information, as well as to let users modify the data through an HTML form.

12.1.1 An Entry Point for Modification

Because our utility class, XmlRpcConfiguration, encapsulates the process of reading and writing
to the underlying XML document on the filesystem, we can add mutator methods to the class now,
and then later add behavior to write changes out to the actual file. This provides an abstraction layer
that allows us to build applications in parallel: once the mutator methods are in place, one developer
or group can work on the servlet interface, using the supplied accessor and mutator methods, while
another developer or group can work on the method within the utility class that saves the updated
configuration. Example 12.1 shows the XmlRpcConfiguration class with these mutator methods
implemented, as well as a saveConfiguration method skeleton that will eventually use Java APIs
to update the underlying configuration data, given either a filename or an OutputStream to write
the updated configuration to.

Example 12.1. Utility Class with Mutator Methods
package com.oreilly.xml;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.List;

import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.Namespace;
import org.jdom.input.Builder;
import org.jdom.input.DOMBuilder;

/**
 * <code>XmlRpcConfiguration</code> is a utility class
 * that will load configuration information for XML-RPC servers
 * and clients to use.
 *
 * @author
 * Brett McLaughlin
 * @version 1.0
 */
public class XmlRpcConfiguration {

 /** The stream to read the XML configuration from */
 private InputStream in;

 /** Port number server runs on */
 private int portNumber;

 /** Hostname server runs on */

Java and XML

 page 275

 private String hostname;

 /** SAX Driver Class to load */
 private String driverClass;

 /** Handlers to register in XML-RPC server */
 private Hashtable handlers;

 /** JDOM Document tied to underlying XML */
 private Document doc;

 /**
 * <p>
 * This will set a filename to read configuration
 * information from.
 * </p>
 *
 * @param filename <code>String</code> name of
 * XML configuration file.
 */
 public XmlRpcConfiguration(String filename)
 throws IOException {

 this(new FileInputStream(filename));
 }

 /**
 * <p>
 * This will set a filename to read configuration
 * information from.
 * </p>
 *
 * @param in <code>InputStream</code> to read
 * configuration information from.
 */
 public XmlRpcConfiguration(InputStream in)
 throws IOException {

 this.in = in;
 portNumber = 0;
 hostname = "";
 handlers = new Hashtable();

 // Parse the XML configuration information
 parseConfiguration();
 }

 /**
 * <p>
 * This returns the port number the server listens on.
 * </p>
 *
 * @return <code>int</code> - number of server port.
 */
 public int getPortNumber() {
 return portNumber;
 }

 /**
 * <p>
 * This will set the port number to listen to.
 * </p>
 *
 * @param portNumber <code>int</code> port to listen to.

Java and XML

 page 276

 */
 public void setPortNumber(int portNumber) {
 this.portNumber = portNumber;
 }

 /**
 * <p>
 * This returns the hostname the server listens on.
 * </p>
 *
 * @return <code>String</code> - hostname of server.
 */
 public String getHostname() {
 return hostname;
 }

 /**
 * <p>
 * This will set the hostname for the server to listen to.
 * </p>
 *
 * @param hostname <code>String</code> name of server's host.
 */
 public void setHostname(String hostname) {
 this.hostname = hostname;
 }

 /**
 * <p>
 * This returns the SAX driver class to load.
 * </p>
 *
 * @return <code>String</code> - name of SAX driver class.
 */
 public String getDriverClass() {
 return driverClass;
 }

 /**
 * <p>
 * This will set the driver class for parsing.
 * </p>
 *
 * @param driverClass <code>String</code> name of parser class.
 */
 public void setDriverClass(String driverClass) {
 this.driverClass = driverClass;
 }

 /**
 * <p>
 * This returns the handlers the server should register.
 * </p>
 *
 * @return <code>Hashtable</code> of handlers.
 */
 public Hashtable getHandlers() {
 return handlers;
 }

 /**
 * <p>
 * This will set the handlers to register.
 * </p>

Java and XML

 page 277

 *
 * @param handlers <code>Hashtable</code> of handler to register.
 */
 public void setHandlers(Hashtable handlers) {
 this.handlers = handlers;
 }

 /**
 * <p>
 * Parse the XML configuration information and
 * make it available to clients.
 * </p>
 *
 * @throws <code>IOException</code> when errors occur.
 */
 private void parseConfiguration() throws IOException {
 try {
 // Request DOM Implementation and Xerces Parser
 Builder builder =
 new DOMBuilder("org.jdom.adapters.XercesDOMAdapter");

 // Get the Configuration Document, with validation
 doc = builder.build(in);

 // Get the root element
 Element root = doc.getRootElement();

 // Get the JavaXML namespace
 Namespace ns = Namespace.getNamespace("JavaXML",
 "http://www.oreilly.com/catalog/javaxml/");

 // Load the hostname, port, and handler class
 hostname =
 root.getChild("hostname", ns).getContent();
 driverClass =
 root.getChild("parserClass", ns).getContent();
 portNumber =
 root.getChild("port", ns).getIntContent(0);

 // Get the handlers
 List handlerElements =
 root.getChild("xmlrpc-server", ns)
 .getChild("handlers", ns)
 .getChildren("handler", ns);

 Iterator i = handlerElements.iterator();
 while (i.hasNext()) {
 Element current = (Element)i.next();
 handlers.put(current.getChild("identifier", ns)
 .getContent(),
 current.getChild("class", ns)
 .getContent());
 }
 } catch (JDOMException e) {
 // Log an error
 throw new IOException(e.getMessage());
 }
 }

 /**
 * <p>
 * This will save the current state out to the XML-RPC configuration
 * file.

Java and XML

 page 278

 * </p>
 *
 * @throws <code>IOException</code> - when errors occur in saving.
 */
 public synchronized void saveConfiguration(String filename)
 throws IOException {

 saveConfiguration(new FileOutputStream(filename));
 }

 /**
 * <p>
 * This will save the current state out to the specified
 * <code>OutputStream</code>.
 * </p>
 *
 * @throws <code>IOException</code> - when errors occur in saving.
 */
 public synchronized void saveConfiguration(OutputStream out)
 throws IOException {

 // To be implemented
 }

}

In addition to the new methods, you should notice that we create a Document member variable, doc,
and use it in both the reading and the writing of the configuration document. It makes sense to store
the reference to the JDOM Document object, rather than reloading it in the saveConfiguration()
method. Our parseConfiguration() now loads the XML data into the doc member variable,
which can then be reused in the saveConfiguration() method.

12.1.2 Displaying the Configuration

With the XmlRpcConfiguration class definition complete, we now need an interface for the user to
view this configuration data and make changes. Using a Java servlet for this interface is a good
idea, as it provides a simple request and response model without extensive network programming.
This also makes remote administration possible through any Internet browser. We first need to code
in the portion of the servlet that will respond to a simple browser request (which comes through the
GET method) and display the current configuration information. All this requires is instantiating the
XmlRpcConfiguration class and then outputting an HTML form with the information from the
utility class filling the values within that form. Because this is basic Java and Java servlet code,
Example 12.2 is provided without detailed explanation. If you are unfamiliar with the Java Servlet
API, you should check out Java Servlet Programming, by Jason Hunter (O'Reilly & Associates).

Example 12.2. A Java Servlet to Display XML-RPC Configuration Information
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Enumeration;
import java.util.Hashtable;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.oreilly.xml.XmlRpcConfiguration;

/**

Java and XML

 page 279

 * <code>XmlRpcConfigurationServlet</code> is an
 * administration tool that allows configuration changes
 * to be saved to the XML configuration file.
 *
 * @version 1.0
 */
public class XmlRpcConfigurationServlet extends HttpServlet {

 /** Store the XML-RPC configuration file as a constant */
 private static final String CONFIG_FILENAME =
 "d:\\prod\\Java and XML\\WEB-INF\\conf\\xmlrpc.xml";

 /**
 * Point action back at this servlet (and the
 * <code>{@link #doPost()}</code> method).
 * In Servlet API 2.1 or 2.2, this can be done programmatically,
 * but this example allows this to work in Servlet 2.0 as well
 */
 private static final String FORM_ACTION =
 "/javaxml/servlet/XmlRpcConfigurationServlet";

 /** Configuration object to work with */
 XmlRpcConfiguration config;

 /**
 * <p>
 * GET requests are received when the client wants to see the current
 * configuration information. This provides a view-only look at
 * the data. The generated HTML form then submits back to this
 * servlet through POST, which causes the
 * <code>{@link #doPost}</code> method to be invoked.
 * </p>
 */
 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 // Load the configuration information with our utility class
 config = new XmlRpcConfiguration(CONFIG_FILENAME);

 // Output HTML user interface
 out.println("<html><head>");
 out.println("<title>XML-RPC Configurations</title>");
 out.println("</head><body>");
 out.println("<h2 align=\"center\">XML-RPC Configuration</h2>");
 out.println("<form action=\"" + FORM_ACTION + "\" " +
 "method=\"POST\">");
 out.println("Hostname: ");
 out.println("<input type=\"text\" " +
 "name=\"hostname\" " +
 "value=\"" + config.getHostname() +
 "\" />");
 //out.println("
");
 out.println(" ");
 out.println("Port Number: ");
 out.println("<input type=\"text\" " +
 "name=\"port\" " +
 "value=\"" + config.getPortNumber() +
 "\" />");
 out.println("
");
 out.println("SAX Driver Class: ");

Java and XML

 page 280

 out.println("<input type=\"text\" " +
 "name=\"driverClass\" size=\"50\"" +
 "value=\"" + config.getDriverClass() +
 "\" />");
 out.println("
");
 out.println("
");
 out.println("<h3 align=\"center\">XML-RPC handlers</h3>");

 // Display current handlers
 Hashtable handlers = config.getHandlers();
 Enumeration keys = handlers.keys();
 int index = 0;
 while (keys.hasMoreElements()) {
 String handlerID =
 (String)keys.nextElement();
 String handlerClass =
 (String)handlers.get(handlerID);
 out.println("Identifier: ");
 out.println("<input type=\"text\" " +
 "value=\"" + handlerID + "\" " +
 "name=\"handlerID\" /> ");
 out.println("Class: ");
 out.println("<input type=\"text\" " +
 "value=\"" + handlerClass + "\" " +
 "size=\"30\" " +
 "name=\"handlerClass\" /> ");
 out.println("
");
 index++;
 }

 // Display empty boxes for additional handlers
 for (int i=0; i<3; i++) {
 out.println("Identifier: ");
 out.println("<input type=\"text\" " +
 "name=\"handlerID\" /> ");
 out.println("Class: ");
 out.println("<input type=\"text\" " +
 "size=\"30\" " +
 "name=\"handlerClass\" /> ");
 out.println("
");
 index++;
 }

 out.println("
<center>");
 out.println("<input type=\"submit\" value=\"Save Changes\" />");
 out.println("</center>");
 out.println("</form></body></html>");

 out.close();
 }

 /**
 * <p>
 * This method receives requests for modification of the
 * XML-RPC configuration information, all from the
 * <code>{@link #doGet}</code> method. This will again
 * use the utility class to update the configuration
 * file, letting the <code>{@link XmlRpcConfiguration}</code>
 * object handle the actual writing to a file.
 * </p>
 */
 public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {

Java and XML

 page 281

 // Save the hostname
 String hostname =
 req.getParameterValues("hostname")[0];
 if ((hostname != null) && (!hostname.equals(""))) {
 config.setHostname(hostname);
 }

 // Save the port number
 int portNumber;
 try {
 portNumber =
 Integer.parseInt(
 req.getParameterValues("port")[0]);
 } catch (Exception e) {
 portNumber = 0;
 }
 if (portNumber > 0) {
 config.setPortNumber(portNumber);
 }

 // Save the SAX driver class
 String driverClass =
 req.getParameterValues("driverClass")[0];
 if ((driverClass != null) && (!driverClass.equals(""))) {
 config.setDriverClass(driverClass);
 }

 // Save the handlers
 String[] handlerIDs =
 req.getParameterValues("handlerID");
 String[] handlerClasses =
 req.getParameterValues("handlerClass");
 Hashtable handlers = new Hashtable();
 for (int i=0; i<handlerIDs.length; i++) {
 handlers.put(handlerIDs[i], handlerClasses[i]);
 }
 config.setHandlers(handlers);

 // Request the changes be written to the configuration store
 config.saveConfiguration(CONFIG_FILENAME);

 // Output a confirmation message
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 out.println("Changes saved
");
 out.println("<a href=\"" + FORM_ACTION +
 "\">Return to Configuration Administration" +
 "");
 out.close();

 }

}

We take advantage of knowing that initial requests come to the servlet through the GET method,
while submitting our form can be done with the POST method. This allows us to display
configuration information on the GET requests (with the doGet() method) and to update changes
when POST requests are received (with the doPost() method). When requests come through GET
requests, an HTML screen is rendered showing the current configuration information, as in Figure
12.1.

Java and XML

 page 282

Figure 12.1. HTML user interface for viewing and modifying configuration information

When the button is clicked, the HTML form is submitted, and the same servlet receives the request,
this time as a POST request. The doPost() method then reads each of the parameters from the
submitted form and uses the mutator methods of the XmlRpcConfiguration class to update the
configuration data. Finally, the saveConfiguration() method is called with the same filename as
originally used. In the next section, we implement saving the updated data to the JDOM Document
object and then the XML configuration file. Finally, our Java servlet displays an HTML hyperlink
that (through another GET request) takes the user back to the configuration form. The updated data
will then be displayed, and the process can be repeated.

12.2 Modifying the Data

At this point, we only need to implement code within the saveConfiguration() method to
update the XML document with the modified member variable values. This can be done completely
with the JDOM APIs, using the Document object we loaded and saved a reference to when parsing
the XML document, as well as the supplied OutputStream (which, in our example, is actually a
FileOutputStream wrapping a file on the filesystem). Once updates are made, we need to update
that Document object, and then write the changes out to a file. In other applications, the modified
Document could be transformed with XSLT and output as HTML or another markup language, or
passed on to another application over a network.

12.2.1 Updating the Configuration Information

All that is left to make our application fully functional is to add code to the saveConfiguration(
) method that takes in an OutputStream as an argument, as this is called by the version that takes a
String filename as a parameter. Since we saved a reference to the Document object, this is simply a
matter of setting the content of the various elements that are modified through the setContent()

Java and XML

 page 283

method available on Element instances. We can first handle the hostname, port, and parserClass
elements, which are nested directly within the root element:

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.List;

import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.Namespace;
import org.jdom.input.Builder;
import org.jdom.input.DOMBuilder;
import org.jdom.output.XMLOutputter;
...
 /**
 * <p>
 * This will save the current state out to the specified
 * <code>OutputStream</code>.
 * </p>
 *
 * @throws <code>IOException</code> - when errors occur in saving.
 */
 public synchronized void saveConfiguration(OutputStream out)
 throws IOException {

 try {
 Element root = doc.getRootElement();

 //Get the JavaXML namespace
 Namespace ns = Namespace.getNamespace("JavaXML",
 "http://www.oreilly.com/catalog/javaxml/");

 // Update the hostname
 root.getChild("hostname", ns)
 .setContent(hostname);

 // Update the SAX driver class
 root.getChild("parserClass", ns)
 .setContent(driverClass);

 // Update the port number
 root.getChild("port", ns)
 .setContent(portNumber + "");

 // Easier to remove and re-add handlers
 Element handlersElement =
 root.getChild("xmlrpc-server", ns)
 .getChild("handlers", ns);
 handlersElement.removeChildren("handler", ns);

 // Output the document, use standard formatter
 XMLOutputter fmt = new XMLOutputter();
 fmt.output(doc, out);

 } catch (JDOMException e) {
 // Log an error

Java and XML

 page 284

 throw new IOException(e.getMessage());
 }
 }

As in our earlier examples, we use the version of getChild() that takes in both a Namespace and
the local name of the element. We also perform a simple String concatenation with the port
number to convert it to a String, the correct parameter type for setContent(). We finally write
these changes to the supplied OutputStream using the XMLOutputter helper, ensuring that our
changes are reflected in the configuration file on the local filesystem.

Adding in the handler information is a slightly different task. Rather than trying to iterate through
current handler elements and replacing them, then adding or removing extra handlers so that the
list matches that supplied by the user, it is simpler to remove all handlers and then create the user-
requested ones. First we need to add in the Enumeration class to our import statements, which we
use for handling the Hashtable of handlers to add:

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.List;

import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import.org.jdom.Namespace
import org.jdom.input.Builder;
import org.jdom.input.DOMBuilder;
import org.jdom.output.XMLOutputter;

With this class available, we can remove all of the handler elements within the handlers element.
It would be safe in this case to call removeChildren() with no arguments, causing all child
elements to be removed, but again, it is clearer to explicitly remove the desired elements; if other
types of elements were ever added within the handlers element, our code could run correctly
without modification. Once those children are removed, we simply iterate through the user-defined
handlers and add each to the JDOM Document object:

/**
 * <p>
 * This will save the current state out to the specified
 * <code>OutputStream</code>.
 * </p>
 *
 * @throws <code>IOException</code> - when errors occur in saving.
 */
public synchronized void saveConfiguration(OutputStream out)
 throws IOException {

 try {
 Element root = doc.getRootElement();

 // Get the JavaXML namespace
 Namespace ns = Namespace.getNamespace("JavaXML",
 "http://www.oreilly.com/catalog/javaxml/");

Java and XML

 page 285

 // Update the hostname
 root.getChild("hostname", ns)
 .setContent(hostname);

 // Update the SAX driver class
 root.getChild("parserClass", ns)
 .setContent(driverClass);

 // Update the port number
 root.getChild("port", ns)
 .setContent(portNumber + "");

 // Easier to remove and re-add handlers
 Element handlersElement =
 root.getChild("xmlrpc-server", ns)
 .getChild("handlers", ns);
 handlersElement.removeChildren("handler", ns);

 // Add new handlers
 Enumeration handlerIDs = handlers.keys();
 while (handlerIDs.hasMoreElements()) {
 String handlerID =
 (String)handlerIDs.nextElement();

 // Ensure we don't register any blank string
 if (handlerID.trim().equals("")) {
 continue;
 }

 String handlerClass =
 (String)handlers.get(handlerID);

 handlersElement.addChild(
 new Element("handler", ns)
 .addChild(
 new Element("identifier", ns)
 .setContent(handlerID))
 .addChild(
 new Element("class", ns)
 .setContent(handlerClass))
);
 }

 // Output the document, use standard formatter
 XMLOutputter fmt = new XMLOutputter();
 fmt.output(doc, out);

 } catch (JDOMException e) {
 // Log an error
 throw new IOException(e.getMessage());
 }
}

With this change compiled into the XmlRpcConfiguration class, we are ready to test out our
application. Figure 12.2 shows sample input being given to the XmlRpcConfigurationServlet.

Figure 12.2. Sample input to the XmlRpcConfigurationServlet

Java and XML

 page 286

With these changes submitted to the program, the updates are saved, and the resultant xmlrpc.xml
file should look similar to Example 12.3.

Example 12.3. Modified XML-RPC Configuration File
<?xml version="1.0" encoding="UTF-8"?>

<JavaXML:xmlrpc-config
 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
>
 <JavaXML:hostname>www.jdom.org</JavaXML:hostname>
 <JavaXML:port type="unprotected">1310</JavaXML:port>
 <JavaXML:parserClass>
 oracle.xml.parser.v2.DOMParser
 </JavaXML:parserClass>
 <JavaXML:xmlrpc-server>
 <JavaXML:handlers>
 <JavaXML:handler>
 <JavaXML:identifier>newUserGreeting</JavaXML:identifier>
 <JavaXML:class>NewUserGreetingService</JavaXML:class>
 </JavaXML:handler>
 <JavaXML:handler>
 <JavaXML:identifier>mailingList</JavaXML:identifier>
 <JavaXML:class>MailingListHandler</JavaXML:class>
 </JavaXML:handler>
 <JavaXML:handler>
 <JavaXML:identifier>cvsUpdate</JavaXML:identifier>
 <JavaXML:class>CVSUpdateHandler</JavaXML:class>
 </JavaXML:handler>
 </JavaXML:handlers>
 </JavaXML:xmlrpc-server>
</JavaXML:xmlrpc-config>

Java and XML

 page 287

The com.oreilly.xml.LightweightXmlRpcServer class could now be started up with these new
configuration changes, and assuming you have the Oracle parser and handler classes in your
classpath (as well as access to http://www.jdom.org, which you probably don't!), you are ready to
use the XML-RPC server and clients with the new information you entered.

12.3 XML from Scratch

One item we have not yet addressed is the idea of building up an XML document from scratch; this
is common when either no original document exists, or the original document is so complex that it
is easier to rebuild it than to modify it. Building a new XML document is also valuable when the
output of an application should be XML suitable for another application component to use (such as
in a business-to-business application, discussed in Chapter 13). In these cases, we need to create
XML documents rather than just modify existing ones. Fortunately, this is not a large change for
our JDOM code. Because JDOM relies on SAX and DOM (or any other implementation) only in
the building of the initial JDOM Document object, all other interaction with the API is uncoupled
from that building process; if a new XML document needs to be created, the Builder classes are
simply not used. The JDOM Document is created with a new root element, added to and
manipulated, and then output with a Formatter class. Seems a little simple, right? Example 12.4
shows the saveConfiguration() method we have been looking at modified to create a new
Document to output as our XML-RPC configuration file.

Example 12.4. Building XML from Scratch
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.List;

import org.jdom.DocType;
import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.Namespace;
import org.jdom.input.Builder;
import org.jdom.input.DOMBuilder;
import org.jdom.output.XMLOutputter;
...
 /**
 * <p>
 * This will save the current state out to the specified
 * <code>OutputStream</code>.
 * </p>
 *
 * @throws <code>IOException</code> - when errors occur in saving.
 */
 public synchronized void saveConfiguration(OutputStream out)
 throws IOException {

 // Get the JavaXML namespace
 Namespace ns = Namespace.getNamespace("JavaXML",
 "http://www.oreilly.com/catalog/javaxml/");
 // Create the root element
 Element root = new Element("xmlrpc-config", ns);

Java and XML

 page 288

 Document doc = new Document(root);
 doc.setDocType(new DocType("JavaXML:xmlrpc-config",
 "DTD/XmlRpc.dtd"));

 root.addChild(new Element("hostname", ns)
 .setContent(hostname))
 .addChild(new Element("port", ns)
 .addAttribute("type", "unprotected")
 .setContent(portNumber + ""))
 .addChild(new Element("parserClass", ns)
 .setContent(driverClass));

 Element handlersElement = new Element("handlers", ns);
 Enumeration e = handlers.keys();
 while (e.hasMoreElements()) {
 String handlerID = (String)e.nextElement();
 String handlerClass = (String)handlers.get(handlerID);

 handlersElement.addChild(new Element("handler", ns)
 .addChild(new Element("identifier", ns)
 .setContent(handlerID))
 .addChild(new Element("class", ns)
 .setContent(handlerClass))
);
 }

 root.addChild(new Element("xmlrpc-server", ns)
 .addChild(handlersElement));

 // Output the document, use standard formatter
 XMLOutputter fmt = new XMLOutputter();
 fmt.output(doc, out);
 }

We first add an additional import statement for org.jdom.DocType. Because we are building the
document from scratch, we need to add in the appropriate DTD reference. We also remove the
entire block of code from the try/catch block it was previously in. The JDOMException we were
previously catching was only thrown by our Builder classes; XMLOutputter throws an
IOException when problems occur, and no other exceptions can occur. We then create our root
Element, JavaXML:xmlrpc-config, and use that to generate a new JDOM Document. The textual
elements (our hostname, port number, and SAX driver class variables) are then added to that root as
additional Elements, and their textual content is set (as well as an attribute being added for
JavaXML:port). Finally, we perform an iteration over the handlers entered by the user, similar to
our original version of this method. Each handler is added as a JavaXML:handler Element, and
that Element is in turn added to the JavaXML:handlers Element. This entire grouping is then
added under JavaXML:xmlrpc-server, which in turn is added to the root of the document. Finally,
the Document is output to the supplied OutputStream, and we are done!

Depending on the API used, the process of creating an XML document, either in memory or on a
filesystem, can be as easy as modifying an XML document (as in this example). However, this is
not always the case, as some APIs force factory creation of elements and attributes. We look at a
comparison of the various Java APIs for creating XML in our final section, and we discuss other
important issues concerning mutating XML from within Java.

12.4 The Real World

We finish this chapter up as we have finished our others: with a look at issues that affect using the
tools in this chapter in a real-world situation. In this chapter, these include threading issues with

Java and XML

 page 289

writing XML data, alternatives to using JDOM for writing XML data, and handling lost references
to the XmlRpcConfiguration utility class.

12.4.1 Threading, Writing, and Arithmetic

Although we sped through our look at the saveConfiguration() method and how it handled
writing out XML, you may have noticed something key in the method declaration:

/**
 * <p>
 * This will save the current state out to the specified
 * <code>OutputStream</code>.
 * </p>
 *
 * @throws <code>IOException</code> - when errors occur in saving.
 */
public synchronized void saveConfiguration(OutputStream out)
 throws IOException {

 // Method implementation
}

We use the synchronized keyword here to ensure that the lock for our XmlRpcConfiguration
object is obtained before the configuration data is written. This is particularly important when using
XML, as APIs like JDOM can be built on implementations that periodically reload the underlying
data; in other words, changes by other programs to the XML data could cause serious errors or
corrupted data if this method writes to the data as well.

Additionally, you should be very careful when multiple applications write to the same XML data
source. Entire database systems have been written to handle pessimistic and optimistic locking,
sharing data, and the other complex issues that surround concurrent access to data. While XML
addressed portable data, it certainly does not address issues such as this. A good rule of thumb is to
provide one single point of entry for writing to any single XML data source. Multiple entry points
for mutability can cause tricky bugs and serious headaches.

12.4.2 JDOM, SAX, or DOM, Revisited

In Chapter 11, we discussed the alternatives to using JDOM for reading XML data. We now
examine alternatives for writing and modifying XML. This provides you a complete look at the
Java APIs, and should allow you to use any API you choose for your various projects.

For comparison, here is the saveConfiguration() method from the last chapter, which uses
JDOM:

/**
 * <p>
 * This will save the current state out to the specified
 * <code>OutputStream</code>.
 * </p>
 *
 * @throws <code>IOException</code> - when errors occur in saving.
 */
public synchronized void saveConfiguration(OutputStream out)
 throws IOException {

 // Get the JavaXML namespace

Java and XML

 page 290

 Namespace ns = Namespace.getNamespace("JavaXML",
 "http://www.oreilly.com/catalog/javaxml/");

 // Create the root element
 Element root = new Element("xmlrpc-config", ns);
 Document doc = new Document(root);
 doc.setDocType(new DocType("JavaXML:xmlrpc-config",
 "DTD/XmlRpc.dtd"));

 root.addChild(new Element("hostname", ns)
 .setContent(hostname))
 .addChild(new Element("port", ns)
 .addAttribute("type", "unprotected")
 .setContent(portNumber + ""))
 .addChild(new Element("parserClass", ns)
 .setContent(driverClass));

 Element handlersElement = new Element("handlers", ns);
 Enumeration e = handlers.keys();
 while (e.hasMoreElements()) {
 String handlerID = (String)e.nextElement();
 String handlerClass = (String)handlers.get(handlerID);

 handlersElement.addChild(new Element("handler", ns)
 .addChild(new Element("identifier", ns)
 .setContent(handlerID))
 .addChild(new Element("class", ns)
 .setContent(handlerClass))
);
 }

 root.addChild(new Element("xmlrpc-server", ns)
 .addChild(handlersElement));

 // Output the document, use standard formatter
 XMLOutputter fmt = new XMLOutputter();
 fmt.output(doc, out);
}

Now we look at the SAX and DOM alternatives to this approach.

12.4.2.1 SAX

The discussion of SAX is short: simply put, you cannot modify XML with SAX. Because SAX is
an event-based approach to XML data, it is only useful in parsing an XML document. The callbacks
it defines are specifically designed for that purpose, and as SAX has no concept of an overall
picture of an XML document, it also has no concept of changing that overall picture. It is this very
fact that has caused much of the popularity of DOM; until recently, DOM has been the only means
of creating XML from Java without having to write out XML directly using streams.

12.4.2.2 DOM

The Document Object Model does provide a means of creating and modifying XML from Java.
However, it takes a more rigid view of the tree structure of an XML document. First, it considers
everything in the DOM tree a Node (remember our discussions in Chapter 7)? Because these Nodes
are all part of a tree, it is necessary to create a Node with an association to a particular DOM tree,
represented by a DOM Document object. To ensure this model is adhered to, there is no facility for
instantiating a DOM Node directly; instead, it is the Document interface within DOM that defines
the createElement(), createAttribute(), and other Node creation operations. Another point

Java and XML

 page 291

to remember is that this rigid tree model considers everything in the tree a Node, including textual
data. This means that there is no concept of an element's content in DOM; instead, a DOM Element
has child Nodes, some of which may be Text Nodes. This means that setting the value of an
Element requires using the createTextNode() method to create a Text Node, and then adding
that new Node to the desired parent Element. Of course, the createTextNode() method itself is
invoked on the overall DOM Document object, to ensure the correct association with the DOM tree.

This may feel a bit confusing to you: the creation of an XML element with text involves a DOM
Element Node, a DOM Text Node, and a DOM Document object all working in concert. This has
caused some newer XML developers to become frustrated, as they attempt to change an Element's
textual content with setNodeValue() , and get very different results than expected. Be careful
when using DOM to keep thinking in a very strict tree model, and you will be able to avoid these types
of problems.

With this in mind, let's look at building up an XML document from the data supplied by a user in
the XmlRpcConfigurationServlet application.

You might be expecting us to repeat the process of finding each XML element with data and then
changing the value of the textual nodes, as in our first saveConfiguration() method for JDOM.
Although this is certainly possible (as DOM provides a setValue() method for textual Nodes),
this is neither the easiest nor the quickest way to handle this task. Instead, we use the various
createXXX() methods that are defined in the DOM Document interface. A method for each type
of DOM Node is provided, such as createElement() , createTextNode() , and
createAttribute() . As each of these is created, it is assigned to the Document object used to
create it. This maintains an ownership between each created Node and the DOM tree they belong to.

In this way, all the needed elements and data can be created within our Java code. However, this is
only half of the task; each element and its data then need to be inserted into the DOM tree and
assembled into the correct hierarchy. The simplest way to insert a Node into the tree is to use the
appendChild() method on the parent node.

Make sure you understand the difference between createXXX() and appendNode().
While createXXX() results in a Node that is associated with a DOM Document object,
it does not insert that Node into the Document; the appendNode() method must still be
invoked upon the desired parent of the new Node. Failure to distinguish between these
two methods can result in a huge number of Nodes associated with a DOM Document
object, but an empty DOM tree.

In this way, we can build up the complete document starting with the root element. Finally, we can
replace the old root element with the new one, completing the update of our tree.

In addition to our not needing to perform complicated searching and retrieval of elements and data,
building a tree this way is often much quicker. Searches through a DOM tree, particularly when the
DOM tree becomes large, can take quite a lot of processing time; creating XML from the root
element up is a much faster alternative to this extensive searching. The code to perform this task is
included here:

/**
 * <p>
 * This will save the current state out to the specified
 * <code>OutputStream</code>, using DOM
 * </p>
 *

Java and XML

 page 292

 * @throws <code>IOException</code> - when errors occur in saving.
 */
public synchronized void saveConfiguration(OutputStream out)
 throws IOException {

 String NAMESPACE_URI = "http://www.oreilly.com/catalog/javaxml/";

 // We assume the DOM Document object was loaded in
 // parseConfiguation() and is saved in a member variable called
 // <code>doc</code>.
 Element oldRoot = doc.getDocumentElement();
 Element newRoot =
 doc.createElementNS(NAMESPACE_URI, "JavaXML:xmlrpc-config");

 // Handle hostname
 Element hostnameNode =
 doc.createElementNS(NAMESPACE_URI, "JavaXML:hostname");
 hostnameNode.appendChild(
 doc.createTextNode(hostname));
 newRoot.appendChild(hostnameNode);

 // Handle port number
 Element portNumberNode =
 doc.createElementNS(NAMESPACE_URI, "JavaXML:port");
 portNumberNode.appendChild(
 doc.createTextNode(portNumber + ""));
 portNumberNode.setValue("type", "unprotected");
 newRoot.appendChild(portNumberNode);

 // Handle SAX Driver class
 Element saxDriverNode =
 doc.createElementNS(NAMESPACE_URI, "JavaXML:parserClass");
 saxDriverNode.appendChild(
 doc.createTextNode(driverClass));
 newRoot.appendChild(saxDriverNode);

 Element serverNode =
 doc.createElementNS(NAMESPACE_URI, "JavaXML:xmlrpc-server");
 Element handlersNode =
 doc.createElementNS(NAMESPACE_URI, "JavaXML:handlers");

 // Handle handlers
 Enumeration handlerIDs = handlers.keys();
 while (handlerIDs.hasMoreElements()) {
 String handlerID = (String)handlerIDs.nextElement();
 String handlerClass = (String)handlers.get(handlerID);

 Element handlerIDNode =
 doc.createElementNS(NAMESPACE_URI, "JavaXML:identifier");
 handlerIDNode.appendChild(
 doc.createTextNode(handlerID));

 Element handlerClassNode =
 doc.createElementNS(NAMESPACE_URI, "JavaXML:class");
 handlerClassNode.appendChild(
 doc.createTextNode(handlerClass));

 Element handlerNode =
 doc.createElementNS(NAMESPACE_URI, "JavaXML:handler");
 handlerNode.appendChild(handlerIDNode);
 handlerNode.appendChild(handlerClassNode);

 handlersNode.appendChild(handlerNode);
 }

Java and XML

 page 293

 serverNode.appendChild(handlersNode);
 newRoot.appendChild(serverNode);

 doc.replaceChild(newRoot, oldRoot);

 // Serialize the DOM tree
}

We use the DOM Level 2 methods to create our XML document with namespace awareness. The
createElementNS() method takes in the namespace URI and then the full name of the new
element. The full name does include the namespace prefix; this allows the method to ensure that a
namespace prefix and namespace URI are either both included, or both excluded, helping to ensure
properly formed XML.

Serialization of a DOM tree is another task, like obtaining the DOM Document object, that is not
outlined in the DOM specification. To achieve serialization, you need to see if your vendor provides
a helper class that will handle that functionality for you. Once you have located your parser's
serializer, you typically need only to import that class and pass it an OutputStream or
PrintWriter instance. Using Apache Xerces, the class needed is the
org.apache.xml.serialize.XMLSerializer. We can use that class to write to the OutputStream
that our saveConfiguration() method has supplied to it:

/**
 * <p>
 * This will save the current state out to the specified
 * <code>OutputStream</code>, using DOM
 * </p>
 *
 * @throws <code>IOException</code> - when errors occur in saving.
 */
public synchronized void saveConfiguration(OutputStream out)
 throws IOException {

 // Modify Document object

 doc.replaceChild(newRoot, oldRoot);

 // Serialize the DOM tree
 org.apache.xml.serialize.XMLSerializer out =
 new org.apache.xml.serialize.XMLSerializer(out, null);
 out.serialize(doc);
}

The Apache XMLSerializer class has several different constructors; the one used here takes in an
OutputStream and the format to use for output. We specify null to allow the default format to be
used. The serialize() method takes as input the Document, Element, or DocumentFragment to
serialize. We pass in the modified DOM tree Document, and the serialization occurs. At this point,
we have emulated the functionality we created with JDOM to modify and output an XML document
with user-supplied input.

12.4.3 Where Did That XmlRpcConfiguration Go?

When using a servlet or other web-based construct for providing a user interface, several issues
must be handled that are not problems with thick or static clients. One of these is garbage collection
and user lag. User lag refers to a user loading a servlet or piece of Java code on the Internet, and
then taking a coffee break, attending three meetings, and eating a candy bar. What can happen is

Java and XML

 page 294

that object references in the servlet that was accessed may be garbage collected between the time of
the original request and the user's (much later) action. When one servlet submits to another, this is
not a problem; however, in our example, the XmlRpcConfigurationServlet submitted data to
itself. The possible bug is that the config member variable, an instance of
com.oreilly.xml.XmlRpcConfiguration, is only created in the doGet() method, but is then
reused in the doPost() method:

public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 // Load the configuration information with our utility class
 config = new XmlRpcConfiguration(CONFIG_FILENAME);

 // Rest of method
}

public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {

 // Save the hostname
 String hostname =
 req.getParameterValues("hostname")[0];
 if ((hostname != null) && (!hostname.equals(""))) {
 config.setHostname(hostname);
 }

 // Rest of method
 }

If sufficient time has passed between the initial GET request and the subsequent POST request, a
NullPointerException can result when config is accessed in the doPost() method. This can
also occur if the servlet code is changed and reloaded in the middle of a request, something the
Jakarta Tomcat and other popular servlet engines support.

To avoid this problem, it makes sense to ensure that the config member variable is valid in both
the doGet() and doPost() methods; however, there is a lot of overhead with instantiating the
XmlRpcConfiguration class, as it must parse the supplied filename again. Instead of recreating the
variable each time, we can take advantage of knowing the variables that are garbage-collected have
their values set back to null.[1] Thus, we make a comparison to null, and only reinstantiate config
when needed:

[1] This is a bit of an overstatement. However, in the case of a non-local variable, it will hold true, particularly when dealing with servlets. For more information
on garbage collection and values of non-initialized or garbage-collected variables, you should consult Java in a Nutshell, by David Flanagan (O'Reilly &
Associates).

public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {

 // Update the configuration information
 if (config == null) {
 config = new XmlRpcConfiguration(CONFIG_FILENAME);
 }

 // Save the hostname

Java and XML

 page 295

 String hostname =
 req.getParameterValues("hostname")[0];
 if ((hostname != null) && (!hostname.equals(""))) {
 config.setHostname(hostname);
 }

 // Rest of method
}

This will ensure that if user lag occurs, it does not affect your program's operation.

12.5 What's Next?

By now we have managed to touch on many of the major subjects concerning using XML within
Java code. Besides being able to create, parse, style, transform, constrain, and validate XML, we
have looked at using XML within a publishing framework, using XML for remote procedure calls,
storing configuration information within XML documents, and now creating XML "on the fly"
from Java code. To round out this list of XML topics in Chapter 13, we look at using XML for
business-to-business applications. This builds on what we have already seen with regard to XML as
a solid solution for distributed applications as well as a standards-based data format. We apply this
to some hypothetical companies and walk through the complete process of enabling inter- and intra-
business communication for the companies.

Chapter 13. Business-to-Business
At this point, we've covered quite a bit of ground. We've examined the SAX, DOM, and JDOM
APIs, and you should now feel familiar with web publishing frameworks and advanced
transformations, XML-RPC, using XML for configuration information and as a data source, and
creating XML from within your Java code. However, the one hot topic we have not yet spent time
on is "business-to-business" applications. As companies have moved into the Internet era,
communication has become the number one commodity for commerce. In fact, many companies
thrive on their communication lines more than they do on their product offerings; aggressive online
campaigns and e-business applications can overcome significant competition from other vendors.
Spearheading this surge of business-to-business application development is XML. Because of the
standard XML provides for data representation, companies have been able to communicate for the
first time over disparate applications, systems, and programming languages.

In this chapter, we look at using XML to provide this sort of communication across application and
company lines, using some companies invented for our purposes. Instead of focusing on XML for
communication between application components or as a data source, we look at using XML to
communicate between applications. To begin with, we examine the Foobar Public Library, a library
that is allowing their suppliers to enter online new books being shipped to the library. These books
are then added to the library's data store for later use. Unfortunately, the library is having a hard
time finding good Java developers, so it has implemented a Perl-based CGI solution. New books are
entered online and then stored by a Perl script.

We also look at another company, mytechbooks.com. Mytechbooks.com sells technical and
computing books (such as this one) online through various partnerships with large bookstores. They
have recently signed an agreement with the Foobar Public Library to obtain books from the library.
They will pay for the shipping and inventory costs of the books, while the library agrees to order
extra books at their discounted costs; these extra books are then sold by mytechbooks.com.
Mytechbooks.com needs to be able to access the new books entered into the Foobar Public Library
by suppliers to know when new offerings are available, and then advertise those new offerings.

Java and XML

 page 296

However, they have no idea how to interface with the Foobar Public Library's Perl-based system.
Additionally, there are no protected network connections between the two organizations, so normal
HTTP must be used for communication.

Finally, we look at customers of mytechbooks.com. The book store targets people who are active
online, so wants to advertise on sites like Netscape Netcenter; they also want to allow people to
easily obtain information from their site when new offerings are available. However, as in the
situation with the Foobar Public Library, mytechbooks.com has no idea how to achieve this goal. In
speaking with Netscape's Netcenter group, they have been told that Rich Site Summary (RSS) is a
great solution for this sort of advertising, but are unsure of what RSS even is!

We tackle this common scenario by starting with the Foobar Public Library and examining their
Perl system. Then, moving out to mytechbooks.com and then the customers of the bookstore, we
enable this business-to-business (to-customer) application by using XML as a communication tool
between each layer.

13.1 The Foobar Public Library

To start our creation of a business-to-business system, we look at the system currently in place at
the Foobar Public Library. Before diving into their code, though, we need to examine the library's
requirements so that we do not create a system they cannot support.

13.1.1 Evaluating the Requirements

All too often, good solutions to a problem are not appropriate solutions for the company with the
problem. The Foobar Library is a perfect example of this: certainly a Java servlet that could
communicate with servlets built by mytechbooks.com could quickly solve the two organizations'
problems. However, this ignores the library's requirements. Before creating a solution, they have
detailed what these requirements are:

• The solution must be Perl-based; no Java engineers are on staff.
• The solution must not involve new software or library installations.
• The solution must not impact the existing order-entry system (no interface changes).

While these are not extremely stringent requirements, they force us to rethink our problem. We
must avoid using Java as a solution. Of course, as this is a book on XML, you should be thinking
that storing the data about new books in an XML format could allow us to then supply that XML to
clients through an HTTP request, thus enabling those clients to use the data in any way they wish.
In fact, this is a much better solution than servlet-to-servlet communication, as the XML can be
used by any company or client in their applications, rather than tying the library (and their books) to
a specific company. This then defines our goal for updating the Foobar Public Library's system:
save the entered information as XML data, and then provide HTTP access to that XML data for
clients and customers.

13.1.2 Entering Books

First, we need to examine the existing HTML interface for suppliers entering new books into the
system. Example 13.1 shows the static HTML used to generate this form.

Example 13.1. Static HTML for Foobar Public Library User Interface
<html>

Java and XML

 page 297

<head>
 <title>Foobar Public Library: Add Books</title>
 <style>
<!--
body { font-family: Arial }
h1 { color: #000080 }
-->
 </style>
</head>

<body link="#FFFF00" vlink="#FFFF00" alink="#FFFF00">
 <table border="0" width="100%" cellpadding="0" cellspacing="0">
 <tr>
 <td width="15%" bgcolor="#000080" valign="top" align="center">
 <i>
 Options
 </i>
 <p>

 Main Menu

 </p>
 <p>

 Catalog

 </p>
 <p>
 <i>Add Books</i>
 </p>
 <p>

 Log Out

 </p></td>
 <td width="*" valign="top" align="center">
 <h1 align="center">The Foobar Public Library</h1>
 <h3 align="center"><i>- Add Books -</i></h3>

<!-- This will need to point at your CGI directory and script, which
 we look at next -->
 <form method="POST" action="/cgi/addBook.pl">

 <table border="0" cellpadding="5" width="100%">
 <tr>
 <td width="100%" valign="top" align="center" colspan="2">
 Title
 <input type="text" name="title" size="20">
 <hr width="85%" />
 </td>
 </tr>
 <tr>
 <td width="50%" valign="top" align="right">Author
 <input type="text" name="author" size="20">
 </td>
 <td width="50%" valign="top" align="left">Subject
 <select size="1" name="subject">
 <option>Fiction</option>
 <option>Biography</option>
 <option>Science</option>
 <option>Industry</option>
 <option>Computers</option>
 </select></td>
 </tr>

Java and XML

 page 298

 <tr>
 <td width="50%" valign="top" align="right">Publisher
 <input type="text" name="publisher" size="20">
 </td>
 <td width="50%" valign="top" align="left">ISBN
 <input type="text" name="isbn" size="20">
 </td>
 </tr>
 <tr>
 <td width="50%" valign="top" align="right">Price
 <input type="text" name="price" size="20">
 </td>
 <td width="50%" valign="top" align="left">Pages
 <input type="text" name="numPages" size="20">
 </td>
 </tr>
 <tr>
 <td width="100%" valign="top" align="center" colspan="2">
 Description
 <textarea rows="2" name="description" cols="20"></textarea>
 </td>
 </tr>
 </table>
 <p>
 <input type="submit" value="Add this Book" name="addBook">
 <input type="reset" value="Rest Form" name="reset">
 <input type="button" value="Cancel" name="cancel">
 </p>
 </form>
 </td>
 </tr>
 </table>
</body>
</html>

This file, saved as addBooks.html, provides the portion of the library application allowing suppliers
to add new books they are sending to the library.

In Example 13.1 and throughout the rest of the chapter, complete code and HTML listings will be given
so that you can create the sample applications, and walk through the process of enabling XML
communication across the applications. If you instead wish to see a working copy of the examples, they
are available online at http://www.newInstance.com, and can be downloaded from there and from
http://www.oreilly.com/catalog/javaxml/. Additionally, the code samples in this chapter assume you are
using the filenames supplied in the text; you will need to change the code and examples if you use your
own filenames. Code that may need to be changed to reference different filenames or scripts is
emphasized in the listings to help you walk through the examples.

The HTML in Example 13.1, when accessed through a web server, results in the output shown in
Figure 13.1. Although we do not look at the other menu options, the supplier can also view the
library's catalog, go to the application's main menu, and log out of the application by using the
menu on the left of the screen.

Figure 13.1. HTML user interface for Foobar Public Library

Java and XML

 page 299

This form allows the supplier to enter the details about each book it is sending to the library. The
supplier enters the book's essentials (title, author, publisher, pages, and a description), as well as a
subject to categorize the book and sales details, which include the price and ISBN number.

Once this information has been entered, it is submitted to a Perl CGI script:

<form method="POST" action="/cgi/addBook.pl">

This script, then, must produce XML output. The easiest solution would be to download a Perl
library that handled XML parsing, such as Xerces-Perl; however, remember that one requirement of
the library was that no libraries or software could be added. While this may seem silly and
frustrating, keep in mind that many companies have very strict lock-downs on their production
systems. In this case, the Foobar Public Library is just beginning to introduce applications on the
Internet, and they do not have resources to support additional software.

Luckily, we only have to output XML; this is done fairly easily by generating a file with
information on the entered books by brute force. Because we need to keep any existing books, each
new entry is appended to an existing file, instead of creating as a new file. As we are Java coders,
writing Perl is almost trivial for us, and the complete Perl program to read the request parameters
and append the information to an existing file is shown in its entirety in Example 13.2.

Example 13.2. Perl CGI Script to Generate XML Entries from Entered Books
#!/usr/local/bin/perl

This should be the directory you wish to write files to
$baseDir = "/home/bmclaugh/javaxml/foobar/books/";

This should be the filename to use
$filename = "books.txt";

$bookFile = $baseDir . $filename;

Get the user's input
use CGI;
$query = new CGI;

Java and XML

 page 300

$title = $query->param('title');
$author = $query->param('author');
$subject = $query->param('subject');
$publisher = $query->param('publisher');
$isbn = $query->param('isbn');
$price = $query->param('price');
$numPages = $query->param('numPages');
$description = $query->param('description');

Save the book to a file in XML
if (open(FILE, ">>" . $bookFile)) {
 print FILE "<book subject=\"" . $subject . "\">\n";
 print FILE " <title><![CDATA[" . $title . "]]></title>\n";
 print FILE " <author><![CDATA[" . $author . "]]></author>\n";
 print FILE " <publisher><![CDATA[" . $publisher . "]]></publisher>\n";
 print FILE " <numPages>" . $numPages . "</numPages>\n";
 print FILE " <saleDetails>\n";
 print FILE " <isbn>" . $isbn . "</isbn>\n";
 print FILE " <price>" . $price . "</price>\n";
 print FILE " </saleDetails>\n";
 print FILE " <description>";
 print FILE "<![CDATA[" . $description . "]]>";
 print FILE "</description>\n";
 print FILE "</book>\n\n";

 # Give the user a confirmation
 print <<"EOF";
Content-type: text/html

 <html>
 <head>
 <title>Foobar Public Library: Confirmation</title>
 </head>
 <body>
 <h1 align="center">Book Added</h1>
 <p align="center">
 Thank you. The book you submitted has been added to the Library.
 </p>
 </body>
 </html>
EOF

} else {
 print <<"EOF";
Content-type: text/html

 <html>
 <head>
 <title>Foobar Public Library: Error</title>
 </head>
 <body>
 <h1 align="center">Error in Adding Book</h1>
 <p align="center">
 We're sorry. The book you submitted has <i>not</i> been added to
 the Library.
 </p>
 </body>
 </html>
EOF
}
close (FILE);

Java and XML

 page 301

This program, saved as addBook.pl, is invoked by a form submittal when the supplier enters a new
book. The script defines the file to write to, and then assigns the request parameter values to local
variables:

$title = $query->param('title');
$author = $query->param('author');
$subject = $query->param('subject');
$publisher = $query->param('publisher');
$isbn = $query->param('isbn');
$price = $query->param('price');
$numPages = $query->param('numPages');
$description = $query->param('description');

Once these values are easily accessible, the script opens the file defined earlier in append mode
(signified by >> preceding the filename) and writes raw XML-formatted information about the
entered book to the end of the file:

print FILE "<book subject=\"" . $subject . "\">\n";
 print FILE " <title><![CDATA[" . $title . "]]></title>\n";
 print FILE " <author><![CDATA[" . $author . "]]></author>\n";
 print FILE " <publisher><![CDATA[" . $publisher . "]]></publisher>\n";
 print FILE " <numPages>" . $numPages . "</numPages>\n";
 print FILE " <saleDetails>\n";
 print FILE " <isbn>" . $isbn . "</isbn>\n";
 print FILE " <price>" . $price . "</price>\n";
 print FILE " </saleDetails>\n";
 print FILE " <description>";
 print FILE "<![CDATA[" . $description . "]]>";
 print FILE "</description>\n";
 print FILE "</book>\n\n";

The subject is used as an attribute on the enclosing element, book, and the rest of the information is
entered in as elements. Because a book's title, author, description, and publisher may include
quotation marks, apostrophes, ampersands, and other characters that would have to be escaped, we
enclose that data within a CDATA section so as not to have to worry about escaping the data.

Additionally, you should notice that no XML declaration or root element is created, as multiple
books will exist in a single file. Because it is a bit difficult to check if the file exists, write the
declaration and root element if the file is new, and then write out the ending element (which has to
be overwritten at each new entry), we leave the file as an XML document fragment. For example,
here is a sample of what the file might look like after two books have been entered:

<book subject="Computers" >
 <title><![CDATA[Java Servlet Programming]]></title>
 <author><![CDATA[Jason Hunter]]></author>
 <publisher><![CDATA[O'Reilly & Associates]]></publisher>
 <numPages>528</numPages>
 <saleDetails>
 <isbn>156592391X</isbn>
 <price>36.95</price>
 </saleDetails>
 <description><![CDATA[This book is a superb introduction to Java
 servlets and their various communications mechanisms.]]></description>
</book>

<book subject="Fiction">
 <title><![CDATA[Second Foundation]]></title>
 <author><![CDATA[Isaac Asimov]]></author>
 <publisher><![CDATA[Bantam Books]]></publisher>

Java and XML

 page 302

 <numPages>279</numPages>
 <saleDetails>
 <isbn>0553293362</isbn>
 <price>5.59</price>
 </saleDetails>
 <description><![CDATA[fter the First Foundation was taken over by the
 Mule, only the Second Foundation stood between order and the utter
 destruction the Mule would bring.]]></description>
</book>

Although not a complete XML document, this fragment is well-formed and could be inserted into
an XML document with the header and root element already set. In fact, when we look at providing
a listing of books in the next section, that is precisely how we handle output of the fragment.

The rest of the script outputs HTML indicating whether the book was successfully added or if errors
occurred. Once a book has been added to the XML storage, the supplier would receive the simple
confirmation message shown in Figure 13.2.

Figure 13.2. Confirmation message when a book is added

Now that we have an XML document fragment with information about new books, we need to take
that file and provide it to requestors.

13.1.3 Providing a Listing of Available Books

We again can use Perl as a mechanism to provide clients and customers with an XML listing of new
books. We make the assumption that some other portion of the library's application periodically
reads the XML data and updates the library's catalog; at this point, that application component
would be responsible for removing the entries within the file (or the file itself) so that the books
within it are no longer regarded as new entries. With this assumption, all our second Perl script has
to do is read the XML fragment and add all the data within it to an XML document that is output to
the screen. As we already mentioned, the script also needs to add an XML declaration and a root
element to surround the content within the new books file. This new script, shown in Example 13.3,
reads the file created by the addBook.pl script and outputs the content within an XML document
when it is requested over HTTP.

Example 13.3. Perl CGI Script to Output XML Document with New Book Listings
#!/usr/local/bin/perl

This should be the directory you wish to write files to
$baseDir = "/home/bmclaugh/javaxml/foobar/books/";

This should be the filename to use
$filename = "books.txt";

Java and XML

 page 303

$bookFile = $baseDir . $filename;

First open the file
open(FILE, $bookFile) || die "Could not open $bookFile.\n";

Let browser know what is coming
print "Content-type: text/plain\n\n";

Print out XML header and root element
print "<?xml version=\"1.0\"?>\n";
print "<books>\n";

Print out books
while (<FILE>) {
 print "$_";
}

Close root element
print "</books>\n";

close(FILE);

This script, saved as supplyBooks.pl, will accept a request, read the file created by addBook.pl, and
output XML upon an HTTP request. The result of requesting this script in a web browser (with
several books added) is shown in Figure 13.3.

Figure 13.3. XML output from supplyBooks.pl

As you can see, we have easily turned the library's simple Perl-based application into a component
capable of supplying useful information to its clients, including the mytechbooks.com technical

Java and XML

 page 304

bookstore. Additionally, we were able to accomplish this without installing new software, changing
the architecture of their system or application, or even writing a line of Java!

13.2 mytechbooks.com

With the Foobar Public Library allowing access to an XML listing of their new books,
mytechbooks.com is moving closer to their goal of providing up-to-date content to their customers.
In addition, mytechbooks.com already has an established standard for using Java for application
development. This makes the process of accessing and using the XML from the library even easier,
as Java has the excellent support for XML we have been looking at throughout this book. We need
to allow mytechbooks.com to provide an online listing of new books first, and then look at how to
get this information out to their customers automatically.

13.2.1 Filtering the XML Data

Mytechbooks.com wants to ensure that only technical books are shown on their web site. If you
remember, the Foobar Public Library allowed books on several different subjects to be entered into
their system; mytechbooks.com wants only the books about computer-related subjects. Fortunately,
the library captured this information in the subject attribute of the book element for each book in
their XML data. Our first task, then, is to filter out all books whose subject is not "Computers."
Once the technical books have been obtained, they should be formatted into an HTML page that can
be shown to customers visiting mytechbooks.com.

For this company and application, there is no static HTML, since the page showing new listings
must be generated each time it is accessed. Of course, we use a servlet here for handling these
responses. Although Apache Cocoon would be an excellent choice for converting the XML data
from the library into an HTML response, mytechbooks.com is under a tremendous time pressure to
make these book listings available, and does not want to introduce such a large change into their
system immediately; instead, they would prefer to use XML parsers and processors and then add
Cocoon in as a second-phase addition. This means that we have to handle conversion from XML to
HTML as well as the filtering of the data and the addition of other presentation-specific items, such
as a company logo and menu bar.

However, taking all the information at your disposal about XML and XSL, you remember that even
without Cocoon we can use XSL to transform an XML document into HTML. Applying a
transformation would also allow us to filter out the books that do not have the subject criteria that
mytechbooks.com desires. With this in mind, we can create an XSL stylesheet that can be applied to
the XML response from the Foobar Public Library. Example 13.4 shows the beginning of this
stylesheet, which handles generation of the HTML specific to the mytechbooks.com web site.

Example 13.4. XSL Stylesheet for Foobar Public Library Book Listings
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
>

 <xsl:template match="books">
 <html>
 <head>
 <title>mytechbooks.com - Your Computer Bookstore</title>
 </head>
 <body background="/javaxml/techbooks/images/background.gif"
 link="#FFFFFF" vlink="#FFFFFF" alink="#FFFFFF">

Java and XML

 page 305

 <h1 align="center">

 <mytechbooks.com>

 </h1>
 <p align="center">
 <i>
 Your source on the Web for computing and technical books.
 </i>
 </p>
 <p align="center">

 <u>New Listings</u>

 </p>
 <table border="0" cellpadding="5" cellspacing="5">
 <tr>
 <td valign="top" align="center" nowrap="nowrap" width="115">
 <p align="center">

 Home

 </p>
 <p align="center">

 Current Listings

 </p>
 <p align="center">

 <i>New Listings</i>

 </p>
 <p align="center">

 Contact Us

 </p>
 </td>
 <td valign="top" align="left">
 <table border="0" cellpadding="5" cellspacing="5">
 <tr>
 <td width="450" align="left" valign="top">
 <p>

 Welcome to mytechbooks.com,
 your source on the Web for computing and technical books.
 Our newest offerings are listed on the left. To purchase
 any of these fine books, simply click on the
 "Buy this Book!" link, and you will be taken to
 the shopping cart for our store. Enjoy!

 </p>
 <p>

 You should also check out our current listings, information
 about the store, and you can call us with your questions.
 Use the links on the menu to the left to access this
 information. Thanks for shopping!

 </p>
 </td>
 <td align="left">

Java and XML

 page 306

 <!-- Handle creation of content for each new *computer* book -->

 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

While this doesn't yet filter the incoming XML data or transform that data, it does take care of the
HTML interface for the user. Often it is much easier to take care of these presentation details first,
and then add the transformation-specific logic afterwards.

When developing XSL stylesheets, particularly for web applications, you should test the results out with
your XSLT Processor using its command-line capabilities. This can help you ensure that the stylesheet is
transforming your document as you expect at each step of its development; trying to debug a large
stylesheet's problems once it is complete is much more difficult. Using Apache Xalan from the command
line is covered in Chapter 7. For this example, you could access the supplyBooks.pl script in a web
browser, save the results to an XML file, and test that and the stylesheet as you follow the examples.

Similar to the Foobar Public Library's application, this provides a menu on the left with hyperlinks
to other portions of the application, some text about the company and their offerings, and then
leaves a right column open for the addition of new book listings.

Before filtering our content, we need to add a template for outputting HTML content from a single
book element's entry. As you recall, an entry will look like this:

<book subject="Computers" >
 <title><![CDATA[Running Linux]]></title>
 <author><![CDATA[Matt Welsh]]></author>
 <publisher><![CDATA[O'Reilly & Associates]]></publisher>
 <numPages>630</numPages>
 <saleDetails>
 <isbn>1565921518</isbn>
 <price>29.95</price>
 </saleDetails>
 <description><![CDATA[In the tradition of all O'Reilly books, Running
 Linux features clear, step-by-step instructions that always seem to
 provide just the right amount of information.]]></description>
</book>

We can then convert this to HTML with the following XSL template:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
>

 <xsl:template match="books">
 <!-- Presentation of User Interface -->
 </xsl:template>

 <xsl:template match="book">
 <table border="0" cellspacing="1" bgcolor="#000000">

Java and XML

 page 307

 <tr>
 <td>
 <table border="0" cellpadding="3" cellspacing="0">
 <tr>
 <td width="100%" bgcolor="#00659C" nowrap="nowrap" align="center">

 <xsl:value-of select="title" />

 </td>
 </tr>
 <tr>
 <td width="100%" align="center" nowrap="nowrap" bgcolor="#FFFFFF">

 Author: <xsl:value-of select="author" />

 Publisher: <xsl:value-of select="publisher" />

 Pages: <xsl:value-of select="numPages" />

 Price: <xsl:value-of select="saleDetails/price" />

 <xsl:element name="a">
 <xsl:attribute name="href">/servlets/BuyBookServlet?isbn=
 <xsl:value-of select="saleDetails/isbn" />
 </xsl:attribute>
 Buy the Book!
 </xsl:element>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>

 </xsl:template>

</xsl:stylesheet>

This template matches the book element, and then creates a table with a heading in one row, and
contents in the second row. The entire table is within another table with a black background, which
results in the appearance of the table being surrounded by a beveled black border. The title is
inserted into the header of the table, and the information about the book (author, publisher, pages,
and price) is added to the content of the table. Finally, a link to a Java servlet, BuyBookServlet, is
provided to allow easy access to purchasing the book. The value of the book's isbn element is
supplied as an argument to this servlet, which enables it to load the book being purchased.

In your XSL stylesheet, you should ensure that the line indicating the use of
BuyBookServlet and the line with the xsl:value-of element selecting the book's
ISBN number is actually one single line. If not, spaces and a carriage return could be
inserted into the resultant URL, causing incorrect information to be passed to the
servlet. The example stylesheet has this information broken into two lines because of
the space constraints of the printed page.

The last addition we need to make to our stylesheet is to ensure that our new template is applied,
and that only books whose subject is "Computers" are passed to the new template. We can reference
the value of the subject attribute with the @ symbol in our stylesheet, and filter our requests with the
select attribute on the xsl:apply-templates element:

</td>
 <td align="left">

Java and XML

 page 308

 <!-- Handle creation of content for each new *computer* book -->
 <xsl:apply-templates select="book[@subject='Computers']" />

 </td>
 </tr>
</table>

We reference the value of the attribute and compare it to a literal, enclosed within single quotes
because the entire XPath expression is enclosed within double quotes. Because we are accessing an
attribute of a nested element, we reference the element by name, and surround the expression on the
element's attribute with brackets. This will ensure that only books with a subject of "Computers"
have templates applied, and are therefore included in the HTML output. Once the stylesheet is
complete, it can be saved as computerBooks.xsl and referenced programmatically by a Java servlet,
which we write next.

13.2.2 XSLT from a Servlet

With our stylesheet ready for use, we need to add Java code to apply it to the XML data from the
Foobar Public Library. This data is accessed easily by using Java's URL class to make an HTTP
request to the library's system. Once we have this set up, all that is left is to actually apply the XSL
transformation programmatically. Example 13.5 shows the Java servlet code that loads the XML
data from the library, and indicates where our transformation code would be inserted.

Example 13.5. Java Servlet for Transforming Book Listings into HTML
package com.techbooks;

import java.io.FileInputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.net.URL;
import javax.servlet.*;
import javax.servlet.http.*;

public class ListBooksServlet extends HttpServlet {

 /** Host to connect to for books list */
 private static final String hostname = "newInstance.com";
 /** Port number to connect to for books list */
 private static final int portNumber = 80;
 /** File to request (URI path) for books list */
 private static final String file = "/cgi/supplyBooks.pl";

 /** Stylesheet to apply to XML */
 private static final String stylesheet =
 "/home/bmclaugh/javaxml/techbooks/XSL/computerBooks.xsl";

 public void service(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 res.setContentType("text/html");

 // Connect and get XML listing of books
 URL getBooksURL = new URL("http", hostname, portNumber, file);
 InputStream in = getBooksURL.openStream();

 // Transform XML for InputStream into HTML output
 }

Java and XML

 page 309

}

This simple servlet requests the Foobar Public Library's application through an HTTP request, and
gets the XML response in an InputStream.[1] This stream should then be used as a parameter to the
XSLT processor, as well as the XSL stylesheet defined as a constant in the servlet.

[1] For more information on the URL class and Java I/O, see Java I/O, by Elliotte Rusty Harold (O'Reilly & Associates).

There is currently no Java API that specifies how XSLT transformations can occur
programmatically; however, each processor vendor should have classes that allow a transformation
to be invoked from your Java code. We continue to look at using the Apache Xalan processor here;
you should consult your processor's vendor for the method or methods to invoke in your own
programs.

For Apache Xalan, the XSLTProcessor class is provided in the org.apache.xalan.xslt package
for just this purpose. It takes as parameters an XSLTInputSource wrapping the XML file to process,
an XSLTInputSource wrapping the XSL stylesheet to apply, and an XSLTResultTarget to use for
output of the transformation. All three of these helper classes are in the org.apache.xalan.xslt
package as well. Each of these classes can conveniently be created by passing in an InputStream
(to XSLInputSource) or an OutputStream (to XSLTResultTarget). We have our XML document
as an InputStream, we can wrap our XSL stylesheet within a FileInputStream, and the servlet
API provides us easy access to the ServletOutputStream object through the getOutputStream(
) method on the HttpServletResponse object. The last detail we need to address is obtaining an
instance of XSLTProcessor. Because there are several underlying mechanisms that can be used for
processing, this class is not instantiated directly, but rather obtained through the
XSLTProcessorFactory class, also in the org.apache.xalan.xslt package. We are familiar with
factory classes by now, so all that is left is to import the classes we need and add the processing
method calls to our servlet:

package com.techbooks;

import java.io.FileInputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.net.URL;
import javax.servlet.*;
import javax.servlet.http.*;

// Import Xalan XSLT Processor components
import org.apache.xalan.xslt.XSLTInputSource;
import org.apache.xalan.xslt.XSLTProcessor;
import org.apache.xalan.xslt.XSLTProcessorFactory;
import org.apache.xalan.xslt.XSLTResultTarget;

public class ListBooksServlet extends HttpServlet {

 /** Host to connect to for books list */
 private static final String hostname = "newInstance.com";
 /** Port number to connect to for books list */
 private static final int portNumber = 80;
 /** File to request (URI path) for books list */
 private static final String file = "/cgi/supplyBooks.pl";

 /** Stylesheet to apply to XML */
 private static final String stylesheet =
 "/home/bmclaugh/javaxml/techbooks/XSL/computerBooks.xsl";

Java and XML

 page 310

 public void service(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 res.setContentType("text/html");

 // Connect and get XML listing of books
 URL getBooksURL = new URL("http", hostname, portNumber, file);
 InputStream in = getBooksURL.openStream();

 // Transform XML for InputStream into HTML output
 try {
 XSLTProcessor processor = XSLTProcessorFactory.getProcessor();

 // Transform XML with XSL stylesheet
 processor.process(new XSLTInputSource(in),
 new XSLTInputSource(
 new FileInputStream(stylesheet)),
 new XSLTResultTarget(
 res.getOutputStream()));

 } catch (Exception e) {
 PrintWriter out = res.getWriter();
 out.println("Error: " + e.getMessage());
 out.close();
 }
 }

}

With the processor outputting to our ServletOutputStream, we don't even need to add any output
of our own, except in the case of errors! Saving this servlet as ListBooksServlet.java and compiling
it will make it accessible through your servlet engine in a web browser.

If you are following along with the examples, you should take several steps before accessing the servlet.
First, ensure that you are connected to the Internet, or that both the Foobar example and the
mytechbooks.com example are running locally; the mytechbooks.com servlet must be able to access the
XML data from the Foobar Public Library. Second, you should enter several books into the Foobar
Public Library system through the HTML user interface. Entering books on a variety of subjects is the
most effective way to see exactly what these applications do and how they interact. Once you have data
in the library and access to that data, you can access the ListBooksServlet.

When this new servlet is requested, it in turn requests the XML data from the Foobar Public
Library. This data (a listing of the newly available books) is then transformed and output to the
screen as HTML. The response from the servlet should look similar to Figure 13.4.

Figure 13.4. HTML output from mytechbooks.com new book listing

Java and XML

 page 311

Along with the menu links on the left (not implemented in this example), the newest book listings
are printed in a very nice format, all with up-to-date information (thanks to our changes at the
Foobar Public Library!) as well as links to buy the book with a few mouse clicks. Now
mytechbooks.com customers can easily browse the new book listings online; all that is left is to
push this information out to these customers, so they don't even have to type in a URL. We look at
solving this difficult problem next.

13.3 Push Versus Pull

So far, we have looked at building our applications assuming that the application clients would
always pull data and content. In other words, a user had to type a URL into their browser (in the
case of the mytechhbooks.com new book listings), or an application like the mytechbooks.com
servlet had to make an HTTP request for XML data (in the case of the Foobar Public Library).
While this is not a problem, it is not always the best way for a company like mytechbooks.com to
sell books. Clients pulling data have to remember to visit sites they would buy items from, and
often don't revisit those sites for days, weeks, or even months. While those clients may often
purchase goods and services when they do remember, on average, those purchases do not result in
as much revenue as if small purchases were made more frequently.

Realizing this trend, mytechbooks.com wants to be able to push data to its clients. Pushing data
involves letting the client know (without any client action) that new items are available, or that
specials are being run. This in turn allows the client to make more frequent purchases without
having to remember to visit a web page. However, pushing data to clients is difficult in a web
medium, as the Internet does not behave as a thick client: it is harder to send pop-up messages or
generate alerts for users. What mytechbooks.com has discovered, though, is the popularity of
personalized "start pages" like Netscape's My Netscape and Yahoo's My Yahoo pages. In talking

Java and XML

 page 312

with Netscape, mytechbooks.com has been hearing about a technology called Rich Site Summary
(RSS), and thinks it may be the answer to their need to push data out to clients.

13.3.1 Rich Site Summary

Rich Site Summary (RSS) is a particular flavor of XML. It has its own DTD, and defines what is
called a channel . A channel is a way to represent data about a specific subject, and provides for a
title and description for the channel, an image or logo, and then several items within the channel.
Each item, then, is something of particular interest about the channel, or a product or service
available. Because the allowed elements of an item are fairly generic (title, description, hyperlink),
almost anything can be represented as an item of a channel. An RSS channel is not intended to
provide a complete site's content, but rather a short blurb about a company or service, suitable for
display in a portal-style framework, or as a sidebar on a web site. In fact, the different "widgets" at
Netscape's Netcenter are all RSS channels, and Netscape allows the creation of new RSS channels
that can be registered with Netcenter. Netscape also has a built-in system for displaying RSS
channels in an HTML format, which of course fits into their Netcenter start pages.

At this point, you may be a little concerned that RSS is to Netscape as Microsoft's XML parser is to
Microsoft: almost completely useless when used with other tools or vendors. Although originally
developed by Netscape specifically for Netcenter, the XML structure of RSS has made it usable by
any application that can read a DTD. In fact, many portal-style web sites and applications are
beginning to use RSS, such as the Apache Jetspeed project (http://java.apache.org/jetspeed), an
open source Enterprise Information Portal system. Jetspeed takes the same RSS format that
Netscape uses, and renders it in a completely different manner. Because of the concise grammar of
RSS, this is easily done.

As many users have start pages, or home pages, or similar places on the Web that they frequent,
mytechbooks.com would like to create an RSS channel that provides new book listings, and then
allows interested clients to jump straight to buying an item that catches their eye. This is an
effective means to push data, as products like Netcenter will automatically update RSS channel
content as often as the user desires.

13.3.2 Creating an RSS XML Document

The first thing we need to do to use RSS is create an RSS file. This is almost too simple to be
believed: other than referencing the correct DTD and following that DTD, there is nothing at all
complicated about creating an RSS document. Example 13.6 shows a sample RSS file that
mytechbooks.com has modeled.

Example 13.6. Sample RSS Channel Document for mytechbooks.com
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"
 "http://my.netscape.com/publish/formats/rss-0.91.dtd">

<rss version="0.91">
 <channel>
 <title>mytechbooks.com New Listings</title>
 <link>http://www.newInstance.com/javaxml/techbooks</link>
 <description>
 Your online source for technical material, computers,
 and computing books!
 </description>
 <language>en-us</language>

Java and XML

 page 313

 

 <item>
 <title>Java Servlet Programming</title>
 <link>
 http://newInstance.com/javaxml/techbooks/buy.xsp?isbn=156592391X
 </link>
 <description>
 This book is a superb introduction to Java servlets
 and their various communications mechanisms.
 </description>
 </item>

 </channel>
</rss>

The root element must be rss, and the version attribute must be defined; additionally, this
attribute's value must match up with the version of the DTD referenced. Within the root element,
one single channel element must appear. This has elements that describe the channel (title, link,
description, and language), an optional image that can be associated with the channel (as well as
information about that image), and then as many as fifteen item elements, each detailing one item
related to the channel. Each item has a title, link, and description element, all of which are
self-explanatory.

As in previous examples, actual RSS channel documents should avoid having
whitespace within the link and url elements, but rather have all information on a
single line. Again, the formatting in the example does not reflect this due to printing
and sizing constraints.

An optional text box and button to submit the information in the book can be added as well,
although these are not included in the example. For a complete detail of allowed elements and
attributes, visit http://my.netscape.com/publish/help/mnn20/quickstart.html online.

It is simple enough to create RSS files programmatically; the procedure is similar to how we
generated the HTML for the mytechbooks.com web site. Half of the RSS file (the information about
the channel as well as the image information) is static content; only the item elements must be
generated dynamically. However, just as you were getting ready to open up vi and start creating
another XSL stylesheet, another requirement was dropped into your lap: the machine that will house
the RSS channel is a different server than that used in our last example, and only has very outdated
versions of the Apache Xalan libraries available. Because of some of the high-availability
applications that also run on that machine, such as the billing system, mytechbooks.com does not
want to update those libraries until change control can be stepped through, a week-long process.
However, they do have newer versions of the Xerces libraries available (as XML parsing is used in
the billing system), so Java APIs for handling XML are available.[2] While SAX and DOM are both

Java and XML

 page 314

viable alternatives, JDOM again would seem to be the simplest way to convert the XML from the
Foobar Public Library into an RSS channel format. Example 13.7 does just this.

[2] Yes, this is a bit of a silly case, and perhaps not so likely to really occur. However, it does afford us the opportunity to look at another alternative for creating
XML programmatically. Don't sneer too much at the absurdity of the example; all of the examples in this book, including the silly ones, stem from actual
experiences consulting for real-world companies; laughing at this scenario might mean your next project has the same silly requirements!

Example 13.7. Java Servlet to Convert New Book Listings into an RSS Channel
Document
package com.techbooks;

import java.io.FileInputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.net.URL;
import java.util.Iterator;
import java.util.List;
import javax.servlet.*;
import javax.servlet.http.*;

// JDOM
import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.input.Builder;
import org.jdom.input.SAXBuilder;

public class GetRSSChannelServlet extends HttpServlet {

 /** Host to connect to for books list */
 private static final String hostname = "newInstance.com";
 /** Port number to connect to for books list */
 private static final int portNumber = 80;
 /** File to request (URI path) for books list */
 private static final String file = "/cgi/supplyBooks.pl";

 public void service(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 res.setContentType("text/plain");
 PrintWriter out = res.getWriter();

 // Connect and get XML listing of books
 URL getBooksURL = new URL("http", hostname, portNumber, file);
 InputStream in = getBooksURL.openStream();

 try {
 // Request SAX Implementation and use default parser
 Builder builder = new SAXBuilder();

 // Create the document
 Document doc = builder.build(in);

 // Output XML
 out.println(generateRSSContent(doc));

 } catch (JDOMException e) {
 out.println("Error: " + e.getMessage());
 } finally {
 out.close();
 }
 }

Java and XML

 page 315

 /**
 * <p>
 * This will generate an RSS XML document using the supplied
 * JDOM <code>Document</code>.
 * </p.
 *
 * @param doc <code>Document</code> to use for input.
 * @return <code>String</code> - RSS file to output.
 * @throws <code>JDOMException</code> when errors occur.
 */
 private String generateRSSContent(Document doc) throws JDOMException {
 StringBuffer rss = new StringBuffer();

 rss.append("<?xml version=\"1.0\"?>\n")
 .append("<!DOCTYPE rss PUBLIC ")
 .append("\"-//Netscape Communications//DTD RSS 0.91//EN\" ")
 .append("\"http://my.netscape.com/publish/formats")
 .append("/rss-0.91.dtd\">\n")
 .append("<rss version=\"0.91\">\n")
 .append(" <channel>\n")
 .append(" <title>Technical Books</title>\n")
 .append(" <link>")
 .append("http://newInstance.com/javaxml/techbooks</link>\n")
 .append(" <description>\n")
 .append(" Your online source for technical materials, ")
 .append("computers, and computing books!\n")
 .append(" </description>\n")
 .append(" <language>en-us</language>\n")
 .append(" \n");

 // Add an item for each new title with Computers as subject
 List books = doc.getRootElement().getChildren("book");
 for (Iterator i = books.iterator(); i.hasNext();) {
 Element book = (Element)i.next();
 if (book.getAttribute("subject")
 .getValue()
 .equals("Computers")) {
 // Output an item
 rss.append("<item>\n")
 // Add title
 .append(" <title>")
 .append(book.getChild("title").getContent())
 .append("</title>\n")
 // Add link to buy book
 .append(" <link>")
 .append("http://newInstance.com/javaxml")
 .append("/techbooks/buy.xsp?isbn=")
 .append(book.getChild("saleDetails")
 .getChild("isbn")
 .getContent())

Java and XML

 page 316

 .append("</link>\n")
 .append(" <description>")
 // Add description
 .append(book.getChild("description").getContent())
 .append("</description>\n")
 .append("</item>\n");

 }
 }

 rss.append(" </channel>\n")
 .append("</rss>");

 return rss.toString();
 }

}

By this time, nothing in this code should be the least bit surprising to you; we import the JDOM and
I/O classes we need, and access the Foobar Public Library application as in the ListBooksServlet.
The resulting InputStream is used to create a JDOM Document, with the default parser (Apache
Xerces in JDOM 1.0) and the JDOM implementation built on SAX doing the work for us:

// Request SAX Implementation and use default parser
Builder builder = new SAXBuilder();

// Create the document
Document doc = builder.build(in);

We then hand off the JDOM Document to the generateRSSContentMethod(), which prints out
all of the static content for the RSS channel. This method then obtains the book elements within the
XML from the library, and iterates through them, ignoring those without a subject attribute equal
to "Computers":

// Add an item for each new title with Computers as subject
List books = doc.getRootElement().getChildren("book");
for (Iterator i = books.iterator(); i.hasNext();) {
 Element book = (Element)books.elementAt(i);
 if (book.getAttribute("subject")
 .getValue().equals("Computers")) {
 // Output as an item element
 }
}

Finally, each element that makes it through the comparison is added to the RSS channel. Nothing
very exciting here, right? Figure 13.5 shows a sample output from accessing this servlet, saved as
GetRSSChannelServlet.java, through a web browser.

Figure 13.5. RSS channel generated by the GetRSSChannelServlet

Java and XML

 page 317

With this RSS channel ready for use, mytechbooks.com has made their content available by any
service provider that supports RSS! To get the ball rolling on allowing clients to use their channel,
mytechbooks.com would like to register their channel with Netscape Netcenter and see it in action
(and so would we!).

13.3.3 Validating the RSS Channel

Once the channel is created, it should be validated. In addition to ensuring that the document meets
the constraints laid out by the RSS DTD, there are limitations that Netscape lays out that the DTD
cannot enforce (although XML Schema could rectify this in the future). In order to ensure that
channels are properly formed and usable, Netscape provides an online validation mechanism,
located at http://my.netscape.com/publish/help/validate.tmpl. Visiting this site and entering in the
URL to your RSS channel (which can be a servlet, CGI script, or static file) allows the Netscape
program to ensure you are generating a usable RSS channel. Figure 13.6 shows the output of a
successful validation run.

Figure 13.6. Validation confirmation from an RSS channel

Java and XML

 page 318

Once validation is complete, we are ready to register the RSS channel with Netcenter.

13.3.4 Registering the Channel

Once the RSS channel has been validated, we need to publish the channel to Netcenter (or whatever
other service provider is being used). This can be done through accessing
http://my.netscape.com/publish. Walking through the steps, you have to supply a Netcenter account
name, as a confirmation email is sent to the address attached to that account. Once the valid RSS
channel URL has been accepted, Netcenter adds the channel to its system and send an email. Figure
13.7 shows this email, which includes instructions on adding links to the RSS channel from a web
site (like mytechbooks.com, which we look at next), as well as how to add the channel to a
Netcenter start page.

Figure 13.7. Netscape RSS channel confirmation email

Java and XML

 page 319

13.3.5 Using the Channel

Validating and registering the channel has been a breeze! Additionally, the email that Netscape
generates even makes adding the channel to a start page simple. Following the hyperlink provided,
it takes two mouse clicks to make this channel visible. Figure 13.8 shows the RSS channel within a
Netcenter start page, displayed in the left column, with all of our XML converted into formatted
HTML.

Figure 13.8. Netcenter with custom RSS channel

Java and XML

 page 320

Each item is listed with the title and a hyperlink (letting the user buy the selected book with an easy
mouse click), as well as the description of the book. Additionally, the mytechbooks.com logo is
included with a short description of the channel. Every time a user opens her start page, this channel
can inform her of new books available through mytechbooks.com, potentially doubling or tripling
the income of the company.

Finally, as a means of advertising the availability of this channel to other customers, we can update
the XSL stylesheet we created for mytechbooks.com to include a link that will automatically add
the channel to a customer's own start page. This means that a single pull of data from
mytechbooks.com can result in the client having data pushed to them daily! Add in the following
HTML to our XSL stylesheet:

<p align="center" >

 Contact Us

 </p>

 <p align="center">

 <IMG SRC="http://my.netscape.com/publish/images/addchannel.gif"
 WIDTH="88" HEIGHT="31" BORDER="0" />
 </p>
 </td>
 <td valign="top" align="left">
 <table border="0" cellpadding="5" cellspacing="5">
 <tr>
 <td width="450" align="left" valign="top">
 <p>

Java and XML

 page 321

 Welcome to mytechbooks.com,
 your source on the Web for computing and technical books.
 Our newest offerings are listed on the left. To purchase
 any of these fine books, simply click on the
 "Buy this Book!" link, and you will be taken to
 the shopping cart for our store. Enjoy!

 </p>

This change (included in the email that Netscape generates and sends to you when registering an
RSS channel) will add a button with a Netscape graphic taking the user straight to the web site that
adds the custom channel to his start page. The formatted HTML that results from this change is
shown in Figure 13.9.

Figure 13.9. HTML output with Netscape RSS channel link

At this point, we have completed our business-to-business case study. We have taken an
organization that had one language and no XML capabilities (the Foobar Public Library with their
Perl scripts) and allowed that organization to communicate with a company that uses an entirely
different technology (Java servlets). The two companies are completely uncoupled, meaning that
there is no code in either application that is tied to code in the other application. Because of the
standard XML data used as a communication medium, either company can change applications,
technologies, and even architectures without affecting the operation of the other. We then looked at
how this communication could be used to present HTML content to users (in a totally different
fashion for each application), and how to push that content out to customers in yet another HTML
format through the use of RSS channels. Underneath all this interaction and communication, XML
drove the communication and interoperability of these very different businesses.

Java and XML

 page 322

13.4 The Real World

There is very little to say in regard to business-to-business that we have not covered. Our examples
in this chapter were pulled right out of the project deliverables and mission statements of today's top
companies, and may solve problems you are faced with in your current job! We will now look
briefly at how this XML-centric approach differs from Electronic Data Interchange (EDI), as well
as other uses of RSS channels.

13.4.1 XML Versus EDI

With the increasing need for communication between companies, Electronic Data Interchange
(EDI) has become a hot topic. Expensive products and heavy-duty solutions have had "EDI"
slapped on their label, and are selling like mad. However, these expensive solutions may quickly
fall out of favor with companies that do not have deep pockets. In fact, with the rise of XML, even
companies that can afford enterprise-level EDI solutions are deciding to go with an XML-based
approach instead. While this is certainly due in part to the standardization that XML provides, it is
also a testament to the ease of use of XML. In a single chapter, you have acquired the skills to
enable disparate systems to communicate in complex ways, something that ten years ago would
have required an entire team of developers and still would have resulted in a proprietary solution.

In fact, it is arguable that XML totally replaces the need for EDI. Legacy systems, proprietary
applications, massive databases, and tightly secured products can all interchange data by using
XML as a data format. With APIs like SAX and DOM, and now JDOM, developing complete XML
solutions is practical, and building XML layers over existing data in different formats is a matter of
weeks and months instead of years. Expect to see EDI system sales slow to a crawl, and e-business
offerings based on XML and Java rocket in the years to come.

13.4.2 RSS Channels: Here to Stay?

One of the common questions regarding using XML formats such as RSS is "Are they here to
stay?" This most often stems from an assumption that because the format is used in a particular way
(such as Netscape using RSS for their Netcenter page), the format must always be used in that
particular way. This is true in the case of RSS, as early supporters were dismissed, and RSS was
considered something "that Netscape did." However, with XML as the underpinnings, RSS and
other XML-based formats can be used just as any other XML document can. The styling of the
document is totally arbitrary, and a stylesheet to transform an RSS channel into WML for a wireless
phone is trivial to write. In fact, as we mentioned, the Apache Jetspeed project uses RSS, and the
O'Reilly Network (http://www.oreillynet.com) is using RSS channels on sites like XML.com
(http://www.xml.com).

Even more important than understanding that RSS is a viable technology for years to come is
realizing that XML-based solutions, by their nature, are non-proprietary. Any XML document can
be manipulated in any way the content author or developer can imagine. Don't be surprised to see
most presentation layers migrate to XML in the coming years, or move to a particular flavor of
XML such as RSS, as they seek to increase their applications' dynamic content without having to
keep a fleet of web developers on staff just to update that content.

13.5 What's Next?

By now we have managed to touch on the major subjects concerning using XML within Java code.
Besides being able to create, parse, style, transform, constrain, and validate XML, we have looked
at using XML within a publishing framework, using XML for remote procedure calls, storing

Java and XML

 page 323

configuration information within XML documents, and now creating XML "on the fly" from Java
code. This rounds out our XML and Java skills, and should prepare you for nearly any XML-related
application programming you could be tasked with. In our next chapter, we wrap up our look at
XML and this book with another look at XML Schema. Although we have discussed using XML
Schema for constraining documents, we will take a look at some of the new and innovative
directions XML Schema is moving in which, and how this affects using XML. Although this is
slightly tangential to using XML from Java, it does bear on how XML is used in your applications .

Chapter 14. XML Schema
As a final look at XML, and, in particular, XML topics that are particularly hot right now, we'll
spend a bit of time discussing XML Schema. Although the last several chapters have focused
specifically on using Java to manipulate XML, in this chapter we look at XML Schema as a whole.
In fact, XML Schema is still relatively new and the support for specific Java classes and interfaces
to manipulate XML Schema has been slow in surfacing.

Despite the difficulty in using XML Schema directly through Java, the specification for XML
Schema is important enough to warrant further discussion. In this chapter, we first spend time
discussing whether using XML Schema is a stable and good choice, particularly as compared to
continuing to use DTDs. We then spend a bit of time discussing how XML Schema closely maps to
Java, and how that relationship may cause some significant changes to the way XML content is
stored.

14.1 To DTD or Not To DTD

Although nearly every XML content author and developer has been hearing about XML Schema for
almost a year, there is still quite a bit of uncertainty as to whether XML Schema is ready to be used
in "prime time." While some of this concern is based on the changes and immaturity of the XML
Schema specification, the majority seems to be based on a familiarity with DTDs. Many XML
developers still use only DTDs for document constraints, despite the wave of publicity that XML
Schema has received. There are quite a few reasons for this resistance to change, and all are
important in deciding for yourself if you need to use XML Schema.

14.1.1 Stability of the XML Schema Specification

One of the largest problems that XML Schema is still attempting to overcome is the rapid change in
its own specification (which can be read online at http://www.w3.org/TR/xmlschema-1/ and
http://www.w3.org/TR/xmlschema-2/). Within six months (from August of 1999 to March of 2000),
three revisions of this specification were released; while this in itself is neither unusual nor
problematic, the significant changes introduced through the revisions are. Each revision basically
made schemas corresponding to previous revisions obsolete and therefore useless. This generated a
lot of frustration and discontent in the XML community. In addition, the complexity of the
specification has only seemed to increase over the lifecycle of XML Schema, and this complexity
has compounded the community's uncertain feelings towards XML Schema.

Despite all this "negative press," XML Schema still promises to be at least as significant as the
XML namespaces specification, and arguably as important as the original XML 1.0 specification
itself. While the unhappiness at writing schemas that later become useless is understandable, the
XML Schema specification and working group have always maintained that until the specification
is complete and final at the W3C, changes are unavoidable. In fact, many of the authors frustrated at
the changes are the same voices that made suggestions and criticisms about items that should be

Java and XML

 page 324

changed; in other words, not using XML Schema because it has changed a lot is simply a poor idea.
Almost every change, including minor ones, by the XML Schema working group has assisted in the
clarity and usability of the specification.

14.1.2 Enhanced Document Constraints

It would be almost impossible to even briefly discuss schemas without emphasizing (not for the first
time in this book) the ease of constraining data through their use. You would be hard-pressed to find
anyone, even those dead-set on continuing to use DTDs, who would deny the flexibility and ease of
setting data constraints with XML Schema. In fact, the arguably more important uses of XML
Schema that we discuss later in this chapter have been overshadowed by this fact! The truth is that
any application that seeks to enforce strict data type and range constraints with an XML-based
medium must elect to use XML Schema. Days if not weeks of time and effort can be saved.

In addition to traditional constraints, XML Schema allows content model constraints for generic
data formats to be built. These constraints can then be shared and referenced from other schemas by
using XLink and XPointer. DTDs, not being XML themselves, are extremely limited in this respect.
It would not be unusual to see large applications using DTDs that are thousands of lines long. This
is hardly an object-oriented approach to data, let alone a maintainable approach to data validation.

14.1.3 Namespace Issues with DTDs

We've already looked at how parsing an XML document that uses namespaces and needs to be
validated can cause significant problems for DTDs. Remember this code:

DOMParser parser = new DOMParser();

// Turn on namespace support
parser.setFeature("http://xml.org/sax/features/namespaces", true);

// Turn on validation
parser.setFeature("http://xml.org/sax/features/validation", true);

// Parse
parser.parse();

// Get results
Document doc = parser.getDocument();

When this code is compiled within an application, running the application generates the following
fatal error (this example is the specific verbiage from Apache Xerces, but your results should be
similar):

org.xml.sax.SAXParseException: Document root element "JavaXML:Book", must
 match DOCTYPE root "JavaXML:Book".
 at org.apache.xerces.framework.XMLParser.reportError
 (XMLParser.java:1318)
 at org.apache.xerces.validators.dtd.DTDValidator
 .reportRecoverableXMLError(DTDValidator.java:1602)
 at org.apache.xerces.validators.dtd
 .DTDValidator.rootElementSpecified(DTDValidator.java:576)
 at org.apache.xerces.framework.XMLParser
 .scanAttributeName(XMLParser.java:2076)
 at org.apache.xerces.framework.XMLDocumentScanner
 .scanElement(XMLDocumentScanner.java, Compiled Code)
 at org.apache.xerces.framework
 .XMLDocumentScanner$ContentDispatcher.dispatch

Java and XML

 page 325

 (XMLDocumentScanner.java, Compiled Code)
 at org.apache.xerces.framework.XMLDocumentScanner
 .parseSome(XMLDocumentScanner.java, Compiled Code)
 at org.apache.xerces.framework
 .XMLParser.parse(XMLParser.java:1208)
 at org.apache.xerces.framework
 .XMLParser.parse(XMLParser.java:1247)

This is because DTDs are ignorant of namespaces, but the mechanism handling the root element as
well as the constructs nested within it is not. This difference in functionality causes conflicts
between validation and namespace processing. XML documents often require both, making XML
Schema an even more attractive solution for document constraints. Additionally, XML Schema's
close parallels to Java and the possibility of future integration are extremely promising.

14.2 Java Parallels

As the XML Schema specification has solidified, the similarity between XML Schema and Java
class and interface definitions has only increased. Although still strictly only a set of constraints, an
XML Schema closely models the code you write in Java when creating a class or interface
definition. The schema defines the set of allowed data that is contained within an XML document;
this is similar to the way a Java class or interface defines the allowed methods and variables that an
instance of the class may represent. Just as a Java program only needs to know this definition to use
the instance (without having to know specific details about the instance implementation, such as its
memory address or contents), an XML-aware application only needs to understand a document's
constraints (defined in the XML Schema) to use the XML document.

The importance of this parallel might not seem obvious to you; however, this facet of XML Schema
is particularly critical to how XML may be used in new types of applications, and new
implementations of old techniques. We look at just a few of these important applications here, but
you should be able to extend these concepts to many more uses, perhaps pushing the envelope of
your own applications' functionality.

14.2.1 Equivalence

One important concept that XML Schema introduces is element equivalence. In XML 1.0 and
DTDs, one element type must be mapped to one element. In other words, if two elements shared
identical content, both elements had to have an explicit definition:

<!ELEMENT element1 (element2, element3*)>
<!ATTLIST element1
 atttribute1 CDATA #REQUIRED
 attrribute2 (foo|bar) "foo"
>

<!ELEMENT sameAsElement1 (element2, element3*)>
<!ATTLIST sameAsElement1
 atttribute1 CDATA #REQUIRED
 attrribute2 (foo|bar) "foo"
>

This is obviously redundant, and can introduce errors if one element's definition is changed while
the other definition is left untouched. By allowing types, XML Schema can remedy this:

<complexType name="sameAsType" >
 <attribute name="attribute1" type="string" minOccurs="1" />
 <attribute name="attribute2" default="foo">

Java and XML

 page 326

 <simpleType base="string">
 <enumeration value="foo" />
 <enumeration value="bar" />
 </simpleType>
 </attribute>
</complexType>

<element name="element1" type="sameAsType" />
<element name="sameAsElement1" type="sameAsType" />

Through this mechanism, a single element type can be defined and then applied to multiple
elements. This is similar to a Java model, where a class is defined and then several instances are
created. However, XML Schema adds even more functionality. Consider the following XML
document fragment, representing a shipper's manifest:

<shipperManifest>
 <item>
 <name>Ceramic Vase</name>
 <quantity>400</quantity>
 <quality>excellent</quality>
 </item>

 <item>
 <name>Crystal Candy Dish</name>
 <quantity>150</quantity>
 <quality>fine</quality>
 </item>
</shipperManifest>

Either the shipper or manufacturer may want to add additional information regarding the items in
the manifest, such as why two of the vases are cracked or where the candy dishes were acquired:

<shipperManifest>
 <item>
 <name>Ceramic Vase</name>
 <quantity>400</quantity>
 <quality>excellent</quality>
 <comment>2 vases broken in transit</comment>
 </item>

 <item>
 <name>Crystal Candy Dish</name>
 <quantity>150</quantity>
 <quality>fine</quality>
 <comment>These dishes were acquired in Venice, Italy</comment>
 </item>
</shipperManifest>

The problem now is that the source of the comments is ambiguous; are they from the shipper who
delivered this cargo, or the manufacturer of the items, or a retailer who bought and then resold the
items? It is impossible to tell. Changing the element names can help this:

<shipperManifest>
 <item>
 <name>Ceramic Vase</name>
 <quantity>400</quantity>
 <quality>excellent</quality>
 <shipperComment>2 vases broken in transit</shipperComment>
 </item>

Java and XML

 page 327

 <item>
 <name>Crystal Candy Dish</name>
 <quantity>150</quantity>
 <quality>fine</quality>
 <retailerComment>
 These dishes were acquired in Venice, Italy
 </retailerComment>
 </item>
</shipperManifest>

While this aids in clarity, now our schema starts to look a little strange:

<element name="retailerComment" type="string" />
<element name="shipperComment" type="string" />
<element name="manufacturerComment" type="string" />

<element name="shipperManifest">
 <complexType>
 <element name="item" maxOccurs="*">
 <complexType>
 <element name="name" type="string" />
 <element name="quantity" type="integer" />
 <element name="quality" type="string" />
 <element ref="retailerComment" minOccurs="0" />
 <element ref="shipperComment" minOccurs="0" />
 <element ref="manufacturerComment" minOccurs="0" />
 </complexType>
 </element>
 </complexType>
</element>

Here the three different comment elements are defined, and each one is allowed to appear zero or
more times within the item element. While this is correct, it seems a bit silly to have to allow each
of the three comment elements to appear, as they are all intrinsically the same data type; the
comment is handled as pure textual data in each case. In Java, this could be accomplished by
defining a Comment class and then extending that class to RetailerComment, ShipperComment, and
ManufacturerComment. We could then allow one or more Comment types, or comment elements in
XML-speak, to appear within the item element. Fortunately, the XML Schema working group
thought of this as well, and added the equivClass keyword. This allows an element to be defined,
and for other elements to declare themselves equivalent with that element. These equivalent
elements are then able to be substituted for the base element, called an exemplar . Using this
construct, we can simplify our schema:

<element name="comment" type="string" />
<element name="retailerComment" type="string" equivClass="comment" />
<element name="shipperComment" type="string" equivClass="comment" />
<element name="manufacturerComment" type="string" equivClass="comment" />

<element name="shipperManifest">
 <complexType>
 <element name="item" maxOccurs="*">
 <complexType>
 <element name="name" type="string" />
 <element name="quantity" type="integer" />
 <element name="quality" type="string" />
 <element ref="comment" minOccurs="0" />
 </complexType>
 </element>
 </complexType>

Java and XML

 page 328

</element>

This new schema more accurately reflects the intent of the constraints, as well as offering a more
Java-centric look at our XML elements and how they relate to each other. Any of the comment-
based elements can appear within an item element, and the schema validation will handle
determining the relationship and equivalence between the different element types for us. We can
extend this functionality even further as we begin to apply these constructs to data used within Java
applications, which we look at next.

14.2.2 Complementing Java with XML Schema

Consider a Java class as a set of constraints, and an instance of that class as data that adheres to
those constraints. The data in this case is binary data; in other words, bytecode. The constraints
define the variables that can be filled with data, the methods that can be implemented, and
acceptable inputs and outputs. However, the actual values of the variables and method calls are
unknown, and undetermined until runtime. Much as a content author populates an XML document
with data that conforms to a schema, an application populates a Java instance with values for the
specific task at hand. This concept can then be layered upon itself when you consider a Java
interface as another set of constraints, this time on the class definition. The interface defines the
actual method signatures, what inputs and outputs are acceptable, and what contract classes that
implement the interface must follow. In this way, an interface constrains class definitions, which in
turn constrain class instances.

While this chain of constraints makes for highly effective modeling and object-oriented design, the
data that is used to set values within the class instance is not constrained except by type. As long as
the variable is, for example, an int, any range is accepted. Implementing further constraints
requires code within the class or method implementation. In addition, the return values of methods
are similarly unconstrained. The application client then must enforce validation of its own if the
return value of the invoked method must fall within a certain range. This makes for quite a bit of
extra coding, and also can result in ambiguity to those using classes you may have written. The
values you may be returning may not be in the range of values the client expects; if validation is not
explicitly coded, serious and unexpected behavior can result from miscommunication.

The perfect solution and complement to Java in this case is XML Schema. By using XML Schema
to constrain the data acceptable for member variables in a Java class instance, much tighter controls
can be enforced that enable application clients to know exactly what ranges of data may be returned
from method calls. XML Schema can also be used to define values acceptable for class instance
use. For example, let's look back at some of the member variables used by our
XmlRpcConfigurationHandler class:

private String uri;

private String hostname;
private int portNumber = 0;
private Hashtable handlers;

The problem here is that the hostname may need to be a limited number of characters in length; the
port number should be a positive integer less than 64,000; and the handlers may have additional
constraints. The XML-RPC clients are able to set these values with any appropriate type, forcing
the handler to perform validation within code. However, along with the Java class definition, we
could add the following schema (fragment), which defines the allowed data parameters:

<attribute name="hostname" >

Java and XML

 page 329

 <simpleType baseType="string">
 <minLength value="2" />
 <maxLength value="20" />
 </simpleType>
</attribute>

<attribute name="portNumber">
 <simpleType baseType="integer">
 <minExclusive value="0" />
 <maxExclusive value="64000" />
 </simpleType
</attribute>

Here, each member variable is treated as an attribute of the class itself. With this XML Schema as a
counterpart to your Java code, validation can occur outside of the code with a standard mechanism,
and can also allow the client to act more intelligently, understanding the allowed ranges and
constraints on allowed data types.

While this integration at the Java Virtual Machine (JVM) level is still a long way from reality, the
promise of integration is important enough to warrant thinking about how validation is currently
occurring. If you can convert your data constraints from DTDs to schemas, you are ahead of the
game if and when XML Schema is integrated more tightly with the Java language. Additionally,
you may find ways to integrate XML Schema constraints into your application logic in the process
of constraint conversion.

14.2.3 Pattern Matching

Extending our look at XML Schema in light of how it can constrain data and integrate with Java
even further, we look at XML Schema's pattern matching capabilities. In the last section, we talked
about using XML Schema to avoid complicated validation within Java code. This is only
applicable, though, if XML Schema can do more than just determine simple numeric ranges and
String lengths. For example, ensuring that a monetary value is entered with allowed formatting
applied is more complicated than requiring a data type and length. Instead, pattern matching must
occur, as a dollar value can be entered in a number of ways:

$4.50
$45.96
$54
$45.6

These types of scenarios must be handled for schemas to be useful for data validation. XML
Schema provides the ability to perform pattern matching through the pattern attribute on an
element or attribute. A money type could be represented with the following definition, which
requires any of the above examples (as long as they start with a dollar sign):

<simpleType name="money" base="string">
 <pattern value="\$[0-9]+(\.[0-9]{1,2})?
</simpleType>

Here, the dollar sign is required ($). Then a sequence of digits can follow, occurring an unlimited
number of times ([0-9]+). Then, as signified by the question mark around the entire parenthesized
group, an optional cents qualifier can be given ($4.50). Again, digits can appear, but this time only
singly or in a pair ({1,2}), and they must be preceded by a decimal (.).

Java and XML

 page 330

While this is a simple example, as Perl and regular expression aficionados will let you know, it does
show that XML Schema provides for pattern matching constraints. You should consult the XML
Specification for more information about the supported regular expression constructs. Using these
expressions can result in very complex validation occurring in your schema, which reduces the
responsibility of your Java code to perform this validation in complicated code.

14.2.4 XML-RPC and Distributed Systems

A particularly important application of using data constraints to complement Java code is in the
case of XML-RPC, which we have already looked at briefly. Currently, XML-RPC libraries have a
predefined set of variable types that can be passed between server and client. These constraints on
what can be transferred across the network allow the client to have only a general idea of the
handlers on the server and still interact with them. However, there is no knowledge of the ranges of
values accepted as input and returned as output; although this may seem a minor issue, a handler
being able to set these constraints and allow the client to recognize them can save significant
processing time in validation and greatly increase its usability.

With a schema defining the ranges and specifics of data input and output for XML-RPC handlers, a
complete map of a handler's functionality is available to clients. This also applies for developers
seeking to use another developer's classes. Not only is the input known, but specific details about
useful input are available; exceptions thrown as a result of invalid data can be almost completely
eliminated. This more complete mapping of XML-RPC handlers could easily be extended to other
distributed systems; a prime candidate for this is EJB. In addition to the remote interface, imagine
an XML Schema contract of the allowable data that is input and output from the methods in the
remote interface. This additional information could greatly enhance the usability and reliability of
distributed systems, particularly when the developers of the beans and handlers are not able to
directly communicate with developers of application clients.

14.2.5 Databases and XML

Another revolution that could be brought on by additional data constraints and mappings is XML
involvement in database use. First, it should be pointed out that we are not talking about pure XML
databases here. Although complete XML database systems are being developed, they are very
young technologies, and will most likely encounter a lot of resistance among traditionalists in
management and application development. Additionally, there has yet to be a compelling reason for
converting existing relational databases to this new format. What is worth taking a long look at,
however, is using XML to map data from Java (or any other programming language) to a relational
or object-oriented database.

Again, the key is that while mappings occur today, these mappings do not reflect the physical
constraints that may exist on a database. Thus, complex validation and range checking has to occur
in application code before database inserts and updates can occur, and even then rigorous error
checking has to be performed to ensure that errors do not occur from database constraint violation.
Let's look at a sample database table, shown in Figure 14.1, complete with some physical
constraints.

Figure 14.1. Database table with physical constraints

Java and XML

 page 331

The equivalent SQL for this table is shown as well:

CREATE TABLE users
 (
 username VARCHAR(12) NOT NULL,
 firstName VARCHAR(20) NOT NULL,
 lastName VARCHAR(30) NOT NULL,
 salary NUMBER(8,2)
)

Now suppose that an EJB or JDBC application must insert and update this table. A tight coupling
must exist between the code and the table, as checks must be made to ensure the lengths of fields do
not exceed the storage capacity of the table, and that the salary column is set with a valid
monetary value. Changes to the database can result in needing to make changes to database code;
this is certainly neither a maintainable nor a robust design.

This is another case where XML Schema can complement Java code to form a more complete
picture of data mappings. Consider a schema that defines the allowable values that can be inserted
into the database table. In this example, a table is considered an element of a schema, and each field
is considered an attribute of the table:

<schema>

 <element name="users">
 <complexType>
 <attribute name="username">
 <simpleType baseType="string">
 <minLength value="1" />
 <maxLength value="12" />
 </simpleType>
 </attribute>

 <attribute name="firstName">
 <simpleType baseType="string">
 <minLength value="1" />
 <maxLength value="20" />
 </simpleType>
 </attribute>

 <attribute name="lastName">
 <simpleType baseType="string">
 <minLength value="1" />
 <maxLength value="30" />
 </simpleType>
 </attribute>

 <attribute name="salary">
 <simpleType baseType="decimal">

Java and XML

 page 332

 <precision value="8" />
 <scale value="2" />
 </simpleType>
 </attribute>
 </complexType>
 </element>

</schema>

With this schema in place, application code can be slimmed down and requires only a loose
coupling to the underlying database. Changes to the physical database constraints only require
changes to the schema, rather than changes to the compiled code. Extend this concept to a database
with included or third party tools that can generate this schema from existing tables, and a complete
data mapping is possible without ever modifying Java code.

These are just a few of the possibilities that a close marriage between XML Schema and Java code
suggest. Only time will tell how far the envelope will be pushed; in the future, XML Schema almost
certainly will hold as important a place in Java programming as XML itself promises to. Beginning
to use XML Schema now for validation and data constraints will prepare you for this future, and
may in fact allow you be involved in creating it.

14.3 What's Next?

Appendixes. The index. And then some information about me (the author), and a colophon. And
then probably some advertising for the other great O'Reilly books.

Seriously, though, we've covered quite a bit of information at this point. Taking a few days to let the
material sink in, and then trying to apply your new XML skills on a project for work, or maybe
something personal, should help you polish your XML knowledge. Soon you'll be an XML wizard,
and find your applications' value increasing as they are more flexible, configurable, and productive.
Finally, you'll see your value to your boss (and lots of potential bosses at other companies!)
dramatically rise as you code maintainable and performance-driven applications. Have fun, and stay
extensible.

Appendix A. API Reference
This appendix is a quick reference to the major Java and XML APIs, SAX and DOM. It also
includes a complete API reference for JDOM, covered in Chapter 8, and the rest of the book. It is
broken down into sections based on the API being documented.

A.1 SAX 2.0

SAX 2.0 provides a sequential look into an XML document. Detailed in Chapter 3, and Chapter 5,
SAX defines a set of interfaces that can be implemented and will be invoked as callbacks during the
XML parsing process. The SAX packages are detailed here, with the classes and interfaces listed
alphabetically. In the org.xml.sax.helpers package, a large percentage of the available methods
in the helper classes are implementations of interfaces already defined in the core SAX package
(org.xml.sax). For the sake of brevity, these duplicate method definitions will be omitted in the
helper classes, and instead a comment will be included noting that an interface's methods are
implemented.

Java and XML

 page 333

A.1.1 Package: org.xml.sax

This package contains the core interfaces and classes for SAX 2.0. Most of the interfaces defined
are intended to be implemented by you, the Java developer, with the exception of the actual
XMLReader and Attributes implementation. These interfaces should be implemented by your
vendor's XML parsing software. In addition, several exceptions that SAX methods are allowed to
throw are defined. Several of the interfaces defined here are part of the SAX 1.0 and 2.0 alpha
distributions, and are now deprecated.

A.1.1.1 AttributeList

This interface was defined in SAX 1.0, and is now deprecated. The Attributes interface should be
used instead of AttributeList for SAX 2.0 implementations.

public interface AttributeList {
 public abstract int getLength ();
 public abstract String getName (int i);
 public abstract String getType (int i);
 public abstract String getValue (int i);
 public abstract String getType (String name);
 public abstract String getValue (String name);
}

A.1.1.2 Attributes

This interface represents a listing of XML attributes. It is reported to the callbacks associated with
the start of element (startElement() in ContentHandler), and is somewhat analogous to a Java
Vector. The number of attributes represented can be obtained, as well as various views of the
attributes' names (local, namespace prefix and URI, and raw) and values. Additionally, methods are
available for locating the index of an attribute given its name. The primary difference between this
interface and its predecessor, AttributeList, is that this interface is namespace-aware.

public interface Attributes {
 public abstract int getLength ();
 public abstract String getURI (int index);
 public abstract String getLocalName (int index);
 public abstract String getRawName (int index);
 public abstract String getType (int index);
 public abstract String getValue (int index);
 public int getIndex (String uri, String localPart);
 public int getIndex (String rawName);
 public abstract String getType (String uri, String localName);
 public abstract String getType (String rawName);
 public abstract String getValue (String uri, String localName);
 public abstract String getValue (String rawName);
}

A.1.1.3 ContentHandler

This interface defines the callback methods available to an application that deal with the content of
the XML document being parsed. These include notification of the start and end of parsing (which
precede and follow all other handler callbacks, respectively), processing instructions, and entities
that may be skipped by non-validating parsers. Element callbacks, complete with namespace
mappings, are also made available. Complete coverage of this interface is included in Chapter 3.

public interface ContentHandler {

Java and XML

 page 334

 public void setDocumentLocator (Locator locator);
 public void startDocument () throws SAXException;
 public void endDocument() throws SAXException;
 public void startPrefixMapping (String prefix, String uri)
 throws SAXException;
 public void endPrefixMapping (String prefix)
 throws SAXException;
 public void startElement (String namespaceURI, String localName,
 String rawName, Attributes atts)
 throws SAXException;
 public void endElement (String namespaceURI, String localName,
 String rawName)
 throws SAXException;
 public void characters (char ch[], int start, int length)
 throws SAXException;
 public void ignorableWhitespace (char ch[], int start, int length)
 throws SAXException;
 public void processingInstruction (String target, String data)
 throws SAXException;
 public void skippedEntity (String name)
 throws SAXException;
}

A.1.1.4 DocumentHandler

This interface was defined in SAX 1.0, and is now deprecated. The ContentHandler interface
should be used instead of DocumentHandler for SAX 2.0 implementations.

public interface DocumentHandler {
 public abstract void setDocumentLocator (Locator locator);
 public abstract void startDocument () throws SAXException;
 public abstract void endDocument () throws SAXException;
 public abstract void startElement (String name, AttributeList atts)
 throws SAXException;
 public abstract void endElement (String name)
 throws SAXException;
 public abstract void characters (char ch[], int start, int length)
 throws SAXException;
 public abstract void ignorableWhitespace (char ch[], int start,
 int length)
 throws SAXException;
 public abstract void processingInstruction (String target,
 String data)
 throws SAXException;
}

A.1.1.5 DTDHandler

This interface defines callbacks that are invoked in the process of parsing a DTD. Note that this
interface does not provide information about the constraints within the DTD, but instead about
references to unparsed entities and NOTATION declarations, indicating items that are generally
unparsed data. Complete coverage of this interface is included in Chapter 5.

public interface DTDHandler {
 public abstract void notationDecl (String name, String publicId,
 String systemId)
 throws SAXException;
 public abstract void unparsedEntityDecl (String name, String publicId,
 String systemId,
 String notationName)
 throws SAXException;

Java and XML

 page 335

}

A.1.1.6 EntityResolver

This interface allows applications to intervene in the process of referencing external entities, such as
an XML document that references a DTD or stylesheet. By implementing this interface, a modified
or even completely different SAX InputSource can be returned to the calling program.
Additionally, null can be returned to indicate that a normal URI connection should be opened to
the specified system ID.

public interface EntityResolver {
 public abstract InputSource resolveEntity (String publicId,
 String systemId)
 throws SAXException, IOException;
}

A.1.1.7 ErrorHandler

This interface allows custom behavior to be attached to the three types of problem conditions that
can occur within the lifecycle of XML parsing. Each receives the SAXParseException indicating
what problem initiated the callback. The SAXException is provided to allow a means of throwing
an exception that could stop parsing altogether. Complete coverage of this interface is included in
Chapter 3 and Chapter 5.

public interface ErrorHandler {
 public abstract void warning (SAXParseException exception)
 throws SAXException;
 public abstract void error (SAXParseException exception)
 throws SAXException;
 public abstract void fatalError (SAXParseException exception)
 throws SAXException;
}

A.1.1.8 HandlerBase

This helper class provides empty implementations of all the SAX 1.0 core handler interfaces, and
can be extended to allow the quick addition of handlers by overriding methods with application-
defined behavior. This class was defined in SAX 1.0, and is now deprecated. The
org.xml.sax.helpers.DefaultHandler class should be used instead of HandlerBase for SAX
2.0 implementations.

public class HandlerBase implements EntityResolver, DTDHandler,
 DocumentHandler, ErrorHandler {

 // EntityResolver implementation
 public InputSource resolveEntity (String publicId, String systemId);

 // DTDHandler implementation
 public void notationDecl (String name, String publicId,
 String systemId);
 public void unparsedEntityDecl (String name, String publicId,
 String systemId, String notationName);

 // DocumentHandler implementation
 public void setDocumentLocator (Locator locator);
 public abstract void startDocument () throws SAXException;
 public abstract void endDocument () throws SAXException;
 public abstract void startElement (String name, AttributeList atts)

Java and XML

 page 336

 throws SAXException;
 public abstract void endElement (String name)
 throws SAXException;
 public abstract void characters (char ch[], int start, int length)
 throws SAXException;
 public abstract void ignorableWhitespace (char ch[], int start,
 int length)
 throws SAXException;
 public abstract void processingInstruction (String target,
 String data)
 throws SAXException;

 // ErrorHandler implementation
 public abstract void warning (SAXParseException exception)
 throws SAXException;
 public abstract void error (SAXParseException exception)
 throws SAXException;
 public abstract void fatalError (SAXParseException exception)
 throws SAXException;
}

A.1.1.9 InputSource

This class encapsulates all information about a resource used in XML processing. This can be as
little as a String or InputStream used for locating input, or as complex as an entity with a public
ID and system ID as well as a URI reference (such as a DTD publicly defined). This class is the
preferred wrapper for passing input into a SAX parser.

public class InputSource {
 public InputSource ();
 public InputSource (String systemId);
 public InputSource (InputStream byteStream);
 public InputSource (Reader characterStream);
 public void setPublicId (String publicId);
 public String getPublicId ();
 public void setSystemId (String systemId);
 public String getSystemId ();
 public void setByteStream (InputStream byteStream);
 public InputStream getByteStream ();
 public void setEncoding (String encoding);
 public String getEncoding ();
 public void setCharacterStream (Reader characterStream);
 public Reader getCharacterStream ();
}

A.1.1.10 Locator

This class is a complement to an XML document or other parsed construct, as it provides the
document's system ID and public ID as well as information about the location within the file being
processed. This is particularly helpful for use in IDE applications and for identifying where errors
occur in parsing. Complete coverage of this interface is included in Chapter 3.

public interface Locator {
 public abstract String getPublicId ();
 public abstract String getSystemId ();
 public abstract int getLineNumber ();
 public abstract int getColumnNumber ();
}

A.1.1.11 Parser

Java and XML

 page 337

This interface was defined in SAX 1.0, and is now deprecated. The XMLReader interface should be
used instead of this one for SAX 2.0 implementations.

public interface Parser {
 public abstract void setLocale (Locale locale) throws SAXException;
 public abstract void setEntityResolver (EntityResolver resolver);
 public abstract void setDTDHandler (DTDHandler handler);
 public abstract void setDocumentHandler (DocumentHandler handler);
 public abstract void setErrorHandler (ErrorHandler handler);
 public abstract void parse (InputSource source)
 throws SAXException, IOException;
 public abstract void parse (String systemId)
 throws SAXException, IOException;
}

A.1.1.12 SAXException

This is the core exception thrown by SAX callbacks and parser implementations. Because it is often
thrown as a result of other exceptions, it has a constructor that allows the passing in of a lower-level
Exception as well as an accessor method to retrieve the originating Exception. It is also the base
class for all other SAX Exception classes.

public class SAXException extends Exception {
 public SAXException (String message);
 public SAXException (Exception e);
 public SAXException (String message, Exception e);
 public String getMessage ();
 public Exception getException ();
 public String toString ();
}

A.1.1.13 SAXNotRecognizedException

This class provides a means for an XMLReader implementation to throw an error when an
unrecognized identifier is received. This is most common in the setProperty() and
setFeature() methods (as well as their accessor counterparts) when a URI is supplied about
which the parser has no information.

public class SAXNotRecognizedException extends SAXException {
 public SAXNotRecognizedException (String message);
}

A.1.1.14 SAXNotSupportedException

This class provides a means for an XMLReader implementation to throw an error when an
unsupported (but recognized) identifier is received. This is most common in the setProperty()
and setFeature() methods (as well as their accessor counterparts) when a URI is supplied for
which the parser has no supporting code.

public class SAXNotSupportedException extends SAXException {
 public SAXNotSupportedException (String message)
}

A.1.1.15 SAXParseException

This class represents exceptions that can occur during the parsing process. Information about the
location of the error within the XML document is available through this class's accessor methods.

Java and XML

 page 338

The preferred means of supplying this information to the class is through a Locator, but the line
and column number where problems occurred can be supplied directly through overloaded
constructors. The system and public ID of the document with the problem are also made available
to the class through various means in the constructors.

public class SAXParseException extends SAXException {
 public SAXParseException (String message, Locator locator);
 public SAXParseException (String message, Locator locator,
 Exception e);
 public SAXParseException (String message, String publicId,
 String systemId, int lineNumber,
 int columnNumber);
 public SAXParseException (String message, String publicId,
 String systemId, int lineNumber,
 int columnNumber, Exception e);
 public String getPublicId ();
 public String getSystemId ();
 public int getColumnNumber ();
}

A.1.1.16 XMLFilter

This class is analogous to an XMLReader, but it obtains its events from another XMLReader rather
than a static document or network resource. These filters can also be chained on each other. Their
primary use is in modifying the output from a lower-level XMLReader in the chain, providing
filtering of the data reported to callback methods before the final application receives notification of
the data.

public interface XMLFilter extends XMLReader {
 public abstract void setParent (XMLReader parent);
 public abstract XMLReader getParent ();
}

A.1.1.17 XMLReader

This is the core interface that defines parsing behavior in SAX 2.0. Each vendor's XML parsing
software package must include at least one implementation of this interface. It replaces the SAX 1.0
Parser interface by adding support for namespaces in a document's elements and attributes. In
addition to providing an entry into parsing (with either a system ID or InputSource as input), it
allows registering of the various handler interfaces that SAX 2.0 provides. The features and
properties available to a SAX parser implementation are also set through this interface. Complete
coverage of this interface is included in Chapter 3, and a complete list of SAX core features and
properties is contained in Appendix B.

public interface XMLReader {
 public boolean getFeature (String name)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public void setFeature (String name, boolean value)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public Object getProperty (String name)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public void setProperty (String name, Object value)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 public void setEntityResolver (EntityResolver resolver);
 public EntityResolver getEntityResolver ();
 public void setDTDHandler (DTDHandler handler);
 public DTDHandler getDTDHandler ();
 public void setContentHandler (ContentHandler handler);

Java and XML

 page 339

 public ContentHandler getContentHandler ();
 public void setErrorHandler (ErrorHandler handler);
 public ErrorHandler getErrorHandler ();
 public void parse (InputSource input)
 throws IOException, SAXException;
 public void parse (String systemId)
 throws IOException, SAXException;
}

A.1.2 Package: org.xml.sax.ext

This package provides extensions to the SAX core classes and interfaces. Specifically, additional
handlers are defined for less common processing within the SAX parsing process. XMLReader
implementations are not required to support these extension handlers.

A.1.2.1 DeclHandler

This interface defines callbacks that give specific information about DTD declarations. Element and
attribute definitions invoke the appropriate callback with their names (and the element names for
attributes) as well as constraint information. While this is a fairly rigid set of data for attributes,
elements only receive a String with the constrained model as pure text. Additionally, internal and
external entity reference notifications are defined.

public interface DeclHandler {
 public abstract void elementDecl (String name, String model)
 throws SAXException;
 public abstract void attributeDecl (String eName, String aName,
 String type, String
valueDefault,
 String value)
 throws SAXException;
 public abstract void internalEntityDecl (String name, String value)
 throws SAXException;
 public abstract void externalEntityDecl (String name, String publicId,
 String systemId)
 throws SAXException;
}

A.1.2.2 LexicalHandler

This interface defines callbacks for various events that are at a document level in terms of
processing, but do not affect the resulting data within the XML document. For example, the
handling of a DTD declaration, comments, and entity references would invoke callbacks in
implementations of this interface. Additionally, a callback is defined to signal when a CDATA
section is started and ended (although the reported data will always remain the same).

public interface LexicalHandler {
 public abstract void startDTD (String name, String publicId,
 String systemId)
 throws SAXException;
 public abstract void endDTD ()
 throws SAXException;
 public abstract void startEntity (String name)
 throws SAXException;
 public abstract void endEntity (String name)
 throws SAXException;
 public abstract void startCDATA ()
 throws SAXException;

Java and XML

 page 340

 public abstract void endCDATA ()
 throws SAXException;
 public abstract void comment (char ch[], int start, int length)
 throws SAXException;
}

A.1.3 Package: org.xml.sax.helpers

This package provides extensions to the SAX core classes and interfaces. Specifically, additional
handlers are defined for less common processing within the SAX parsing process. XMLReader
implementations are not required to support these extension handlers.

A.1.3.1 AttributeListImpl

This class provides a default implementation of the org.xml.sax.AttributeList interface, and is
deprecated in SAX 2.0. It allows addition and removal of attributes as well as a clearing of the list.

public class AttributeListImpl implements AttributeList {
 public AttributeListImpl ();
 public AttributeListImpl (AttributeList atts);

 // Implementation of AttributeList interface

 // Additional methods
 public void setAttributeList (AttributeList atts);
 public void addAttribute (String name, String type, String value);
 public void removeAttribute (String name);
 public void clear ();

}

A.1.3.2 AttributesImpl

This class provides a default implementation of the org.xml.sax.Attributes interface. It allows
addition and removal of attributes as well as a clearing of the list.

public class AttributesImpl implements Attributes {
 public AttributesImpl ();
 public AttributesImpl (Attributes atts);

 // Implementation of Attributes interface

 // Additional methods
 public void addAttribute (String uri, String localName,
 String rawName, String type, String value);
 public void setAttribute (int index, String uri, String localName,
 String rawName, String type, String value);
 public void clear ();
}

A.1.3.3 DefaultHandler

This helper class provides empty implementations of all the SAX 2.0 core handler interfaces, and
can be extended to allow for quick addition of handlers by only overriding methods with
application-defined behavior. This replaces the SAX 1.0 org.xml.sax.HandlerBase class.

public class DefaultHandler implements EntityResolver, DTDHandler,
 ContentHandler, ErrorHandler {

Java and XML

 page 341

 // (Empty) Implementation of EntityResolver interface

 // (Empty) Implementation of DTDHandler interface

 // (Empty) Implementation of ContentHandler interface

 // (Empty) Implementation of ErrorHandler interface
}

A.1.3.4 LocatorImpl

This class provides a default implementation of the org.xml.sax.Locator interface. It also
provides a means of directly setting the line and column numbers.

public class LocatorImpl implements Locator {
 public LocatorImpl ();
 public LocatorImpl (Locator locator);

 // Implementation of Locator interface

 // Additional methods
 public void setPublicId (String publicId);
 public void setSystemId (String systemId);
 public void setLineNumber (int lineNumber);
 public void setColumnNumber (int columnNumber);
}

A.1.3.5 NamespaceSupport

This encapsulates namespace behavior, allowing applications to not have to implement the behavior
on their own (unless desired for performance reasons). It allows handling of namespace contexts in
a stack fashion, and also provides the ability to process XML 1.0 names, retrieving their
"namespace-aware" counterparts.

public class NamespaceSupport {
 public NamespaceSuport ();
 public void reset ();
 public void pushContext ();
 public void popContext ();
 public boolean declarePrefix (String prefix, String uri);
 public String [] processName (String rawName, String parts[],
 boolean isAttribute);
 public String getURI (String prefix);
 public Enumeration getPrefixes ();
 public Enumeration getDeclaredPrefixes ();
}

A.1.3.6 ParserAdapter

This helper class wraps a SAX 1.0 Parser implementation and makes it behave like a 2.0
XMLReader implementation (making namespace support available). The only callback that will not
behave normally is skippedEntity() in the ContentHandler interface; it will never be invoked.

public class ParserAdapter implements XMLReader, DocumentHandler {
 public ParserAdapter () throws SAXException;
 public ParserAdapter (Parser parser);

 // Implementation of XMLReader interface

Java and XML

 page 342

 // Implementation of DocumentHandler interface
}

A.1.3.7 ParserFactory

This class contains methods that dynamically create an instance of a Parser implementation from a
specified class name, or if none is supplied, from a system property named "org.xml.sax.driver".

public class ParserFactory {
 public static Parser makeParser () throws ClassNotFoundException,
 IllegalAccessException, InstantiationException,
 NullPointerException, ClassCastException;
 public static Parser makeParser (String className)
 throws ClassNotFoundException, IllegalAccessException,
 InstantiationException, ClassCastException;
}

A.1.3.8 XMLFilterImpl

This class provides a default implementation of the org.xml.sax.XMLFilter interface.

public class XMLFilterImpl implements XMLFilter, EntityResolver,
 DTDHandler, ContentHandler,
 ErrorHandler {
 public XMLFilterImpl ();
 public XMLFilterImpl (XMLReader parent);

 // Implementation of XMLFilter interface

 // Implementation of XMLReader interface

 // Implementation of EntityResolver interface
 // Implementation of DTDHandler interface

 // Implementation of ContentHandler interface

 // Implementation of ErrorHandler interface
}

A.1.3.9 XMLReaderAdapter

This helper class wraps a SAX 2.0 XMLReader implementation and makes it behave like a 1.0
Parser implementation (making namespace support unavailable). The namespaces feature
(http://xml.org/sax/features/namespaces) must be supported or errors in parsing will occur.

public class XMLReaderAdapter implements Parser, ContentHandler {
 public XMLReaderAdapter () throws SAXException;
 public XMLReaderAdapter (XMLReader xmlReader);

// Implementation of Parser interface

 // Implementation of ContentHandler interface
}

A.1.3.10 XMLReaderFactory

Java and XML

 page 343

This class contains methods that dynamically create an instance of an XMLReader implementation
from a specified class name, or if none is supplied, from a system property named
"org.xml.sax.driver".

final public class XMLReaderFactory {
 public static XMLReader createXMLReader () throws SAXException;
 public static XMLReader createXMLReader (String className)
 throws SAXException;

}

A.2 DOM Level 2

DOM provides a complete, in-memory representation of an XML document. Developed by the
W3C, DOM provides detail about the structure of a document after it has been completely parsed.
While DOM Level 3 is rumored to specify an API for getting the DOM Document object, there is
currently nothing in DOM that defines this behavior. Like SAX, most of the core DOM package is
made up of interfaces that define structures within an XML document, and map those structures to
the Java language (these same mappings apply to CORBA, JavaScript, and other languages, as
well).

A.2.1 Package: org.w3c.dom

This package contains the core interfaces and classes for DOM Level 2. Typically a vendor's
parsing software provides an implementation of those interfaces that are implicitly used by your
application software.

A.2.1.1 Attr

This interface represents an XML attribute (on an element) within Java. It provides access to the
name and value of the attribute, and allows the setting of the value (for mutability).[A] The
getSpecified() method indicates if the attribute (and its value) was explicitly noted in the XML
document, or if a value was not specified but the document's DTD assigned a default value to the
attribute. Finally, the "owning" element can be obtained from this interface.

[A] In this and other setXXX() methods in DOM, a DOMException results when a modification is attempted on a node that is read-only.

public interface Attr extends Node {
 public String getName();
 public boolean getSpecified();
 public String getValue();
 public void setValue(String value) throws DOMException;
 public Element getOwnerElement();
}

A.2.1.2 CDATASection

This interface does not define any methods of its own; instead it inherits all of the Text interface's
methods. However, by having its own interface (and thus its own node type), a distinction can be
drawn between text within XML CDATA sections and simple text (not in a CDATA section) within an
element.

public interface CDATASection extends Text {
}

Java and XML

 page 344

A.2.1.3 CharacterData

This interface is the "super" interface for all textual Node types in DOM (Text, Comment, and
indirectly CDATASection). It defines methods for accessing and setting the data within a textual
node, as well as a set of methods for dealing with the textual data directly as characters; obtaining
the length, appending, inserting, and deleting data, and replacing all or part of the data. All of these
methods throw DOMExceptions when the node is read-only.

public interface CharacterData extends Node {
 public String getData() throws DOMException;
 public void setData(String data) throws DOMException;
 public int getLength();
 public String substringData(int offset, int count)
 throws DOMException;
 public void appendData(String arg) throws DOMException;
 public void insertData(int offset, String arg) throws DOMException;
 public void deleteData(int offset, int count) throws DOMException;
 public void replaceData(int offset, int count, String arg)
 throws DOMException;
}

A.2.1.4 Comment

This interface provides a Java representation for an XML comment. Similar to CDATASection, it
adds no methods of its own but does allow a distinction (based on the type of the interface) to
distinguish between text and comments in an XML document.

public interface Comment extends CharacterData {
}

A.2.1.5 Document

This interface is the DOM representation of a complete XML document. It is also the key for
creating new XML elements, attributes, PIs, and other constructs. In addition to allowing retrieval
of the DTD declaration (getDocType()) and root element (getDocumentElement()), this allows
searching through the tree in a pre-order fashion for a specific element (getElementsByTagName(
)). Because the DOM model requires that all Node implementations be tied to a DOM Document
object, this provides methods for creating the various types of DOM Nodes. Each createXXX()
method has a complement that supports namespaces through createXXXNS(). Additionally, Nodes
can be imported into this Document through importNode(); the boolean value indicates if the
children of the imported Node should be recursively imported as well.

public interface Document extends Node {
 public DocumentType getDoctype();
 public DOMImplementation getImplementation();
 public Element getDocumentElement();
 public Element createElement(String tagName) throws DOMException;
 public DocumentFragment createDocumentFragment();
 public Text createTextNode(String data);
 public Comment createComment(String data);
 public CDATASection createCDATASection(String data)
 throws DOMException;
 public ProcessingInstruction
 createProcessingInstruction(String target, String data)
 throws DOMException;
 public Attr createAttribute(String name) throws DOMException;
 public EntityReference createEntityReference(String name)

Java and XML

 page 345

 throws DOMException;
 public NodeList getElementsByTagName(String tagname);
 public Node importNode(Node importedNode, boolean deep)
 throws DOMException;
 public Element createElementNS(String namespaceURI,
 String qualifiedName)
 throws DOMException;
 public Attr createAttributeNS(String namespaceURI,
 String qualifiedName)
 throws DOMException;
 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);
 public Element getElementById(String elementId);
}

A.2.1.6 DocumentFragment

This interface provides for dealing with only a portion of a complete Document object at one time. It
is useful for manipulating portions of a DOM tree without having to store the entire tree in memory.

public interface DocumentFragment extends Node {
}

A.2.1.7 DocumentType

This interface represents an XML document's DOCTYPE declaration. The name is the element name
immediately following <!DOCTYPE, and the system ID and public ID of any referenced DTD are
available as well. Additionally, if any inline entities or notations are present, they can be obtained
through the appropriate getXXX() methods.

public interface DocumentType extends Node {
 public String getName();
 public NamedNodeMap getEntities();
 public NamedNodeMap getNotations();
 public String getPublicId();
 public String getSystemId();
 public String getInternalSubset();
}

A.2.1.8 DOMException

This class provides an Exception for DOM interfaces to throw when problems occur. It also
provides a set of error codes that represent the various problems that occur using DOM and might
result in the Exception being thrown.

public class DOMException extends RuntimeException {
 public DOMException(short code, String message);

 // Exception codes
 public static final short INDEX_SIZE_ERR;
 public static final short DOMSTRING_SIZE_ERR;
 public static final short HIERARCHY_REQUEST_ERR;
 public static final short WRONG_DOCUMENT_ERR;
 public static final short INVALID_CHARACTER_ERR;
 public static final short NO_DATA_ALLOWED_ERR;
 public static final short NO_MODIFICATION_ALLOWED_ERR;
 public static final short NOT_FOUND_ERR;
 public static final short NOT_SUPPORTED_ERR;
 public static final short INUSE_ATTRIBUTE_ERR;

Java and XML

 page 346

 public static final short INVALID_STATE_ERR;
 public static final short SYNTAX_ERR;
 public static final short INVALID_MODIFICATION_ERR;
 public static final short NAMESPACE_ERR;
 public static final short INVALID_ACCESS_ERR;
}

A.2.1.9 DOMImplementation

This interface attempts to provide a standard entry point for accessing vendor-specific DOM
implementations, and allowing the creation of a DocumentType and Document within those vendor
implementations.[B] It also provides a method (hasFeature()) for querying the implementation for
a specific feature support.

[B] Unfortunately, to obtain an instance of a DOMImplementation, you must have a Document object and use
getDOMImplementation(), or directly load the vendor's classes. This tends to result in a chicken-and-egg scenario; see JDOM (in Chapter 8,
and later in this appendix) for alternatives to this approach to creating XML documents.

public interface DOMImplementation {
 public boolean hasFeature(String feature, String version);
 public DocumentType createDocumentType(String qualifiedName,
 String publicId,
 String systemId)
 throws DOMException;
 public Document createDocument(String namespaceURI,
 String qualifiedName,
 DocumentType doctype)
 throws DOMException;
}

A.2.1.10 Element

This interface provides a Java representation of an XML element. It provides methods to get its
name and attributes, as well as to set these values. It also provides several flavors of access to the
XML attributes, including namespace-aware versions of the getXXX() and setXXX() methods.

public interface Element extends Node {
 public String getTagName();
 public String getAttribute(String name);
 public void setAttribute(String name, String value)
 throws DOMException;
 public void removeAttribute(String name) throws DOMException;
 public Attr getAttributeNode(String name);
 public Attr setAttributeNode(Attr newAttr) throws DOMException;
 public Attr removeAttributeNode(Attr oldAttr) throws DOMException;
 public NodeList getElementsByTagName(String name);
 public String getAttributeNS(String namespaceURI, String localName);
 public void setAttributeNS(String namespaceURI, String qualifiedName,
 String value)
 throws DOMException;
 public void removeAttributeNS(String namespaceURI, String localName)
 throws DOMException;
 public Attr getAttributeNodeNS(String namespaceURI, String localName);
 public Attr setAttributeNodeNS(Attr newAttr) throws DOMException;
 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);
}

A.2.1.11 Entity

Java and XML

 page 347

This provides a Java representation of an entity (parsed or unparsed) in an XML document. Access
to the system ID and public ID as well as the notation for the entity (from the DTD) is provided
through accessor methods.

public interface Entity extends Node {
 public String getPublicId();
 public String getSystemId();
 public String getNotationName();
}

A.2.1.12 EntityReference

This interface represents the resulting value from an entity reference, once the entity has been
resolved. This interface assumes that character and predefined entity references have already
occurred when this interface is exposed to the application client.

public interface EntityReference extends Node {
}

A.2.1.13 NamedNodeMap

This interface defines a list, much like NodeList, but requires that each Node in the list be a named
Node (such as an Element or Attr). Because of this requirement, methods can be provided to access
members of the list by their name (with or without namespace support). The list also provides for
removal and modification of its members. These methods all throw DOMExceptions when the
referenced Node is read-only.

public interface NamedNodeMap {
 public Node getNamedItem(String name);
 public Node setNamedItem(Node arg) throws DOMException;
 public Node removeNamedItem(String name) throws DOMException;
 public Node item(int index);
 public int getLength();
 public Node getNamedItemNS(String namespaceURI, String localName);
 public Node setNamedItemNS(Node arg) throws DOMException;
 public Node removeNamedItemNS(String namespaceURI, String localName)
 throws DOMException;
}

A.2.1.14 Node

This is the central interface for all DOM objects. It provides a robust set of methods for accessing
information about a Node in the DOM tree. It also allows for handling of a Node's children (if they
exist). While most of the methods are self-explanatory, there are several methods worth noting:
getAttributes() only returns non-null data if the Node is an Element; cloneNode() provides
for a shallow or deep copy of a Node; normalize() moves all text into non-adjacent Text nodes
(no two Text nodes are adjacent, and all resolved textual entity references are consolidated into
Text nodes); and supports() provides information about the feature set of the Node. Namespace-
aware methods are also provided (getNamespaceURI(), getPrefix(), and getLocalName()).
Finally, a set of constants is provided for identifying the type of a Node by comparing the constants
against the result of getNodeType().

public interface Node {
 public String getNodeName();
 public String getNodeValue() throws DOMException;
 public void setNodeValue(String nodeValue) throws DOMException;

Java and XML

 page 348

 public short getNodeType();
 public Node getParentNode();
 public NodeList getChildNodes();
 public Node getFirstChild();
 public Node getLastChild();
 public Node getPreviousSibling();
 public Node getNextSibling();
 public NamedNodeMap getAttributes();
 public Document getOwnerDocument();
 public Node insertBefore(Node newChild, Node refChild)
 throws DOMException;
 public Node replaceChild(Node newChild, Node oldChild)
 throws DOMException;
 public Node removeChild(Node oldChild) throws DOMException;
 public Node appendChild(Node newChild) throws DOMException;
 public boolean hasChildNodes();
 public Node cloneNode(boolean deep);
 public void normalize();
 public boolean supports(String feature, String version);
 public String getNamespaceURI();
 public String getPrefix();
 public void setPrefix(String prefix) throws DOMException;
 public String getLocalName();

 // Node Type Constants
 public static final short ELEMENT_NODE;
 public static final short ATTRIBUTE_NODE;
 public static final short TEXT_NODE;
 public static final short CDATA_SECTION_NODE;
 public static final short ENTITY_REFERENCE_NODE;
 public static final short ENTITY_NODE;
 public static final short PROCESSING_INSTRUCTION_NODE;
 public static final short COMMENT_NODE;
 public static final short DOCUMENT_NODE;
 public static final short DOCUMENT_TYPE_NODE;
 public static final short DOCUMENT_FRAGMENT_NODE;
 public static final short NOTATION_NODE;
}

A.2.1.15 NodeList

This interface is a DOM structure analogous to a Java Vector or List. It is the return value of any
method that supports multiple Node implementations as a result. This allows iteration through the
items as well as providing the ability to get a Node at a specific index.

public interface NodeList {
 public Node item(int index);
 public int getLength();
}

A.2.1.16 Notation

This interface represents a NOTATION construct in a DTD, used to declare the format of an unparsed
entity or for declaration of PIs. This provides access to both the system ID and public ID within the
declaration. Both return null if they are not present.

public interface Notation extends Node {
 public String getPublicId();
 public String getSystemId();
}

Java and XML

 page 349

A.2.1.17 ProcessingInstruction

This interface represents an XML processing instruction (PI). It provides methods for getting the
target and the data of the PI. Note that there is no means of accessing the name/value pairs within
the PI individually. The data can also be set for the PI.

public interface ProcessingInstruction extends Node {
 public String getTarget();
 public String getData();
 public void setData(String data) throws DOMException;
}

A.2.1.18 Text

This interface provides a Java representation of an XML element's textual data. The only method it
adds to those defined in CharacterData is one that will split the node into two nodes. The original
Text node will contain text up to the specified offset, and the method returns a new Text node with
the text after the offset. Like other mutability methods, a DOMException is thrown when the node is
read-only.

public interface Text extends CharacterData {
 public Text splitText(int offset) throws DOMException;

}

A.3 JAXP 1.0

JAXP provides an abstraction layer over the process of getting a vendor's implementation of a SAX
or DOM parser. Currently, JAXP supports SAX 1.0 and DOM Level 1 parser implementations
only.

A.3.1 Package: javax.xml.parsers

This is the single package used in JAXP, and details the classes needed for the JAXP abstraction
and pluggability layer.

A.3.1.1 DocumentBuilder

This class is the wrapper over an underlying parser implementation class. It allows parsing to occur
in a vendor-neutral way.

public abstract class DocumentBuilder {
 public Document parse(InputStream stream)
 throws SAXException, IOException, IllegalArgumentException;
 public Document parse(String uri)
 throws SAXException, IOException, IllegalArgumentException;
 public Document parse(File file)
 throws SAXException, IOException, IllegalArgumentException;
 public abstract Document parse(InputSource source)
 throws SAXException, IOException, IllegalArgumentException;
 public abstract Document newDocument();
 public abstract boolean isNamespaceAware();
 public abstract boolean isValidating();
 public abstract void setEntityResolver(EntityResolver er);
 public abstract void setErrorHandler(ErrorHandler eh);

Java and XML

 page 350

}

A.3.1.2 DocumentBuilderFactory

This class is the factory used to create instances of the DocumentBuilder class, and allows
namespace and validation features to be set for the production of those instances.

public abstract class DocumentBuilderFactory {
 protected DocumentBuilderFactory();
 public static DocumentBuilderFactory newInstance();
 public abstract DocumentBuilder newDocumentBuilder()
 throws ParserConfigurationException;
 public void setNamespaceAware(boolean aware);
 public void setValidating(boolean validating);
 public boolean isNamespaceAware();
 public boolean isValidating();
}

A.3.1.3 FactoryConfigurationException

This defines an Error that is thrown if a factory instance cannot be created.

public class FactoryConfigurationException extends Error {
 public FactoryConfigurationError();
 public FactoryConfigurationError(String msg);
 public FactoryConfigurationError(Exception e);
 public FactoryConfigurationError(Exception e, String msg);
 public Exception getException();
}

A.3.1.4 ParserConfigurationException

This defines an Exception that is thrown if a parser is requested but cannot be constructed with the
specified validation and namespace-awareness settings.

public class ParserConfigurationException extends Exception {
 public ParserConfigurationException();
 public ParserConfigurationException(String msg);
}

A.3.1.5 SAXParser

This class is the wrapper over an underlying SAX 1.0 parser implementation class, and allows
parsing to occur in a vendor-neutral way.

public abstract class SAXParser {
 public void parse(InputStream stream, HandlerBase base)
 throws SAXException, IOException, IllegalArgumentException;
 public void parse(String uri, HandlerBase base)
 throws SAXException, IOException, IllegalArgumentException;
 public void parse(File file, HandlerBase base)
 throws SAXException, IOException, IllegalArgumentException;
 public void parse(InputSource source, HandlerBase base)
 throws SAXException, IOException, IllegalArgumentException;
 public abstract Parser getParser() throws SAXException;
 public abstract boolean isNamespaceAware();
 public abstract boolean isValidating();
}

Java and XML

 page 351

A.3.1.6 SAXParserFactory

This class is the factory used to create instances of the SAXParser class, and allows namespace and
validation features to be set for the production of those instances.

public abstract class SAXParserFactory {
 public static SAXParserFactory newInstance();
 public SAXParser newSAXParser()
 throws ParserConfigurationException, SAXException;
 public void setNamespaceAware(boolean aware);
 public void setValidating(boolean validating);
 public boolean isNamespaceAware();
 public boolean isValidating();

}

A.4 JDOM 1.0

JDOM 1.0, introduced in Chapter 8, provides a complete view of an XML document within a tree
model. Although this model is similar to DOM, it is not as rigid a representation; this allows the
content of an Element, for example, to be set directly, instead of setting the value of the child of
that Element. Additionally, JDOM provides concrete classes rather than interfaces, allowing direct
instantiation of objects rather than through the use of a factory. SAX and DOM are only used in
JDOM for the construction of a JDOM Document object from existing XML data, and are detailed
in the org.jdom.input package.

A.4.1 Package: org.jdom[C]
[C] Please note that while the JDOM API is fairly stable, it is at the time of this writing still in beta. Minor changes may occur during the production and shelf-
life of this book. Please consult http://www.jdom.org for the latest JDOM classes.

This package contains the core classes for JDOM 1.0. These consist of XML objects modeled in
Java and a set of Exceptions that can be thrown when errors occur.

A.4.1.1 Attribute

Attribute defines behavior for an XML attribute, modeled in Java. Methods allow the user to
obtain the value of the attribute as well as namespace information about the Attribute. An
instance can be created with the name of the attribute and its value, or the Namespace and local
name, as well as the value, of the attribute. Several convenience methods are also provided for
automatic data conversion of the attribute's value.

public class Attribute {
 public Attribute(String name, String value);
 public Attribute(String name, String prefix, String uri, String value);
 public Attribute(String name, Namespace ns, String value);
 public String getName();
 public String getQualifiedName();
 public String getNamespacePrefix();
 public String getNamespaceURI();
 public String getValue();
 public void setValue(String value);

 // Convenience Methods for Data Conversion
 public String get StringValue(String default Value);
 public int getIntValue(int defaultValue);

Java and XML

 page 352

 public int getIntValue() throws DataConversionException;
 public long getLongValue(long defaultValue);
 public long getLongValue() throws DataConversionException;
 public float getFloatValue(float defaultValue);
 public float getFloatValue() throws DataConversionException;
 public double getDoubleValue(double defaultValue);
 public double getDoubleValue() throws DataConversionException;
 public boolean getBooleanValue(boolean defaultValue);
 public boolean getBooleanValue() throws DataConversionException;
 public char getCharValue()throws DataConversionException;
 public char getCharValue(char defaultValue);
 public byte getByteValue(byte defaultValue);
 public byte getByteValue() throws DataConversionException;
}

A.4.1.2 Comment

Comment is a simple representation of an XML comment, and contains the text within the XML
comment.

public class Comment {
 public Comment(String text);
 public String getText();
 public void setText(String text);
 public String toString();
}

A.4.1.3 DataConversionException

This Exception is thrown when a conversion from an Attribute's or Element's value to a
specified data type occurs. The message that results specifies the name of the Attribute whose
value was requested as well as the data type to which conversion is requested. It is provided as a
subclass of JDOMException so that an application using JDOM can catch that single Exception
and receive all error notifications.

public class DataConversionException extends JDOMException {
 public DataConversionException(String name, String dataType);
}

A.4.1.4 DocType

DocType represents a DOCTYPE declaration within an XML document. It includes information about
the element name being constrained, as well as the public ID and system ID of the external DTD
reference, if one is present.

public class DocType {
 public DocType(String elementName, String publicID, String systemID);
 public DocType(String elementName, String systemID);
 public DocType(String elementName);
 public String getElementName();
 public String getPublicID();
 public DocType setPublicID(String publicID);
 public String getSystemID();
 public DocType setSystemID(String systemID);
}

A.4.1.5 Document

Java and XML

 page 353

Document models an XML Document in Java. It requires that it be created with a root Element,
although that Element can be replaced with setRootElement(). It also allows the setting of a
DocType and a List of ProcessingInstructions, and the retrieval of those same objects.
Convenience methods are provided to allow inline addition of PIs to the Document. The
getContent() method returns all the content of the Document, which includes the root Element
and any Comments that may exist at the document level in the XML document.

public class Document {
 public Document(Element rootElement, DocType docType);
 public Document(Element rootElement);
 public Element getRootElement() throws NoSuchElementException;
 public Document setRootElement(Element rootElement);
 public DocType getDocType();
 public Document setDocType(DocType docType);
 public List getProcessingInstructions();
 public List getProcessingInstructions(String target);
 public ProcessingInstruction getProcessingInstruction(String target)
 throws NoSuchProcessingInstructionException;
 public Document addProcessingInstruction(ProcessingInstruction pi);
 public Document addProcessingInstruction(String target, String data);
 public Document addProcessingInstruction(String target, Map data);
 public Document setProcessingInstructions(
 List processingInstructions);
 public boolean removeProcessingInstruction(
 ProcessingInstruction processingInstruction);
 public boolean removeProcessingInstruction(String target);
 public boolean removeProcessingInstructions(String target);
 public Document addComment(Comment comment);
 public List getMixedContent();
}

A.4.1.6 Element

Element is a Java representation of an XML element. It is completely namespace-aware, so all
methods take in a single element name as an argument, as well as optional namespace information.
The result of calls to getContent() is always a String, either the textual content of the XML
element, or an empty String. An Element is considered to have mixed content when it has a
combination of textual data and nested elements, as well as optional comments, entities, and
processing instructions. This complete List of content can be obtained with getMixedContent(),
and the results in the List evaluated through instanceof against a String, Element, or Comment.

The addXXX() methods are designed to be chained together, and therefore return the modified
Element:

Element element = new Element("root");
element.addChild(new Element("child")
 .addChild(new Element("grandchild")
 .addAttribute("name", "value")
 .setContent("Hello World!"))
 .addChild(new Element("anotherChild"))
);

This would result in the following XML document fragment:

<root>
 <child>
 <grandchild name="value">
 Hello World!

Java and XML

 page 354

 </grandchild>
 </child>
 <anotherChild />
</root>

There are also convenience methods to allow inline adding of Attributes to an Element, through
setAttribute(String name, String value). The removal methods work in the same fashion,
and provide namespace-aware versions as well.

public class Element {
 public Element(String name);
 public Element(String name, String uri);
 public Element(String name, String prefix, String uri);
 public Element(String name, Namespace ns);
 public String getName();
 public String getNamespacePrefix();
 public String getNamespaceURI();
 public String getQualifiedName();
 public String getContent();
 public Element setContent(String textContent);
 public boolean hasMixedContent();
 public List getMixedContent();
 public Element setMixedContent(List mixedContent);
 public List getChildren();
 public Element setChildren(List children);
 public List getChildren(String name);
 public List getChildren(String name, Namespace ns);
 public Element getChild(String name) throws NoSuchElementException;
 public Element getChild(String name, Namespace ns)
 throws NoSuchElementException;
 public Element addChild(Element element);
 public Element addChild(ProcessingInstruction pi);
 public Element addChild(Comment comment);
 public Element addChild(String s);
 public boolean removeChild(Element element);
 public boolean removeChild(Comment comment);
 public boolean removeChild(String name);
 public boolean removeChild(String name, Namespace ns);
 public boolean removeChildren(String name);
 public boolean removeChildren(String name, Namespace ns);
 public boolean removeChildren();
 public List getAttributes();
 public Attribute getAttribute(String name)
 throws NoSuchAttributeException;
 public Attribute getAttribute(String name, Namespace ns)
 throws NoSuchAttributeException;
 public Element setAttributes(List attributes);
 public Element addAttribute(Attribute attribute);
 public Element addAttribute(String name, String value);
 public Element addAttribute(String name, Namespace ns, String value);
 public void removeAttribute(String name);
 public void removeAttribute(String name, Namespace ns);
}

A.4.1.7 JDOMException

This is the core JDOM Exception that other JDOM Exception classes subclass. It provides for
error messages as well as the wrapping of a root cause Exception, in the case that a
JDOMException needs to wrap a lower-level Exception.

public class JDOMException extends Exception {

Java and XML

 page 355

 public JDOMException();
 public JDOMException(String message);
 public JDOMException(String message, Throwable rootCause);
 public Throwable getRootCause();
}

A.4.1.8 Namespace

The Namespace class handles namespace mappings used in JDOM Document objects.

public class Namespace {
 public static Namespace getNamespace(String uri);
 public static Namespace getNamespace(String prefix, String uri);
 public String getPrefix();
 public String getURI();
 public boolean isDefault();
}

A.4.1.9 NoSuchAttributeException

This Exception is thrown when a specific Attribute is searched for and not found. The message
that results contains the name of the Attribute that was searched upon.

public class NoSuchAttributeException extends JDOMException {
 public NoSuchAttributeException(String attributeName);
}

A.4.1.10 NoSuchElementException

This Exception is thrown when a specific Element is searched for and not found. The message that
results contains the name of the Element that was searched upon.

public class NoSuchElementException extends JDOMException {
 public NoSuchElementException(String elementName);
}

A.4.1.11 NoSuchProcessingInstructionException

This Exception is thrown when a specific ProcessingInstruction is searched for and not found.
The message that results contains the target of the ProcessingInstruction that was searched
upon.

public class NoSuchProcessingInstructionException extends JDOMException {
 public NoSuchProcessingInstructionException(String target)
}

A.4.1.12 ProcessingInstruction

ProcessingInstruction defines behavior for an XML processing instruction, modeled in Java. It
allows specific handling for the target as well as the raw data for the target. Additionally, as many
PIs use data in the form of name/value pairs (much like attributes), this allows retrieval and addition
of name/value pairs. For example, in the <?cocoon-process type="xslt"?> processing
instruction, invoking getValue("type") on the ProcessingInstruction representing that XML
PI would return xslt.

public class ProcessingInstruction {

Java and XML

 page 356

 public ProcessingInstruction(String target, Map data);
 public ProcessingInstruction(String target, String data);
 public String getTarget();
 public String getData();
 public ProcessingInstruction setData(String data);
 public ProcessingInstruction setData(Map data);
 public String getValue(String name);
 public ProcessingInstruction setValue(String name, String value);
 public boolean removeValue(String name);
}

A.4.2 Package: org.jdom.adapters

This package contains adapters that allow a standard interface for obtaining a DOM Document
object from any DOM parser (including DOM Level 1 parsers). Adapters can be easily added for
any parser that desires to have JDOM support.

A.4.2.1 AbstractDOMAdapter

This class provides default behavior for the version of getDocument() that takes in a filename by
wrapping the file in a FileOutputStream and delegating invocation to
getDocument(InputStream).

public abstract class AbstractDOMAdapter implements DOMAdapter {
 public Document getDocument(String filename, boolean validate)
 throws IOException;
 public abstract Document getDocument(InputStream in,boolean validate)
 throws IOException;
 public abstract Document createDocument() throws IOException;
}

A.4.2.2 DOMAdapter

This class defines the interface that adapters must implement. This includes a means to produce a
DOM Document from a filename or an InputStream, as well as a means of obtaining a new, empty
DOM Document object.

public interface DOMAdapter {
 public Document getDocument(String filename, boolean validate)
 throws IOException;
 public Document getDocument(InputStream in, boolean validate)
 throws IOException;
 public Document createDocument() throws IOException;
}

Specific adapter classes are not detailed here, as additions and modifications may be made during
publication of the book. As of this writing, functional adapters are provided for the following
parsers:

• Oracle Version 1 XML Parser
• Oracle Version 2 XML Parser
• Sun Project X Parser
• Apache Xerces Parser
• IBM XML4J Parser

Java and XML

 page 357

A.4.3 Package: org.jdom.input

This package defines the interface for building a JDOM Document object. Additional Builder
implementations can be added for new implementations on other XML APIs, or for a new parsing
implementation, such as deferring complete document reading until a user requests it.

A.4.3.1 AbstractBuilder

This base implementation of Builder provides routing for the build() methods that take in a
File or URL, and convert them to streams to pass to the build() method that takes in an
InputStream.

public abstract class AbstractBuilder implements Builder {
 public abstract Document build(InputStream in) throws JDOMException;
 public Document build(File file) throws JDOMException;
 public Document build(URL url) throws JDOMException;
}

A.4.3.2 Builder

This base interface defines behavior for all Document builders. Each Builder implementation must
provide a mechanism to create a JDOM Document object from an InputStream, File, or URL. All
throw JDOMExceptions, which will hold information about well-formedness or validity errors
(when appropriate) if errors in Document building occur.

public interface Builder {
 public Document build(InputStream in) throws JDOMException;
 public Document build(File file) throws JDOMException;
 public Document build(URL url) throws JDOMException;
}

A.4.3.3 DOMBuilder

This class provides the ability to create a JDOM Document object from an XML input source using
a parser that supports DOM, the Document Object Model. It uses the various adapters in
org.jdom.adapters, so if a parser is requested for which there is no adapter, errors will occur.
Additionally, a method is provided for building a JDOM Document object from an existing DOM
tree (org.w3c.dom.Document). When the DOMBuilder is constructed, validation can be requested,
as can the class name of the adapter to use. If neither is supplied, the default behavior occurs: no
validation takes place and the Apache Xerces parser is used.

public class DOMBuilder extends AbstractBuilder {
 public DOMBuilder(String adapterClass, boolean validate);
 public DOMBuilder(String adapterClass);
 public DOMBuilder(boolean validate);
 public DOMBuilder();
 public Document build(InputStream in) throws JDOMException;
 public Document build(org.w3c.dom.Document domDocument);
}

A.4.3.4 SAXBuilder

This class provides the ability to create a JDOM Document object from an XML input source using
a parser that supports SAX, the Simple API for XML. It can use any SAX parser implementation
that is SAX 2.0-compliant.[D] When the SAXBuilder is constructed, validation can be requested, as

Java and XML

 page 358

well as the class name of the SAX driver to use. If neither is supplied, the default behavior occurs:
no validation takes place and the Apache Xerces parser is used.

[D] Depending on user demand, support for SAX 1.0 parsers may be added in later versions of JDOM.

public class SAXBuilder extends AbstractBuilder {
 public SAXBuilder(String saxDriverClass, boolean validate);
 public SAXBuilder(String saxDriverClass);
 public SAXBuilder(boolean validate);
 public SAXBuilder();
 public Document build(InputStream in) throws JDOMException;
}

A.4.4 Package: org.jdom.output

This package defines behavior for output of JDOM Document objects. The only offering currently is
the XMLOutputter, which provides for output of a JDOM Document to a stream, but additional
output classes are being added, with several expected to be included in the JDOM 1.0 final release.
Of particular note is the SAXOutputter class (not included here), which will allow a JDOM
Document to fire SAX events off to an application expecting SAX behavior.

A.4.4.1 XMLOutputter

This class handles output of a Document to a supplied OutputStream in XML format. Various
constructors are provided for setting the level of indention that should occur, as well as determining
if new line feeds should be added to the output. The default behavior is "pretty-printing," which
uses two spaces for each indention level and outputs new line feeds. Once the instance is created,
the output() method will output the supplied Document to the specified OutputStream.

public class XMLOutputter {
 public XMLOutputter();
 public XMLOutputter(String indent);
 public XMLOutputter(String indent, boolean newlines);
 public void output(Document doc, OutputStream out)
 throws
 IOException;

}

Appendix B. SAX 2.0 Features and Properties
This appendix details the SAX 2.0 standard features and properties. Although a vendor's parsing
software can add additional features and properties for vendor-specific functionality, this list
represents the core set of functionality that any SAX 2.0-compliant parser implementation should
support.

B.1 Core Features

The core set of features supported by SAX 2.0 XMLReader implementations is listed here. These
features can be set through setFeature() , and the value of a feature can be obtained through
getFeature() . Any feature can be read-only, or read and write; features also may be modifiable
only when parsing is occurring, or only when parsing is not occurring.

Java and XML

 page 359

B.1.1 Namespace Processing

This feature instructs a parser to perform namespace processing, which will cause namespace
prefixes, namespace URIs, and element local names to be available through the SAX namespace
callbacks (startPrefixMapping() and endPrefixMapping(), as well as certain parameters
supplied to startElement() and endElement()). When this feature is true, this processing will
occur. When false, namespace processing will not occur (this implies that the namespace prefix
reporting feature is on).

URI: http://xml.org/sax/features/namespaces
Access: Read-only when parsing; read/write when not parsing

B.1.2 Namespace Prefix Reporting

This feature instructs a parser to report the attributes used in namespace declarations, such as the
xmlns:[namespace prefix] attributes. When this feature is not on (false), namespace-related
attributes are not reported, as the parser consumes them in order to discover a namespace prefix to
URI mappings, and they are generally not of value to the wrapping application in that context. In
addition, when namespace processing is turned on, generally namespace prefix mapping is turned
off.

URI: http://xml.org/sax/features/namespace-prefixes
Access: Read-only when parsing, read/write when not parsing

B.1.3 String Interning

This feature dictates that all element raw and local names, namespace prefixes, and namespace
URIs are interned using java.lang.String.intern(). When not on (false), all XML
components are left as is.

URI: http://xml.org/sax/features/string-interning
Access: Read-only when parsing, read/write when not parsing

B.1.4 Validation

This feature requests that validation occur and that any errors as a result of broken constraints be
reported through the SAX ErrorHandler interface (if an implementation is registered). When set to
false, no validation occurs.

URI: http://xml.org/sax/features/validation
Access: Read-only when parsing, read/write when not parsing

B.1.5 Process External Entities (General)

This feature requests that all general (textual) entities be processed within an XML document.

URI: http://xml.org/sax/features/external-general-entities
Access: Read-only when parsing, read/write when not parsing

Java and XML

 page 360

B.1.6 Process External Entities (Parameter)

This feature requests that all external parameters be parsed, including those in any external DTD's
subset.

URI: http://xml.org/sax/features/external-parameter-entities
Access: Read-only when parsing, read/write when not parsing

B.2 Core Properties

Properties provide a way to deal with objects used in the parsing process, particularly when dealing
with handlers such as LexicalHandler and DeclHandler that are not in the core set of SAX 2.0
handlers (EntityResolver, DTDHandler, ContentHandler, and ErrorHandler). Any property can
be read-only, or read and write; features also may be modifiable only when parsing is occurring, or
only when parsing is not occurring.

B.2.1 Lexical Handler

This property allows the setting and retrieval of a LexicalHandler implementation to be used for
handling of comments and DTD references within an XML document.

URI: http://xml.org/sax/properties/lexical-handler
Data type: org.xml.sax.ext.LexicalHandler
Access: Read/write when parsing, read/write when not parsing

B.2.2 Declaration Handler

This property allows the setting and retrieval of a DeclHandler implementation to be used for
handling of constraints within a DTD.

URI: http://xml.org/sax/properties/declaration-handler
Data type: org.xml.sax.ext.DeclHandler
Access: Read/write when parsing, read/write when not parsing

B.2.3 DOM Node

When parsing is occurring, this will retrieve the current DOM node (if a DOM iterator is being
used). When parsing is not occurring, this retrieves the root DOM node.

URI: http://xml.org/sax/properties/dom-node
Data type: org.w3c.dom.Node
Access: Read-only when parsing, read/write when not parsing

B.2.4 Literal (XML) String

This retrieves the literal characters in the XML document that triggered the event in process when
this property is used.

URI: http://xml.org/sax/properties/xml-string
Data type: java.lang.String
Access: Read-only when parsing, read-only when not parsing

Java and XML

 page 361

